[1] G. Adomian and G. E. Adomian, Cellular systems and aging models, Comput. Math. App. 11 (1985) 283-291.
[2] A. Arara and M. Benchohra, Fuzzy solutions for boundary value problems with integralboundary conditions, Acta Math. Univ. Comenianae LXXV (2006) 119-126.
[3] O. Arino, S. Gautier, J. P. Penot, A Fixed Point Theorem For Sequentially Continuous Mappings With Application To Ordinary Differential Equations, Funkcialaj Ekvcioj, 27 (1984) 273-279.
[4] J. P. Aubin, A. Cellina, Differential inclusions, Springer, Berlin, 1984.
[5] M. Benchohra, S. Hamani, J. Henderson, Functional differential inclusions with integral boundary conditions, Electron. J. Qua. Theory Di er. Equ. 15 (2007) 13 pages.
[6] M. Benchohra, J. R. Graef , F. Z. Mostefai, Weak solutions for boundary value problems with nonlinear fractional differential inclusions, Nonlinear Dynamics and Systems Theory. 11, 3 (2011) 227-237.
[7] M. Benchohra, F. Z. Mostefai, Weak solutions for nonlinear fractional differential equations with integral boundary conditions in Banach space, Opuscula Mathematica, 32, 1 (2012) 31-40.
[8] K. W. Blayneh, Analysis of age structured host-parasitoid model, FAR; East. J. Dyn. Syst. 4 (2002) 125-145.
[9] K. Chichon, Differential inclusions and multivalued integrals, Differential Inclusions, Control and Optimization 33 (2013) 171-191.
[10] F. S. De Blasi, On the property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. Roumanie (N. S.) 21 (1977) 259-262.
[11] L. Gorniewicz, Topological Fixed Point Theory of Multivalued Mappings, 2nd Edition, Springer, Netherlands, 2006.
[12] Hind H. G. Hashem, Weak solutions of differential equations in Banach space, Journal of fractional calculus and applications, 1, 3 (2012) 1-9.
[13] R. W. Ibrahim, The existence of weak solutions for fractional integral inclusions involving Pettis integral, Journal of Scientific and Mathematical Research, (2008)1-8.
[14] G. Infante, Eigenvalues and positive solutions of ODEs involving integral boundary conditions, Discrete Contin. Dyn. Syst. (2005) 436-442.
[15] Wu Jianrong Xue Xiaoping Wu Congxin, Existence theorem for weak solutions of Random differential inclusions in Banach spaces, Advences in Mathematics, 30, 4 (2001) 359-366.
[16] S. K. Pandey, D. K. Singh, P. Kumar and M. Kumar, Existence of measurable selectors in Pettis integrable multi function, 5, 1 (2014) 79-83.
[17] B. J. Pettis, On integration in vector spaces, Trans. Amer. Maths. Soc. 44 (1938) 277- 304.
[18] I. I. Vrabie, Compactness methods for nonlinear evolutions, Longman, Harlow, 1987.
[19] K. Yosida, Functional Analysis, Springer-Verlag, Berlin Heidelberg, New York 1980.
[1] G. Adomian and G. E. Adomian, Cellular systems and aging models, Comput. Math. App. 11 (1985) 283-291.
[2] A. Arara and M. Benchohra, Fuzzy solutions for boundary value problems with integralboundary conditions, Acta Math. Univ. Comenianae LXXV (2006) 119-126.
[3] O. Arino, S. Gautier, J. P. Penot, A Fixed Point Theorem For Sequentially Continuous Mappings With Application To Ordinary Differential Equations, Funkcialaj Ekvcioj, 27 (1984) 273-279.
[4] J. P. Aubin, A. Cellina, Differential inclusions, Springer, Berlin, 1984.
[5] M. Benchohra, S. Hamani, J. Henderson, Functional differential inclusions with integral boundary conditions, Electron. J. Qua. Theory Di er. Equ. 15 (2007) 13 pages.
