Derleme
BibTex RIS Kaynak Göster

HEDEFE YÖNELİK TEDAVİDE GÜNCEL YAKLAŞIMLAR: LUTESYUM-177 İLE İŞARETLİ RADYOFARMASÖTİKLER

Yıl 2022, , 209 - 230, 29.01.2022
https://doi.org/10.33483/jfpau.1007773

Öz

Amaç: Son yıllarda, hedefe yönelik radyonüklid tedavisindeki ilerlemeler sayesinde hastalıkların erken teşhis ve tedavisinde önemli gelişmeler kaydedilmiştir. Tanı ve tedavi yöntemlerini birleştiren “teranostik” kavramının doğmasıyla Lutesyum-177 (Lu-177), hedefe yönelik tedavide önemli bir yer edinmiş ve bu alanda öncü bir bileşik haline gelmiştir. Bu derlemede, radyofarmasötikler, hedefe yönelik tedavi, teranostikler ve Lu-177 ile ilgili temel bilgilerin anlatılması, 177Lu ile işaretli moleküler taşıyıcılar ile 177Lu’dan hareketle hazırlanan radyofarmasötiklerin sunulması ve bu konularda yapılmış olan çalışmaların gözden geçirilmesi amaçlanmıştır.
Sonuç ve Tartışma: 177Lu, yaydığı γ ve β ışınları sayesinde nükleer tıpta tanı ve tedavide kullanılabilen, 6,7 günlük yarı ömre sahip teranostik bir ajandır. Yüksek spesifik aktivitesi ve bu aktivite seviyelerine kolay erişimi ile nispeten uzun yarı ömrü, bu radyonüklidin klinik kullanımına olan ilginin ana faktörleri olarak değerlendirilebilir. Hedeflendirilmiş radyonüklid tedavisi için tercih edilen bir radyoizotop olan 177Lu’nun klinikte nöroendokrin tümörlerin, prostat kanserinin, non-Hodgkin lenfomanın, adenokarsinomun ve karaciğer kanserinin tedavisinde ve kemik ağrısını hafifletmede kullanılabilirliği araştırılmış ve sonuç olarak 177Lu’nun kanser ve ağrı tedavisinde çok büyük bir potansiyel gösterdiği bulunmuştur. Bu kullanım alanları ile Lu-177’nin, gelecekte nükleer tıp alanında önemli bir yer edineceği kanaatindeyiz.

