Araştırma Makalesi
BibTex RIS Kaynak Göster

TOTAL PHENOLIC CONTENT AND IN VITRO ANALYSIS OF ANTIOXIDANT, ANTIBACTERIAL, AND ALPHA-GLUCOSIDASE INHIBITION PROPERTIES OF CHROOCOCCUS MINUTUS (KÜTZING) NÄGELI (CHROOCOCCALES, CYANOBACTERIA)

Yıl 2022, , 170 - 181, 29.01.2022
https://doi.org/10.33483/jfpau.1005986

Öz

Objective: Cyanobacteria are novel sources of bioactive substances with important biological activities. In this study, the total phenolic content (TPC) and bioactive (antioxidant, antidiabetic, and antibacterial) properties of a freshwater cyanobacteria, Chroococcus minutus were investigated.
Material and Method: Methanol extract of C. minutus were prepared and subjected to different biological assays to determine the TPC, antioxidant, and alpha-glucosidase inhibition properties. The antibacterial activity was done using microtiter plate dilution assay against various medically important bacterial pathogens.
Result and Discussion: C. minutus has a TPC of 11.27 ± 0.14 mg GAE/g. Antioxidant efficiency of C. minutus are characterized by having potent DPPH scavenging activity with IC50 value of 255 μg/ml. Assessment of alpha-glucosidase inhibition property showed that C. minutus extract have potent inhibition activity with IC50 of 5.50 μg/ml as compared to acarbose (standard antidiabetic drug). In addition, C. minutus extract exhibited potent antibacterial activities against Bacillus cereus, Listeria monocytogenes, and Methicillin-resistant Staphylococcus aureus. The current investigation shows the potential of C. minutus as source of active metabolites with important use in pharmaceutical applications.

