Araştırma Makalesi
BibTex RIS Kaynak Göster

Weak solutions of first-order differential inclusions in Banach space

Yıl 2016, , 1 - 11, 17.12.2016
https://doi.org/10.30931/jetas.281375

Öz

The aim of this paper is to investigate the existence of pseudo-solutions for a First- order
multivalued differential equation with nonlocal integral boundary condition in a Banach space.
Our approach is based on the use of the technique of measures of weak noncompactness and a fixed
point theorem of Mönch type.

Kaynakça

  • [1] G. Adomian and G. E. Adomian, Cellular systems and aging models, Comput. Math. App. 11 (1985) 283-291.
  • [2] A. Arara and M. Benchohra, Fuzzy solutions for boundary value problems with integralboundary conditions, Acta Math. Univ. Comenianae LXXV (2006) 119-126.
  • [3] O. Arino, S. Gautier, J. P. Penot, A Fixed Point Theorem For Sequentially Continuous Mappings With Application To Ordinary Differential Equations, Funkcialaj Ekvcioj, 27 (1984) 273-279.
  • [4] J. P. Aubin, A. Cellina, Differential inclusions, Springer, Berlin, 1984.
  • [5] M. Benchohra, S. Hamani, J. Henderson, Functional differential inclusions with integral boundary conditions, Electron. J. Qua. Theory Di er. Equ. 15 (2007) 13 pages.
  • [6] M. Benchohra, J. R. Graef , F. Z. Mostefai, Weak solutions for boundary value problems with nonlinear fractional differential inclusions, Nonlinear Dynamics and Systems Theory. 11, 3 (2011) 227-237.
  • [7] M. Benchohra, F. Z. Mostefai, Weak solutions for nonlinear fractional differential equations with integral boundary conditions in Banach space, Opuscula Mathematica, 32, 1 (2012) 31-40.
  • [8] K. W. Blayneh, Analysis of age structured host-parasitoid model, FAR; East. J. Dyn. Syst. 4 (2002) 125-145.
  • [9] K. Chichon, Differential inclusions and multivalued integrals, Differential Inclusions, Control and Optimization 33 (2013) 171-191.
  • [10] F. S. De Blasi, On the property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. Roumanie (N. S.) 21 (1977) 259-262.
  • [11] L. Gorniewicz, Topological Fixed Point Theory of Multivalued Mappings, 2nd Edition, Springer, Netherlands, 2006.
  • [12] Hind H. G. Hashem, Weak solutions of differential equations in Banach space, Journal of fractional calculus and applications, 1, 3 (2012) 1-9.
  • [13] R. W. Ibrahim, The existence of weak solutions for fractional integral inclusions involving Pettis integral, Journal of Scientific and Mathematical Research, (2008)1-8.
  • [14] G. Infante, Eigenvalues and positive solutions of ODEs involving integral boundary conditions, Discrete Contin. Dyn. Syst. (2005) 436-442.
  • [15] Wu Jianrong Xue Xiaoping Wu Congxin, Existence theorem for weak solutions of Random differential inclusions in Banach spaces, Advences in Mathematics, 30, 4 (2001) 359-366.
  • [16] S. K. Pandey, D. K. Singh, P. Kumar and M. Kumar, Existence of measurable selectors in Pettis integrable multi function, 5, 1 (2014) 79-83.
  • [17] B. J. Pettis, On integration in vector spaces, Trans. Amer. Maths. Soc. 44 (1938) 277- 304.
  • [18] I. I. Vrabie, Compactness methods for nonlinear evolutions, Longman, Harlow, 1987.
  • [19] K. Yosida, Functional Analysis, Springer-Verlag, Berlin Heidelberg, New York 1980.
Yıl 2016, , 1 - 11, 17.12.2016
https://doi.org/10.30931/jetas.281375