Destekleyen Kurum

-

Proje Numarası

-

Kaynakça

  • [1] Sivri, N.N. (2004). Radyonüklidik tedavi. Meslek İçi Sürekli Eğitim, 9–10, 11–17.
  • [2] Ekinci, M., İlem-Özdemir, D. (2021). Radyofarmasötikler ve teranostikler. Journal of Literature Pharmacy Sciences, 10(1), 119–132. [CrossRef]
  • [3] Banerjee, S., Pillai, M.R.A., Knapp, F.F. (2015). Lutetium-177 therapeutic radiopharmaceuticals: Linking chemistry, radiochemistry, and practical applications. Chemical Reviews, 115(8), 2934–2974. [CrossRef]
  • [4] Riondato, M., Eckelman, W.C. (2016). Radiopharmaceuticals. In: A. Ciarmiello, L. Mansi (Eds.). PET-CT and PET-MRI in Neurology: SWOT Analysis Applied to Hybrid Imaging (pp. 31–57). Springer International Publishing. [CrossRef]
  • [5] Ekinci, M., İlem-Özdemir, D. (2021). İyonlaştırıcı radyasyon ve onkolitik virüsler ile kombine tedavinin etkileri. FABAD Journal of Pharmaceutical Sciences, 46(1), 79–92.
  • [6] Ekinci, M., İlem-Özdemir, D. (2021). Nanoteranostikler. Ankara Üniversitesi Eczacılık Fakültesi Dergisi, 45(1), 131-155 [CrossRef]
  • [7] Nurili, F., Vural, G.U., Aras, Ö. (2015). Molecular imaging methods in theranostic platform. Nuclear Medicine Seminars, 2, 120–127. [CrossRef]
  • [8] Ersahin, D., Doddamane, I., Cheng, D. (2011). Targeted radionuclide therapy. Cancers, 3(4), 3838–3855. [CrossRef]
  • [9] Zukotynski, K., Jadvar, H., Capala, J., Fahey, F. (2016). Targeted radionuclide therapy: Practical applications and prospects. Biomarkers in Cancer, 8s2(8), BIC.S31804. [CrossRef]
  • [10] Goldsmith, S.J. (2020). Targeted radionuclide therapy: A historical and personal review. Seminars in Nuclear Medicine, 50(1), 87–97. [CrossRef]
  • [11] Jurcic, J.G., Wong, J.Y.C., Knox, S.J., Wahl, D.R., Rosenblat, T.L., Meredith, R.F. (2016). Targeted radionuclide therapy. In: L.L. Gunderson, J.E. Tepper (Eds.). Clinical Radiation Oncology (Fourth Edition) (pp. 399-418.e14). Elsevier. [CrossRef]
  • [12] Dash, A., Chakraborty, S., Pillai, M.R.A., Knapp, F.F.R. (2015). Peptide receptor radionuclide therapy: An overview. Cancer Biotherapy and Radiopharmaceuticals, 30(2), 47–71. [CrossRef]
  • [13] Dash, A., Pillai, M.R.A., Knapp, F.F. (2015). Production of 177Lu for targeted radionuclide therapy: Available options. Nuclear Medicine and Molecular Imaging, 49(2), 85–107. [CrossRef]
  • [14] Das, T., Banerjee, S. (2015). Theranostic applications of Lutetium-177 in radionuclide therapy. Current Radiopharmaceuticals, 9(1), 94–101. [CrossRef]
  • [15] Kuznetsov, R.A., Bobrovskaya, K.S., Svetukhin, V.V., Fomin, A.N., Zhukov, A.V. (2019). Production of lutetium-177: Process aspects. Radiochemistry, 61(4), 381–395. [CrossRef]
  • [16] Ocak, M. (2015). Radiopharmaceuticals for PET. Toraks Cerrahisi Bulteni, 6(2), 154–160. [CrossRef]
  • [17] Ercan, M.T. (1996). Nükleer tıp uygulamaları. Posyon, 5, 17–21.
  • [18] Wadsak, W., Mitterhauser, M. (2010). Basics and principles of radiopharmaceuticals for PET/CT. European Journal of Radiology, 73(3), 461–469. [CrossRef]