Destekleyen Kurum

University of the Philippines Los Banos

Kaynakça

  • [1] Rao, D. B. (2015). Antibacterial activity of fresh water Cyanobacteria. Journal of Algal Biomass Utilization. 6(3), 60-64.
  • [2] Arguelles, E.D.L.R. (2021). Biochemical composition and bioactive properties of Chlorella minutissima (Chm1) as a potential source of chemical compounds for nutritional feed supplement and disease control in aquaculture. Current Applied Science and Technology, 21(1),65-77.
  • [3] Katircioglu, H., Beyalti, Y., Aslim, B., Yusekdag, Z., Atic, T. (2006). Screening for antimicrobial agent production of some microalgae in freshwater. The Internet Journal of Microbiology. 2(2),63-72.
  • [4] Bagchi, S.N., Ray, S. (2001). Nutrients and pH regulate algicide accumulation in cultures of the cyanobacterium Oscillatoria laetevirens. New Phytologist. 149:455-460.
  • [5] Li, H.B., Cheng, K.W., Wong, C.C., Fan, K.W., Chen, F., Jiang, Y. (2007). Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chemistry, 102, 771-776.
  • [6] Arguelles, E.D.L.R., Sapin, A., B. (2021). Chemical composition and bioactive properties of Sargassum aquifolium (Turner) C. Agardh and its potential for pharmaceutical application. Philippine Journal of Science, 151(S1), 9-24.
  • [7] Nuñez Selles, A., Castro, H.T.V., Aguero, J.A., Gonzalez, J.G., Naddeo, F., De Simone, F., Pastrelli, L. (2002). Isolation and quantitative analysis of phenolic antioxidants, free sugars and polyols from mango (Mangifera indica L.) stem bark aqueous decoction used in Cuba as a nutritional supplement. Journal of Agricultural and Food Chemistry, 50, 762-766.
  • [8] Ribeiro, S.M.R., Barbosa, L.C.A., Queiroz, J.H., Knodler, M., Schieber, A. (2008). Phenolic compounds and antioxidant capacity of Brazilian mango (Mangifera indica L.) varieties. Food Chemistry. 110(3), 620-626.
  • [9] Arguelles, E.D.L.R., Sapin, A., B. (2020). Bioactive properties of Sargassum siliquosum J. Agardh (Fucales, Ochrophyta) and its potential as source of skin-lightening active ingredient for cosmetic application. Journal of Applied Pharmaceutical Science, 10(7), 51-58.
  • [10] Nair, S.S., Kavrekar, V., Mishra, A. (2013). In vitro studies on alpha-amylase and alpha-glucosidase inhibitory activities of selected plant extracts. European Journal of Experimenta Biology, 3(1), 128–132.
  • [11] Vega, J., Bonomi-Barufi, J., Gomez-Pinchetti, J.L., Figueroa, F.L. (2020). Cyanobacteria and red macroalgae as potential sources of antioxidants and UV radiation-absorbing compounds for cosmeceutical applications. Marine Drugs, 18(12), 659. https://doi.org/10.3390/md18120659
  • [12] Rahul, V., Agrawal, P., Sharma, M., Shukla, S. (2016). Total phenolics, flavonoids, and antioxidant potential of organic extract of freshwater algal sample collected from a marine lake. Indian Journal of Geo-Marine Sciences, 45(10), 1320–1326.
  • [13] Hossain, M.F., Ratnayake, R.R., Meearajini, K., Kumara, K.L.W. (2016). Antioxidant properties in some selected cyanobacteria isolated from freshwater bodies of Sri Lanka. Food Science and Nutrition, 4(5), 753–758.
  • [14] Singh, D.P., Prabha, R., Verma, S., Meena, K.K., Yandegiri, M. (2017). Antioxidant properties and polyphenolic content in terrestrial cyanobacteria. 3 Biotech, 7(2):134. doi: 10.1007/s13205-017-0786-6.
  • [15] Liu, N., Fu, X., Duan, D., Xu, J., Gao, X., Zhao, L. (2018). Evaluation of bioactivity of phenolic compounds from the brown seaweed of Sargassum fusiforme and development of their stable emulsion. Journal of Applied Phycology, 30, 1955–1970. doi: 10.1007/s10811-017-1383-0.
  • [16] Arguelles, E.D.L.R., Laurena, A.C., Martinez-Goss, M.R. and Monsalud, R.G. (2017). Antibacterial activity, total phenolic content and antioxidant capacity of a green microalga Desmodesmus sp. (U-AU2) from Los Baños, Laguna (Philippines). Journal of Nature Studies, 16(2), 1-13.
  • [17] Charoonnart, P., Purton, S. and Saksmerprome, V. (2018). Applications of microalgal biotechnology for disease control in aquaculture. Biology, 7(2), 24, https://doi.org/10.3390/biology7020024.
  • [18] Dussault, D., Vu, K.D., Vansach, T., Horgen, F.D., Lacroix, M. (2016). Antimicrobial effects of marine algal extracts and cyanobacterial pure compounds against five foodborne pathogens. Food Chemistry, 199, 114–118.
  • [19] Preisitsch, M., Harmrolfs, K., Vansach, T., Pham, H.T.L., Heiden, S.E., Füssel, A., Wiesner, C., Pretsch, A., Swiatecka-Hagenbruch, M., Niedermeyer, T.H.J., Müller, R., Mundt, S. (2015). Anti-MRSA-acting carbamidocyclophanes H–L from the Vietnamese cyanobacterium Nostoc sp. CAVN2. The Journal of Antibiotics, 68, 165–177.
  • [20] Arguelles, E.D.L.R. (2018). Proximate analysis, antibacterial activity, total phenolic content and antioxidant capacity of a green microalga Scenedesmus quadricauda (Turpin) Brébisson. Asian Journal of Microbiology Biotechnology and Environmental Science, 20(1), 150-158.
  • [21] Priatni, S., Budiwati, T.A., Ratnaningrum, D., Kosasih, W., Andryani, R., Susanti, H., Susilaningsih, D. (2016). Antidiabetic screening of some Indonesian marine cyanobacteria collection. Biodiversitas, 17(2), 642-646.
  • [22] Ghosh, T., Bhayani, K., Paliwal, C., Maurya, R., Chokshi, K., Pancha, I., Mishra, S. (2016). Cyanobacterial Pigments as Natural Anti-Hyperglycemic Agents: An In vitro Study. Frontiers in Maine Science, 3:146. doi: 10.3389/fmars.2016.00146.
  • [23] Jüttner, F., Wessel, H.P. (2003). Isolation of Di(Hydroxymethyl)Dihydroxypyrrolidine from the cyanobacterial Genus Cylindrospermum that effectively inhibits digestive glucosidases of aquatic insects and crustacean grazers. Journal of Phycology, 39, 26–32.
  • [24] Gouda, K.G.M., Kavitha, M.D., Sarada, R. (2015). Antihyperglycemic, Antioxidant and antimicrobial activities of the butanol extract from Spirulina platensis: antihyperglycemic effect of Spirulina. Journal of Food Biochemistry. 39, 594–602.
  • [25] Gradíssimo, D.G., Oliveira da Silva, V.C., Xavier, L.P., do Nascimento, S.V., Valadares, R.B.d.S., Faustino, S.M.M., Schneider, M.P.C., Santos, A.V. (2021). Glucosidase inhibitors screening in microalgae and cyanobacteria isolated from the amazon and proteomic analysis of inhibitor producing Synechococcus sp. GFB01. Microorganisms, 9, 1593. https://doi.org/10.3390/ microorganisms9081593.
  • [26] Kim K-T, Rioux L-E, Turgeon SL. (2014). Alpha-amylase and alpha-glucosidase inhibition is differentially modulated by fucoidan obtained from Fucus vesiculosus and Ascophyllum nodosum. Phytochemistry, 98: 27–33.
  • [27] Kim Arguelles E.D.L.R., Sapin, A.B. (2020). In vitro antioxidant, alpha-glucosidase inhibition, and antibacterial properties of Turbinaria decurrens Bory (Sargassaceae, Ochrophyta). Asia-Pacific Journal of Science and Technology, 25(3).