Öz

Kaynakça

  • [1] G. Adomian and G. E. Adomian, Cellular systems and aging models, Comput. Math. App. 11 (1985) 283-291.
  • [2] A. Arara and M. Benchohra, Fuzzy solutions for boundary value problems with integralboundary conditions, Acta Math. Univ. Comenianae LXXV (2006) 119-126.
  • [3] O. Arino, S. Gautier, J. P. Penot, A Fixed Point Theorem For Sequentially Continuous Mappings With Application To Ordinary Differential Equations, Funkcialaj Ekvcioj, 27 (1984) 273-279.
  • [4] J. P. Aubin, A. Cellina, Differential inclusions, Springer, Berlin, 1984.
  • [5] M. Benchohra, S. Hamani, J. Henderson, Functional differential inclusions with integral boundary conditions, Electron. J. Qua. Theory Di er. Equ. 15 (2007) 13 pages.
  • [6] M. Benchohra, J. R. Graef , F. Z. Mostefai, Weak solutions for boundary value problems with nonlinear fractional differential inclusions, Nonlinear Dynamics and Systems Theory. 11, 3 (2011) 227-237.
  • [7] M. Benchohra, F. Z. Mostefai, Weak solutions for nonlinear fractional differential equations with integral boundary conditions in Banach space, Opuscula Mathematica, 32, 1 (2012) 31-40.
  • [8] K. W. Blayneh, Analysis of age structured host-parasitoid model, FAR; East. J. Dyn. Syst. 4 (2002) 125-145.
  • [9] K. Chichon, Differential inclusions and multivalued integrals, Differential Inclusions, Control and Optimization 33 (2013) 171-191.
  • [10] F. S. De Blasi, On the property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. Roumanie (N. S.) 21 (1977) 259-262.
  • [11] L. Gorniewicz, Topological Fixed Point Theory of Multivalued Mappings, 2nd Edition, Springer, Netherlands, 2006.
  • [12] Hind H. G. Hashem, Weak solutions of differential equations in Banach space, Journal of fractional calculus and applications, 1, 3 (2012) 1-9.
  • [13] R. W. Ibrahim, The existence of weak solutions for fractional integral inclusions involving Pettis integral, Journal of Scientific and Mathematical Research, (2008)1-8.
  • [14] G. Infante, Eigenvalues and positive solutions of ODEs involving integral boundary conditions, Discrete Contin. Dyn. Syst. (2005) 436-442.
  • [15] Wu Jianrong Xue Xiaoping Wu Congxin, Existence theorem for weak solutions of Random differential inclusions in Banach spaces, Advences in Mathematics, 30, 4 (2001) 359-366.
  • [16] S. K. Pandey, D. K. Singh, P. Kumar and M. Kumar, Existence of measurable selectors in Pettis integrable multi function, 5, 1 (2014) 79-83.
  • [17] B. J. Pettis, On integration in vector spaces, Trans. Amer. Maths. Soc. 44 (1938) 277- 304.
  • [18] I. I. Vrabie, Compactness methods for nonlinear evolutions, Longman, Harlow, 1987.
  • [19] K. Yosida, Functional Analysis, Springer-Verlag, Berlin Heidelberg, New York 1980.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Konular Matematik, Mühendislik
Bölüm Research Article
Yazarlar

Khouni Yassine Bu kişi benim

Yayımlanma Tarihi 17 Aralık 2016
Yayımlandığı Sayı Yıl 2016

Kaynak Göster

APA Yassine, K. (2016). Weak solutions of first-order differential inclusions in Banach space. Journal of Engineering Technology and Applied Sciences, 1(1), 1-11. https://doi.org/10.30931/jetas.281375
AMA Yassine K. Weak solutions of first-order differential inclusions in Banach space. JETAS. Mayıs 2016;1(1):1-11. doi:10.30931/jetas.281375
Chicago Yassine, Khouni. “Weak Solutions of First-Order Differential Inclusions in Banach Space”. Journal of Engineering Technology and Applied Sciences 1, sy. 1 (Mayıs 2016): 1-11. https://doi.org/10.30931/jetas.281375.
EndNote Yassine K (01 Mayıs 2016) Weak solutions of first-order differential inclusions in Banach space. Journal of Engineering Technology and Applied Sciences 1 1 1–11.
IEEE K. Yassine, “Weak solutions of first-order differential inclusions in Banach space”, JETAS, c. 1, sy. 1, ss. 1–11, 2016, doi: 10.30931/jetas.281375.
ISNAD Yassine, Khouni. “Weak Solutions of First-Order Differential Inclusions in Banach Space”. Journal of Engineering Technology and Applied Sciences 1/1 (Mayıs 2016), 1-11. https://doi.org/10.30931/jetas.281375.
JAMA Yassine K. Weak solutions of first-order differential inclusions in Banach space. JETAS. 2016;1:1–11.
MLA Yassine, Khouni. “Weak Solutions of First-Order Differential Inclusions in Banach Space”. Journal of Engineering Technology and Applied Sciences, c. 1, sy. 1, 2016, ss. 1-11, doi:10.30931/jetas.281375.
Vancouver Yassine K. Weak solutions of first-order differential inclusions in Banach space. JETAS. 2016;1(1):1-11.