  • [19] Karayel, E. (2018). Yüksek Lisans tezi. 99mTc-HMPAO ile işaretli lökosit sintigrafisinde kullanılan 99mTc-HMPAO-lökosit radyofarmasötiğinin; mikrobiyolojik, radyokimyasal ve biyokimyasal açıdan kalite kontrollerinin değerlendirilmesi. Farmasötik Mikrobiyoloji Anabilim Dalı, Sağlık Bilimleri Enstitüsü, İstanbul Üniversitesi, İstanbul, Türkiye.
  • [20] Ocak, M. (2005). Yüksek Lisans tezi. Mikropartiküllerin radyonüklit ile işaretlenmesi ve optimizasyonu. Farmasötik Teknoloji Anabilim Dalı, Sağlık Bilimleri Enstitüsü, İstanbul Üniversitesi, İstanbul, Türkiye.
  • [21] Unak, P. (2002). Targeted tumor radiotherapy. Brazilian Archives of Biology and Technology, 45(spe), 97–110. [CrossRef]
  • [22] Kramer-Marek, G., Capala, J. (2012). The role of nuclear medicine in modern therapy of cancer. Tumor Biology, 33(3), 629–640. [CrossRef]
  • [23] Volkert, W.A., Huffman, T.J. (1999). Therapeutic radiopharmaceuticals. Chemical Reviews, 99(9), 2269–2292. [CrossRef]
  • [24] Yeong, C.H., Cheng, M., Ng, K.H. (2014). Therapeutic radionuclides in nuclear medicine: Current and prospects. Journal of Zhejiang University: Science B, 15(10), 845–863. [CrossRef]
  • [25] Alberti, C. (2012). From molecular imaging in preclinical/clinical oncology to theranostic applications in targeted tumor therapy. European Review for Medical and Pharmacological Sciences, 16(14), 1925–1933.
  • [26] Denardo, G.L., Denardo, S.J. (2012). Concepts, consequences, and implications of theranosis. Seminars in Nuclear Medicine, 42(3), 147–150. [CrossRef]
  • [27] Kelkar, S.S., Reineke, T.M. (2011). Theranostics: Combining imaging and therapy. Bioconjugate Chemistry, 22(10), 1879–1903. [CrossRef]
  • [28] Srivastava, S.C. (2012). Paving the way to personalized medicine: Production of some promising theragnostic radionuclides at Brookhaven National Laboratory. Seminars in Nuclear Medicine, 42(3), 151–163. [CrossRef]
  • [29] Pillai, A., (Russ) Knapp, F. (2015). Evolving important role of Lutetium-177 for therapeutic nuclear medicine. Current Radiopharmaceuticals, 8(2), 78–85. [CrossRef]
  • [30] Patnaik, P. (2003). Handbook of inorganic chemicals. Choice Reviews Online, 40(11), 40-6428-40–6428. [CrossRef]
  • [31] Bracken, J.D. (1999). The History and Use of Our Earth's Chemical Elements: A Reference Guide (Krebs, Robert E.). Journal of Chemical Education, 76(4), 475-475. [CrossRef]
  • [32] Audi, G., Bersillon, O., Blachot, J., Wapstra, A.H. (2003). The NUBASE evaluation of nuclear and decay properties. Nuclear Physics A, 729(1), 3–128. [CrossRef]
  • [33] Goldenberg, D.M. (2002). Targeted therapy of cancer with radiolabeled antibodies. Journal of Nuclear Medicine, 43(5), 693–713.
  • [34] Köhler, G., Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 256(5517), 495–497. [CrossRef]
  • [35] Schlom, J. (1986). Basic principles and applications of monoclonal antibodies in the management of carcinomas: The Richard and Hinda Rosenthal Foundation award lecture. Cancer Research, 46(7), 3225–3238.
  • [36] Strebhardt, K., Ullrich, A. (2008). Paul Ehrlich’s magic bullet concept: 100 Years of progress. Nature Reviews Cancer, 8(6), 473–480. [CrossRef]
  • [37] Fani, M., Maecke, H.R., Okarvi, S.M. (2012). Radiolabeled peptides: Valuable tools for the detection and treatment of cancer. Theranostics, 2(5), 481–501. [CrossRef]