CHROOCOCCUS MINUTUS (KÜTZİNG) NÄGELİ'NİN (CHROOCOCCALES, CYANOBACTERIA) ANTİOKSİDAN, ANTİBAKTERİYEL VE ALFA-GLUKOZİDAZ İNHİBİSYON ÖZELLİKLERİNİN TOPLAM FENOLİK İÇERİĞİ VE İN VİTRO ANALİZİ

Yıl 2022, , 170 - 181, 29.01.2022
https://doi.org/10.33483/jfpau.1005986

Öz

Amaç: Siyanobakteriler, önemli biyolojik aktivitelere sahip yeni biyoaktif madde kaynaklarıdır. Bu çalışmada, bir tatlı su siyanobakterisi olan Chroococcus minutus'un toplam fenolik içeriği (TPC) ve biyoaktif (antioksidan, antidiyabetik ve antibakteriyel) özellikleri incelenmiştir.
Gereç ve Yöntem: C. minutus'un metanol özütü hazırlanarak, TPC, antioksidan ve alfa-glukozidaz inhibisyon özelliklerini belirlemek için farklı biyolojik deneylere tabi tutulmuştur. Antibakteriyel aktivite, tıbbi açıdan önemli çeşitli bakteriyel patojenlere karşı mikrotitre plaka seyreltme deneyi kullanılarak yapılmıştır.
Sonuç ve Tartışma: C. minutus'un TPC'si 11.27 ± 0.14 mg GAE/g'dir. C. minutus'un antioksidan etkinliği, 255 μg/ml IC50 değeri ile güçlü DPPH temizleme aktivitesine sahip olmasıyla karakterize edilir. Alfa-glukozidaz inhibisyon özelliğinin değerlendirilmesi, C. minutus özütünün, akarboza (standart antidiyabetik ilaç) kıyasla 5.50 μg/ml IC50 ile güçlü inhibisyon aktivitesine sahip olduğunu gösterdi. Ek olarak, C. minutus özütü, Bacillus cereus'a, Listeria monocytogenes'e ve Metisiline dirençli Staphylococcus aureus'a karşı güçlü antibakteriyel aktiviteler sergilemiştir. Mevcut araştırma, farmasötik uygulamalarda önemli kullanımı olan aktif metabolitlerin kaynağı olarak C. minutus'un potansiyelini göstermektedir.