[6] M. Benchohra, J. R. Graef , F. Z. Mostefai, Weak solutions for boundary value problems with nonlinear fractional differential inclusions, Nonlinear Dynamics and Systems Theory. 11, 3 (2011) 227-237.
[7] M. Benchohra, F. Z. Mostefai, Weak solutions for nonlinear fractional differential equations with integral boundary conditions in Banach space, Opuscula Mathematica, 32, 1 (2012) 31-40.
[8] K. W. Blayneh, Analysis of age structured host-parasitoid model, FAR; East. J. Dyn. Syst. 4 (2002) 125-145.
[9] K. Chichon, Differential inclusions and multivalued integrals, Differential Inclusions, Control and Optimization 33 (2013) 171-191.
[10] F. S. De Blasi, On the property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. Roumanie (N. S.) 21 (1977) 259-262.
[11] L. Gorniewicz, Topological Fixed Point Theory of Multivalued Mappings, 2nd Edition, Springer, Netherlands, 2006.
[12] Hind H. G. Hashem, Weak solutions of differential equations in Banach space, Journal of fractional calculus and applications, 1, 3 (2012) 1-9.
[13] R. W. Ibrahim, The existence of weak solutions for fractional integral inclusions involving Pettis integral, Journal of Scientific and Mathematical Research, (2008)1-8.
[14] G. Infante, Eigenvalues and positive solutions of ODEs involving integral boundary conditions, Discrete Contin. Dyn. Syst. (2005) 436-442.
[15] Wu Jianrong Xue Xiaoping Wu Congxin, Existence theorem for weak solutions of Random differential inclusions in Banach spaces, Advences in Mathematics, 30, 4 (2001) 359-366.
[16] S. K. Pandey, D. K. Singh, P. Kumar and M. Kumar, Existence of measurable selectors in Pettis integrable multi function, 5, 1 (2014) 79-83.
[17] B. J. Pettis, On integration in vector spaces, Trans. Amer. Maths. Soc. 44 (1938) 277- 304.
[18] I. I. Vrabie, Compactness methods for nonlinear evolutions, Longman, Harlow, 1987.
[19] K. Yosida, Functional Analysis, Springer-Verlag, Berlin Heidelberg, New York 1980.
Yassine, K. (2016). Weak solutions of first-order differential inclusions in Banach space. Journal of Engineering Technology and Applied Sciences, 1(1), 1-11. https://doi.org/10.30931/jetas.281375
AMA
Yassine K. Weak solutions of first-order differential inclusions in Banach space. JETAS. Mayıs 2016;1(1):1-11. doi:10.30931/jetas.281375
Chicago
Yassine, Khouni. “Weak Solutions of First-Order Differential Inclusions in Banach Space”. Journal of Engineering Technology and Applied Sciences 1, sy. 1 (Mayıs 2016): 1-11. https://doi.org/10.30931/jetas.281375.
EndNote
Yassine K (01 Mayıs 2016) Weak solutions of first-order differential inclusions in Banach space. Journal of Engineering Technology and Applied Sciences 1 1 1–11.
IEEE
K. Yassine, “Weak solutions of first-order differential inclusions in Banach space”, JETAS, c. 1, sy. 1, ss. 1–11, 2016, doi: 10.30931/jetas.281375.
ISNAD
Yassine, Khouni. “Weak Solutions of First-Order Differential Inclusions in Banach Space”. Journal of Engineering Technology and Applied Sciences 1/1 (Mayıs 2016), 1-11. https://doi.org/10.30931/jetas.281375.
JAMA
Yassine K. Weak solutions of first-order differential inclusions in Banach space. JETAS. 2016;1:1–11.
MLA
Yassine, Khouni. “Weak Solutions of First-Order Differential Inclusions in Banach Space”. Journal of Engineering Technology and Applied Sciences, c. 1, sy. 1, 2016, ss. 1-11, doi:10.30931/jetas.281375.
Vancouver
Yassine K. Weak solutions of first-order differential inclusions in Banach space. JETAS. 2016;1(1):1-11.