  • [38] Fani, M, Maecke, H.R. (2012). Radiopharmaceutical development of radiolabelled peptides. European Journal of Nuclear Medicine and Molecular Imaging, 39(Suppl 1), S11-30. [CrossRef]
  • [39] Reubi, J.C. (2003). Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocrine Reviews, 24(4), 389–427. [CrossRef]
  • [40] Debinski, W., Gibo, D.M., Hulet, S.W., Connor, J.R., Gillespie, G.Y. (1999). Receptor for interleukin 13 is a marker and therapeutic target for human high-grade gliomas. Clinical Cancer Research, 5(5), 985–990.
  • [41] D. Sarma, H., Das, T., Banerjee, S., Venkatesh, M., B. Vidyasagar, P., P. Mishra, K. (2011). Studies on efficacy of a novel 177Lu-labeled porphyrin derivative in regression of tumors in mouse model. Current Radiopharmaceuticals, 4(2), 150–160. [CrossRef]
  • [42] Das, T., Chakraborty, S., Sarma, H.D., Banerjee, S., Venakatesh, M. (2010). A novel 177Lu-labeled porphyrin for possible use in targeted tumor therapy. Nuclear Medicine and Biology, 37(5), 655–663. [CrossRef]
  • [43] Banerjee, S., Das, T., Chakraborty, S., Samuel, G., Korde, A., Venkatesh, M., Pillai, M.R.A. (2005). An estradiol-conjugate for radiolabelling with 177Lu: An attempt to prepare a radiotherapeutic agent. Bioorganic and Medicinal Chemistry, 13(13), 4315–4322. [CrossRef]
  • [44] Das, T., Chakraborty, S., Banerjee, S., Mukherjee, A., Samuel, G., Sarma, H.D., Nair, C.K.K., Kagiya, V.T., Venkatesh, M. (2004). Preparation and preliminary biological evaluation of a 177Lu labeled sanazole derivative for possible use in targeting tumor hypoxia. Bioorganic and Medicinal Chemistry, 12(23), 6077–6084. [CrossRef]
  • [45] Das, T., Chakraborty, S., Banerjee, S., Sarma, H.D., Samuel, G., Venkatesh, M. (2006). Preparation and preliminary biological evaluation of a 177Lu labeled nitroimidazole derivative for possible use in targeted tumor therapy. Radiochimica Acta, 94(6–7), 375–380. [CrossRef]
  • [46] Guarino, A., Cohen, M., Thompson, M., Dharmsathaphorn, K., Giannella, R. (1987). T84 cell receptor binding and guanyl cyclase activation by Escherichia coli heat-stable toxin. American Journal of Physiology - Gastrointestinal and Liver Physiology, 253(6 (16/6)), G775–G780. [CrossRef]
  • [47] Gali, H., Sieckman, G.L., Hoffman, T.J., Owen, N.K., Chin, D.T., Forte, L.R., Volkert, W.A. (2001). In vivo evaluation of an 111In-labeled ST-peptide analog for specific-targeting of human colon cancers. Nuclear Medicine and Biology, 28(8), 903–909. [CrossRef]
  • [48] Forrer, F., Chen, J., Fani, M., Powell, P., Lohri, A., Müller-Brand, J., Moldenhauer, G., Maecke, H.R. (2009). In vitro characterization of 177Lu-radiolabelled chimeric anti-CD20 monoclonal antibody and a preliminary dosimetry study. European Journal of Nuclear Medicine and Molecular Imaging, 36(9), 1443–1452. [CrossRef]
  • [49] Schlom, J., Siler, K., Milenic, D.E., Eggensperger, D., Colcher, D., Miller, L.S., Houchens, D., Cheng, R., Kaplan, D., Goeckeler, W. (1991). Monoclonal antibody-based therapy of a human tumor xenograft with a 177Lutetium-labeled immunoconjugate. Cancer Research, 51, 2889–2896.