Kaynakça

  • [1] Rao, D. B. (2015). Antibacterial activity of fresh water Cyanobacteria. Journal of Algal Biomass Utilization. 6(3), 60-64.
  • [2] Arguelles, E.D.L.R. (2021). Biochemical composition and bioactive properties of Chlorella minutissima (Chm1) as a potential source of chemical compounds for nutritional feed supplement and disease control in aquaculture. Current Applied Science and Technology, 21(1),65-77.
  • [3] Katircioglu, H., Beyalti, Y., Aslim, B., Yusekdag, Z., Atic, T. (2006). Screening for antimicrobial agent production of some microalgae in freshwater. The Internet Journal of Microbiology. 2(2),63-72.
  • [4] Bagchi, S.N., Ray, S. (2001). Nutrients and pH regulate algicide accumulation in cultures of the cyanobacterium Oscillatoria laetevirens. New Phytologist. 149:455-460.
  • [5] Li, H.B., Cheng, K.W., Wong, C.C., Fan, K.W., Chen, F., Jiang, Y. (2007). Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chemistry, 102, 771-776.
  • [6] Arguelles, E.D.L.R., Sapin, A., B. (2021). Chemical composition and bioactive properties of Sargassum aquifolium (Turner) C. Agardh and its potential for pharmaceutical application. Philippine Journal of Science, 151(S1), 9-24.
  • [7] Nuñez Selles, A., Castro, H.T.V., Aguero, J.A., Gonzalez, J.G., Naddeo, F., De Simone, F., Pastrelli, L. (2002). Isolation and quantitative analysis of phenolic antioxidants, free sugars and polyols from mango (Mangifera indica L.) stem bark aqueous decoction used in Cuba as a nutritional supplement. Journal of Agricultural and Food Chemistry, 50, 762-766.
  • [8] Ribeiro, S.M.R., Barbosa, L.C.A., Queiroz, J.H., Knodler, M., Schieber, A. (2008). Phenolic compounds and antioxidant capacity of Brazilian mango (Mangifera indica L.) varieties. Food Chemistry. 110(3), 620-626.
  • [9] Arguelles, E.D.L.R., Sapin, A., B. (2020). Bioactive properties of Sargassum siliquosum J. Agardh (Fucales, Ochrophyta) and its potential as source of skin-lightening active ingredient for cosmetic application. Journal of Applied Pharmaceutical Science, 10(7), 51-58.
  • [10] Nair, S.S., Kavrekar, V., Mishra, A. (2013). In vitro studies on alpha-amylase and alpha-glucosidase inhibitory activities of selected plant extracts. European Journal of Experimenta Biology, 3(1), 128–132.
  • [11] Vega, J., Bonomi-Barufi, J., Gomez-Pinchetti, J.L., Figueroa, F.L. (2020). Cyanobacteria and red macroalgae as potential sources of antioxidants and UV radiation-absorbing compounds for cosmeceutical applications. Marine Drugs, 18(12), 659. https://doi.org/10.3390/md18120659
  • [12] Rahul, V., Agrawal, P., Sharma, M., Shukla, S. (2016). Total phenolics, flavonoids, and antioxidant potential of organic extract of freshwater algal sample collected from a marine lake. Indian Journal of Geo-Marine Sciences, 45(10), 1320–1326.
  • [13] Hossain, M.F., Ratnayake, R.R., Meearajini, K., Kumara, K.L.W. (2016). Antioxidant properties in some selected cyanobacteria isolated from freshwater bodies of Sri Lanka. Food Science and Nutrition, 4(5), 753–758.
  • [14] Singh, D.P., Prabha, R., Verma, S., Meena, K.K., Yandegiri, M. (2017). Antioxidant properties and polyphenolic content in terrestrial cyanobacteria. 3 Biotech, 7(2):134. doi: 10.1007/s13205-017-0786-6.
  • [15] Liu, N., Fu, X., Duan, D., Xu, J., Gao, X., Zhao, L. (2018). Evaluation of bioactivity of phenolic compounds from the brown seaweed of Sargassum fusiforme and development of their stable emulsion. Journal of Applied Phycology, 30, 1955–1970. doi: 10.1007/s10811-017-1383-0.
