Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, , 19 - 25, 15.04.2019
https://doi.org/10.30931/jetas.404279

Öz

Kaynakça

  • [1] Anderson D. D. and Smith E., “Weakly prime ideals”, Houston J. Math. 29(4) (2003) : 831-840.
  • [2] Atani S. E. and Farzalipour F., “On weakly primary ideals”, Georgian Math. J. 12(3) (2005) : 423-429.
  • [3] Dixit V.N., Kumar R. and Ajmal N., “Fuzzy ideals and fuzzy prime ideals of a ring”, Fuzzy Sets and Systems 44 (1991) : 127-138.
  • [4] Ersoy B.A., “A Generalization of Cartesian Product of Fuzzy Subgroups and Ideals”, Journal of Applied Sciences 3 (2003) : 100-102.
  • [5] Liu W.J., “Fuzzy invariant subgroups and fuzzy ideals”, Fuzzy Sets and Systems 8 (1982) : 133-139.
  • [6] Martinez L., “Fuzzy subgroups of fuzzy groups and fuzzy ideals of fuzzy rings”, J. Fuzzy Math. 3 (1995) : 833-849.
  • [7] Mukherjee T.K. and Sen M.K., “Prime fuzzy ideals in rings”, Fuzzy Sets and Systems 32 (1989) : 337-341.
  • [8] Zadeh L.A., “Fuzzy sets”, Inform and Control 8 (1965) : 338-353.

On Weakly Prime Fuzzy Ideals of Commutative Rings

Yıl 2019, , 19 - 25, 15.04.2019
https://doi.org/10.30931/jetas.404279

Öz

In this paper, we present a new notion of fuzzy ideals : called
weakly prime fuzzy ideal. Let R be a commutative ring with non-zero identity.
A nonconstant fuzzy ideal µ of R is called weakly prime fuzzy ideal if 0_t !=
x_r y_s ∈ µ implies x_r ∈ µ or y_s ∈ µ for all t ∈ (0, µ(0)]. We investigate some
properties of this notion. Morever, it is established relations between weakly
prime ideals and weakly prime fuzzy ideals of commutative rings.

Kaynakça

  • [1] Anderson D. D. and Smith E., “Weakly prime ideals”, Houston J. Math. 29(4) (2003) : 831-840.
  • [2] Atani S. E. and Farzalipour F., “On weakly primary ideals”, Georgian Math. J. 12(3) (2005) : 423-429.
  • [3] Dixit V.N., Kumar R. and Ajmal N., “Fuzzy ideals and fuzzy prime ideals of a ring”, Fuzzy Sets and Systems 44 (1991) : 127-138.
  • [4] Ersoy B.A., “A Generalization of Cartesian Product of Fuzzy Subgroups and Ideals”, Journal of Applied Sciences 3 (2003) : 100-102.
  • [5] Liu W.J., “Fuzzy invariant subgroups and fuzzy ideals”, Fuzzy Sets and Systems 8 (1982) : 133-139.
  • [6] Martinez L., “Fuzzy subgroups of fuzzy groups and fuzzy ideals of fuzzy rings”, J. Fuzzy Math. 3 (1995) : 833-849.
  • [7] Mukherjee T.K. and Sen M.K., “Prime fuzzy ideals in rings”, Fuzzy Sets and Systems 32 (1989) : 337-341.
  • [8] Zadeh L.A., “Fuzzy sets”, Inform and Control 8 (1965) : 338-353.
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Research Article
Yazarlar

Deniz Sönmez

Gürsel Yeşilot

Yayımlanma Tarihi 15 Nisan 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Sönmez, D., & Yeşilot, G. (2019). On Weakly Prime Fuzzy Ideals of Commutative Rings. Journal of Engineering Technology and Applied Sciences, 4(1), 19-25. https://doi.org/10.30931/jetas.404279
AMA Sönmez D, Yeşilot G. On Weakly Prime Fuzzy Ideals of Commutative Rings. JETAS. Nisan 2019;4(1):19-25. doi:10.30931/jetas.404279
Chicago Sönmez, Deniz, ve Gürsel Yeşilot. “On Weakly Prime Fuzzy Ideals of Commutative Rings”. Journal of Engineering Technology and Applied Sciences 4, sy. 1 (Nisan 2019): 19-25. https://doi.org/10.30931/jetas.404279.
EndNote Sönmez D, Yeşilot G (01 Nisan 2019) On Weakly Prime Fuzzy Ideals of Commutative Rings. Journal of Engineering Technology and Applied Sciences 4 1 19–25.
IEEE D. Sönmez ve G. Yeşilot, “On Weakly Prime Fuzzy Ideals of Commutative Rings”, JETAS, c. 4, sy. 1, ss. 19–25, 2019, doi: 10.30931/jetas.404279.
ISNAD Sönmez, Deniz - Yeşilot, Gürsel. “On Weakly Prime Fuzzy Ideals of Commutative Rings”. Journal of Engineering Technology and Applied Sciences 4/1 (Nisan 2019), 19-25. https://doi.org/10.30931/jetas.404279.
JAMA Sönmez D, Yeşilot G. On Weakly Prime Fuzzy Ideals of Commutative Rings. JETAS. 2019;4:19–25.
MLA Sönmez, Deniz ve Gürsel Yeşilot. “On Weakly Prime Fuzzy Ideals of Commutative Rings”. Journal of Engineering Technology and Applied Sciences, c. 4, sy. 1, 2019, ss. 19-25, doi:10.30931/jetas.404279.
Vancouver Sönmez D, Yeşilot G. On Weakly Prime Fuzzy Ideals of Commutative Rings. JETAS. 2019;4(1):19-25.