  • [50] Mulligan, T., Carrasquillo, J.A., Chung, Y., Milenic, D.E., Schlom, J., Feuerstein, I., Paik, C., Perentesis, P., Reynolds, J., Curt, G. (1995). Phase I study of intravenous Lu-labeled CC49 murine monoclonal antibody in patients with advanced adenocarcinoma. Clinical cancer research: an official journal of the American Association for Cancer Research, 1(12), 1447–1454.
  • [51] Houchens, D., Houchens, D., Cheng, R., Kaplan, D., Goeckeler, W. (1991). Monoclonal antibody-based therapy of a human tumor xenograft with a 177Lutetium-labeled immunoconjugate. Cancer Research, 51, 2889–2896.
  • [52] Emmett, L., Willowson, K., Violet, J., Shin, J., Blanksby, A., Lee, J. (2017). Lutetium 177 PSMA radionuclide therapy for men with prostate cancer: a review of the current literature and discussion of practical aspects of therapy. Journal of Medical Radiation Sciences, 64(1), 52–60. [CrossRef]
  • [53] Mhawech-Fauceglia, P., Zhang, S., Terracciano, L., Sauter, G., Chadhuri, A., Herrmann, F.R., Penetrante, R. (2007). Prostate-specific membrane antigen (PSMA) protein expression in normal and neoplastic tissues and its sensitivity and specificity in prostate adenocarcinoma: An immunohistochemical study using mutiple tumour tissue microarray technique. Histopathology, 50(4), 472–483. [CrossRef]
  • [54] Yadav, M.P., Ballal, S., Sahoo, R.K., Dwivedi, S.N., Bal, C. (2019). Radioligand therapy with 177Lu-PSMA for metastatic castration-resistant prostate cancer: A systematic review and meta-analysis. American Journal of Roentgenology, 213(2), 275–285. [CrossRef]
  • [55] Vallabhajosula, S., Goldsmith, S.J., Hamacher, K.A., Kostakoglu, L., Konishi, S., Milowski, M.I., Nanus, D.M., Bander, N.H. (2005). Prediction of myelotoxicity based on bone marrow radiation-absorbed dose: Radioimmunotherapy studies using 90Y- and 177Lu-labeled J591 antibodies specific for prostate-specific membrane antigen. Journal of Nuclear Medicine, 46(5), 850–858.
  • [56] Knapp, F.F.R., Dash, A. (2017). Radiopharmaceuticals for therapy. The Journal of Nuclear Medicine, 58(9), 1526. [CrossRef]
  • [57] Maqsood, M.H., Tameez Ud Din, A., Khan, A.H. (2019). Neuroendocrine tumor therapy with Lutetium-177: A literature review. Cureus, 11(1), e3986. [CrossRef]
  • [58] Frilling, A., Weber, F., Saner, F., Bockisch, A., Hofmann, M., Mueller-Brand, J., Broelsch, C.E. (2006). Treatment with 90Y- and 177Lu-DOTATOC in patients with metastatic neuroendocrine tumors. Surgery, 140(6), 968–977. [CrossRef]
  • [59] Baum, R.P., Kluge, A.W., Kulkarni, H., Schorr-Neufing, U., Niepsch, K., Bitterlich, N., van Echteld, C.J.A. (2016). [177Lu-DOTA]0-D-Phe1-Tyr3-Octreotide (177Lu-DOTA TOC) for peptide receptor radiotherapy in patients with advanced neuroendocrine tumours: A Phase-II study. Theranostics, 6(4), 501–510. [CrossRef]
  • [60] Danthala, M., Kallur, K.G., Prashant, G.R., Rajkumar, K., Raghavendra Rao, M. (2014). 177Lu-DOTATATE therapy in patients with neuroendocrine tumours: 5 Years’ experience from a tertiary cancer care centre in India. European Journal of Nuclear Medicine and Molecular Imaging, 41(7), 1319–1326. [CrossRef]