  • [16] Arguelles, E.D.L.R., Laurena, A.C., Martinez-Goss, M.R. and Monsalud, R.G. (2017). Antibacterial activity, total phenolic content and antioxidant capacity of a green microalga Desmodesmus sp. (U-AU2) from Los Baños, Laguna (Philippines). Journal of Nature Studies, 16(2), 1-13.
  • [17] Charoonnart, P., Purton, S. and Saksmerprome, V. (2018). Applications of microalgal biotechnology for disease control in aquaculture. Biology, 7(2), 24, https://doi.org/10.3390/biology7020024.
  • [18] Dussault, D., Vu, K.D., Vansach, T., Horgen, F.D., Lacroix, M. (2016). Antimicrobial effects of marine algal extracts and cyanobacterial pure compounds against five foodborne pathogens. Food Chemistry, 199, 114–118.
  • [19] Preisitsch, M., Harmrolfs, K., Vansach, T., Pham, H.T.L., Heiden, S.E., Füssel, A., Wiesner, C., Pretsch, A., Swiatecka-Hagenbruch, M., Niedermeyer, T.H.J., Müller, R., Mundt, S. (2015). Anti-MRSA-acting carbamidocyclophanes H–L from the Vietnamese cyanobacterium Nostoc sp. CAVN2. The Journal of Antibiotics, 68, 165–177.
  • [20] Arguelles, E.D.L.R. (2018). Proximate analysis, antibacterial activity, total phenolic content and antioxidant capacity of a green microalga Scenedesmus quadricauda (Turpin) Brébisson. Asian Journal of Microbiology Biotechnology and Environmental Science, 20(1), 150-158.
  • [21] Priatni, S., Budiwati, T.A., Ratnaningrum, D., Kosasih, W., Andryani, R., Susanti, H., Susilaningsih, D. (2016). Antidiabetic screening of some Indonesian marine cyanobacteria collection. Biodiversitas, 17(2), 642-646.
  • [22] Ghosh, T., Bhayani, K., Paliwal, C., Maurya, R., Chokshi, K., Pancha, I., Mishra, S. (2016). Cyanobacterial Pigments as Natural Anti-Hyperglycemic Agents: An In vitro Study. Frontiers in Maine Science, 3:146. doi: 10.3389/fmars.2016.00146.
  • [23] Jüttner, F., Wessel, H.P. (2003). Isolation of Di(Hydroxymethyl)Dihydroxypyrrolidine from the cyanobacterial Genus Cylindrospermum that effectively inhibits digestive glucosidases of aquatic insects and crustacean grazers. Journal of Phycology, 39, 26–32.
  • [24] Gouda, K.G.M., Kavitha, M.D., Sarada, R. (2015). Antihyperglycemic, Antioxidant and antimicrobial activities of the butanol extract from Spirulina platensis: antihyperglycemic effect of Spirulina. Journal of Food Biochemistry. 39, 594–602.
  • [25] Gradíssimo, D.G., Oliveira da Silva, V.C., Xavier, L.P., do Nascimento, S.V., Valadares, R.B.d.S., Faustino, S.M.M., Schneider, M.P.C., Santos, A.V. (2021). Glucosidase inhibitors screening in microalgae and cyanobacteria isolated from the amazon and proteomic analysis of inhibitor producing Synechococcus sp. GFB01. Microorganisms, 9, 1593. https://doi.org/10.3390/ microorganisms9081593.
  • [26] Kim K-T, Rioux L-E, Turgeon SL. (2014). Alpha-amylase and alpha-glucosidase inhibition is differentially modulated by fucoidan obtained from Fucus vesiculosus and Ascophyllum nodosum. Phytochemistry, 98: 27–33.
  • [27] Kim Arguelles E.D.L.R., Sapin, A.B. (2020). In vitro antioxidant, alpha-glucosidase inhibition, and antibacterial properties of Turbinaria decurrens Bory (Sargassaceae, Ochrophyta). Asia-Pacific Journal of Science and Technology, 25(3).
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Eldrin Arguelles 0000-0003-1856-670X