  • [61] Das, T., Banerjee, S., Shinto, A., Kamaleshwaran, K.K., Sarma, H.D. (2014). Preparation of therapeutic dose of 177Lu-DOTA-TATE using a novel single vial freeze-dried kit: A comparison with ‘in-situ’ preparation at hospital radiopharmacy. Current Radiopharmaceuticals, 7(1), 12–19. [CrossRef]
  • [62] Hennrich, U., Kopka, K. (2019). Lutathera®: The first FDA-and EMA-approved radiopharmaceutical for peptide receptor radionuclide therapy. Pharmaceuticals, 12(3), 114. [CrossRef]
  • [63] Chakraborty, S., Das, T., Sarma, H.D., Venkatesh, M., Banerjee, S. (2008). Comparative studies of 177Lu-EDTMP and 177Lu-DOTMP as potential agents for palliative radiotherapy of bone metastasis. Applied Radiation and Isotopes, 66(9), 1196–1205. [CrossRef]
  • [64] Dalla Palma, L. (1998). Diagnostic imaging and interventional therapy of hepatocellular carcinoma. British Journal of Radiology, 71, 808–818. [CrossRef]
  • [65] Subramanian, S., Das, T., Chakraborty, S., Sarma, H.D., Banerjee, S., Samuel, G., Venkatesh, M. (2010). Preparation of 177Lu-labeled oxine in lipiodol as a possible agent for therapy of hepatocellular carcinoma: A preliminary animal study. Cancer Biotherapy and Radiopharmaceuticals, 25(5), 539–543. [CrossRef]
  • [66] Wang, S.J., Lin, W.Y., Chen, M.N., Shen, L.H., Tsai, Z.T., Tinge, G. (1995). Preparation and biodistribution of yttrium-90 Lipiodol in rats following hepatic arterial injection. European Journal of Nuclear Medicine, 22(3), 233–236. [CrossRef]
  • [67] Unni, P.R., Chaudhari, P.R., Venkatesh, M., Ramamoorthy, N., Pillai, M.R.A. (2002). Preparation and bioevaluation of 166Ho labelled hydroxyapatite (HA) particles for radiosynovectomy. Nuclear Medicine and Biology, 29(2), 199–209. [CrossRef]
  • [68] Chakraborty, S., Das, T., Sarma, H.D., Venkatesh, M., Banerjee, S. (2008). Preparation and preliminary studies on 177Lu-labeled hydroxyapatite particles for possible use in the therapy of liver cancer. Nuclear Medicine and Biology, 35(5), 589–597. [CrossRef]
  • [69] Davis, M.A., Chinol, M. (1989). Radiopharmaceuticals for radiation synovectomy: Evaluation of two yttrium-90 particulate agents. Journal of Nuclear Medicine, 30(6), 1047–1055.
  • [70] Schneider, P., Farahati, J., Reiners, C. (2005). Radiosynovectomy in rheumatology, orthopedics, and hemophilia. Journal of Nuclear Medicine, 46(1 suppl), 48S-54S.
  • [71] Fellner, M., Biesalski, B., Bausbacher, N., Kubícek, V., Hermann, P., Rösch, F., Thews, O. (2012). 68Ga-BPAMD: PET-imaging of bone metastases with a generator-based positron emitter. Nuclear Medicine and Biology, 39(7), 993–999. [CrossRef]
  • [72] Baum, R.P., Kulkarni, H.R. (2012). Theranostics: From molecular imaging using Ga-68 labeled tracers and PET/CT to personalized radionuclide therapy - the bad berka experience. Theranostics, 2(5), 437–447. [CrossRef]
  • [73] Singh, N., Krishna, B.A., Vyas, M., Venkatesh, M., Banerjee, S., Das, T., Vimal Nair, K.V., Sudipta. (2011). Lutetium DOTATATE whole body scans: A novel approach for evaluation of neuroendocrine tumors. Indian Journal of Nuclear Medicine, 26(3), 135-138. [CrossRef]

CURRENT APPROACHES TO TARGETED THERAPY: LUTETIUM-177 LABELED RADIOPHARMACEUTICALS

Yıl 2022, , 209 - 230, 29.01.2022
https://doi.org/10.33483/jfpau.1007773

Öz

Objective: In recent years, thanks to advances in targeted radionuclide therapy, significant advances have been made in the early diagnosis and treatment of diseases. With the emergence of the concept of "theranostic", which combines diagnosis and treatment methods, Lutetium-177 (Lu-177) has gained an important place in targeted therapy and has become a leading compound in this field. In this review, it is aimed to explain the basic information about radiopharmaceuticals, targeted therapy, theranostics and Lu-177, to present 177Lu-labeled molecular carriers and 177Lu-labeled radiopharmaceuticals and to review the studies on these subjects.
Result and Discussion: 177Lu is a theranostic agent with a half-life of 6.7 days, which can be used in diagnosis and treatment in nuclear medicine thanks to its γ and β rays. Its high specific activity and easy access to these activity levels as well as its relatively long half-life can be considered as the main factors of interest in the clinical use of this radionuclide. The clinical utility of 177Lu, a preferred radioisotope for targeted radionuclide therapy, in the treatment of neuroendocrine tumors, prostate cancer, non-Hodgkin lymphoma, adenocarcinoma, and liver cancer, and in alleviating bone pain, was investigated, and as a result, 177Lu was found to show great potential in cancer and pain therapy. With these areas of use, we believe that Lu-177 will have an important place in the field of nuclear medicine in the future.