Yayımlanma Tarihi 29 Ocak 2022
Gönderilme Tarihi 7 Ekim 2021
Kabul Tarihi 27 Aralık 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Arguelles, E. (2022). TOTAL PHENOLIC CONTENT AND IN VITRO ANALYSIS OF ANTIOXIDANT, ANTIBACTERIAL, AND ALPHA-GLUCOSIDASE INHIBITION PROPERTIES OF CHROOCOCCUS MINUTUS (KÜTZING) NÄGELI (CHROOCOCCALES, CYANOBACTERIA). Journal of Faculty of Pharmacy of Ankara University, 46(1), 170-181. https://doi.org/10.33483/jfpau.1005986
AMA Arguelles E. TOTAL PHENOLIC CONTENT AND IN VITRO ANALYSIS OF ANTIOXIDANT, ANTIBACTERIAL, AND ALPHA-GLUCOSIDASE INHIBITION PROPERTIES OF CHROOCOCCUS MINUTUS (KÜTZING) NÄGELI (CHROOCOCCALES, CYANOBACTERIA). Ankara Ecz. Fak. Derg. Ocak 2022;46(1):170-181. doi:10.33483/jfpau.1005986
Chicago Arguelles, Eldrin. “TOTAL PHENOLIC CONTENT AND IN VITRO ANALYSIS OF ANTIOXIDANT, ANTIBACTERIAL, AND ALPHA-GLUCOSIDASE INHIBITION PROPERTIES OF CHROOCOCCUS MINUTUS (KÜTZING) NÄGELI (CHROOCOCCALES, CYANOBACTERIA)”. Journal of Faculty of Pharmacy of Ankara University 46, sy. 1 (Ocak 2022): 170-81. https://doi.org/10.33483/jfpau.1005986.
EndNote Arguelles E (01 Ocak 2022) TOTAL PHENOLIC CONTENT AND IN VITRO ANALYSIS OF ANTIOXIDANT, ANTIBACTERIAL, AND ALPHA-GLUCOSIDASE INHIBITION PROPERTIES OF CHROOCOCCUS MINUTUS (KÜTZING) NÄGELI (CHROOCOCCALES, CYANOBACTERIA). Journal of Faculty of Pharmacy of Ankara University 46 1 170–181.
IEEE E. Arguelles, “TOTAL PHENOLIC CONTENT AND IN VITRO ANALYSIS OF ANTIOXIDANT, ANTIBACTERIAL, AND ALPHA-GLUCOSIDASE INHIBITION PROPERTIES OF CHROOCOCCUS MINUTUS (KÜTZING) NÄGELI (CHROOCOCCALES, CYANOBACTERIA)”, Ankara Ecz. Fak. Derg., c. 46, sy. 1, ss. 170–181, 2022, doi: 10.33483/jfpau.1005986.
ISNAD Arguelles, Eldrin. “TOTAL PHENOLIC CONTENT AND IN VITRO ANALYSIS OF ANTIOXIDANT, ANTIBACTERIAL, AND ALPHA-GLUCOSIDASE INHIBITION PROPERTIES OF CHROOCOCCUS MINUTUS (KÜTZING) NÄGELI (CHROOCOCCALES, CYANOBACTERIA)”. Journal of Faculty of Pharmacy of Ankara University 46/1 (Ocak 2022), 170-181. https://doi.org/10.33483/jfpau.1005986.
JAMA Arguelles E. TOTAL PHENOLIC CONTENT AND IN VITRO ANALYSIS OF ANTIOXIDANT, ANTIBACTERIAL, AND ALPHA-GLUCOSIDASE INHIBITION PROPERTIES OF CHROOCOCCUS MINUTUS (KÜTZING) NÄGELI (CHROOCOCCALES, CYANOBACTERIA). Ankara Ecz. Fak. Derg. 2022;46:170–181.
MLA Arguelles, Eldrin. “TOTAL PHENOLIC CONTENT AND IN VITRO ANALYSIS OF ANTIOXIDANT, ANTIBACTERIAL, AND ALPHA-GLUCOSIDASE INHIBITION PROPERTIES OF CHROOCOCCUS MINUTUS (KÜTZING) NÄGELI (CHROOCOCCALES, CYANOBACTERIA)”. Journal of Faculty of Pharmacy of Ankara University, c. 46, sy. 1, 2022, ss. 170-81, doi:10.33483/jfpau.1005986.
Vancouver Arguelles E. TOTAL PHENOLIC CONTENT AND IN VITRO ANALYSIS OF ANTIOXIDANT, ANTIBACTERIAL, AND ALPHA-GLUCOSIDASE INHIBITION PROPERTIES OF CHROOCOCCUS MINUTUS (KÜTZING) NÄGELI (CHROOCOCCALES, CYANOBACTERIA). Ankara Ecz. Fak. Derg. 2022;46(1):170-81.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.