Proje Numarası

-

Kaynakça

  • [1] Sivri, N.N. (2004). Radyonüklidik tedavi. Meslek İçi Sürekli Eğitim, 9–10, 11–17.
  • [2] Ekinci, M., İlem-Özdemir, D. (2021). Radyofarmasötikler ve teranostikler. Journal of Literature Pharmacy Sciences, 10(1), 119–132. [CrossRef]
  • [3] Banerjee, S., Pillai, M.R.A., Knapp, F.F. (2015). Lutetium-177 therapeutic radiopharmaceuticals: Linking chemistry, radiochemistry, and practical applications. Chemical Reviews, 115(8), 2934–2974. [CrossRef]
  • [4] Riondato, M., Eckelman, W.C. (2016). Radiopharmaceuticals. In: A. Ciarmiello, L. Mansi (Eds.). PET-CT and PET-MRI in Neurology: SWOT Analysis Applied to Hybrid Imaging (pp. 31–57). Springer International Publishing. [CrossRef]
  • [5] Ekinci, M., İlem-Özdemir, D. (2021). İyonlaştırıcı radyasyon ve onkolitik virüsler ile kombine tedavinin etkileri. FABAD Journal of Pharmaceutical Sciences, 46(1), 79–92.
  • [6] Ekinci, M., İlem-Özdemir, D. (2021). Nanoteranostikler. Ankara Üniversitesi Eczacılık Fakültesi Dergisi, 45(1), 131-155 [CrossRef]
  • [7] Nurili, F., Vural, G.U., Aras, Ö. (2015). Molecular imaging methods in theranostic platform. Nuclear Medicine Seminars, 2, 120–127. [CrossRef]
  • [8] Ersahin, D., Doddamane, I., Cheng, D. (2011). Targeted radionuclide therapy. Cancers, 3(4), 3838–3855. [CrossRef]
  • [9] Zukotynski, K., Jadvar, H., Capala, J., Fahey, F. (2016). Targeted radionuclide therapy: Practical applications and prospects. Biomarkers in Cancer, 8s2(8), BIC.S31804. [CrossRef]
  • [10] Goldsmith, S.J. (2020). Targeted radionuclide therapy: A historical and personal review. Seminars in Nuclear Medicine, 50(1), 87–97. [CrossRef]
  • [11] Jurcic, J.G., Wong, J.Y.C., Knox, S.J., Wahl, D.R., Rosenblat, T.L., Meredith, R.F. (2016). Targeted radionuclide therapy. In: L.L. Gunderson, J.E. Tepper (Eds.). Clinical Radiation Oncology (Fourth Edition) (pp. 399-418.e14). Elsevier. [CrossRef]
  • [12] Dash, A., Chakraborty, S., Pillai, M.R.A., Knapp, F.F.R. (2015). Peptide receptor radionuclide therapy: An overview. Cancer Biotherapy and Radiopharmaceuticals, 30(2), 47–71. [CrossRef]
  • [13] Dash, A., Pillai, M.R.A., Knapp, F.F. (2015). Production of 177Lu for targeted radionuclide therapy: Available options. Nuclear Medicine and Molecular Imaging, 49(2), 85–107. [CrossRef]
  • [14] Das, T., Banerjee, S. (2015). Theranostic applications of Lutetium-177 in radionuclide therapy. Current Radiopharmaceuticals, 9(1), 94–101. [CrossRef]
  • [15] Kuznetsov, R.A., Bobrovskaya, K.S., Svetukhin, V.V., Fomin, A.N., Zhukov, A.V. (2019). Production of lutetium-177: Process aspects. Radiochemistry, 61(4), 381–395. [CrossRef]
  • [16] Ocak, M. (2015). Radiopharmaceuticals for PET. Toraks Cerrahisi Bulteni, 6(2), 154–160. [CrossRef]
  • [17] Ercan, M.T. (1996). Nükleer tıp uygulamaları. Posyon, 5, 17–21.
  • [18] Wadsak, W., Mitterhauser, M. (2010). Basics and principles of radiopharmaceuticals for PET/CT. European Journal of Radiology, 73(3), 461–469. [CrossRef]
  • [19] Karayel, E. (2018). Yüksek Lisans tezi. 99mTc-HMPAO ile işaretli lökosit sintigrafisinde kullanılan 99mTc-HMPAO-lökosit radyofarmasötiğinin; mikrobiyolojik, radyokimyasal ve biyokimyasal açıdan kalite kontrollerinin değerlendirilmesi. Farmasötik Mikrobiyoloji Anabilim Dalı, Sağlık Bilimleri Enstitüsü, İstanbul Üniversitesi, İstanbul, Türkiye.
  • [20] Ocak, M. (2005). Yüksek Lisans tezi. Mikropartiküllerin radyonüklit ile işaretlenmesi ve optimizasyonu. Farmasötik Teknoloji Anabilim Dalı, Sağlık Bilimleri Enstitüsü, İstanbul Üniversitesi, İstanbul, Türkiye.
  • [21] Unak, P. (2002). Targeted tumor radiotherapy. Brazilian Archives of Biology and Technology, 45(spe), 97–110. [CrossRef]
  • [22] Kramer-Marek, G., Capala, J. (2012). The role of nuclear medicine in modern therapy of cancer. Tumor Biology, 33(3), 629–640. [CrossRef]
  • [23] Volkert, W.A., Huffman, T.J. (1999). Therapeutic radiopharmaceuticals. Chemical Reviews, 99(9), 2269–2292. [CrossRef]
  • [24] Yeong, C.H., Cheng, M., Ng, K.H. (2014). Therapeutic radionuclides in nuclear medicine: Current and prospects. Journal of Zhejiang University: Science B, 15(10), 845–863. [CrossRef]
  • [25] Alberti, C. (2012). From molecular imaging in preclinical/clinical oncology to theranostic applications in targeted tumor therapy. European Review for Medical and Pharmacological Sciences, 16(14), 1925–1933.
  • [26] Denardo, G.L., Denardo, S.J. (2012). Concepts, consequences, and implications of theranosis. Seminars in Nuclear Medicine, 42(3), 147–150. [CrossRef]
  • [27] Kelkar, S.S., Reineke, T.M. (2011). Theranostics: Combining imaging and therapy. Bioconjugate Chemistry, 22(10), 1879–1903. [CrossRef]
  • [28] Srivastava, S.C. (2012). Paving the way to personalized medicine: Production of some promising theragnostic radionuclides at Brookhaven National Laboratory. Seminars in Nuclear Medicine, 42(3), 151–163. [CrossRef]
  • [29] Pillai, A., (Russ) Knapp, F. (2015). Evolving important role of Lutetium-177 for therapeutic nuclear medicine. Current Radiopharmaceuticals, 8(2), 78–85. [CrossRef]
  • [30] Patnaik, P. (2003). Handbook of inorganic chemicals. Choice Reviews Online, 40(11), 40-6428-40–6428. [CrossRef]
  • [31] Bracken, J.D. (1999). The History and Use of Our Earth's Chemical Elements: A Reference Guide (Krebs, Robert E.). Journal of Chemical Education, 76(4), 475-475. [CrossRef]
  • [32] Audi, G., Bersillon, O., Blachot, J., Wapstra, A.H. (2003). The NUBASE evaluation of nuclear and decay properties. Nuclear Physics A, 729(1), 3–128. [CrossRef]
  • [33] Goldenberg, D.M. (2002). Targeted therapy of cancer with radiolabeled antibodies. Journal of Nuclear Medicine, 43(5), 693–713.
  • [34] Köhler, G., Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 256(5517), 495–497. [CrossRef]
  • [35] Schlom, J. (1986). Basic principles and applications of monoclonal antibodies in the management of carcinomas: The Richard and Hinda Rosenthal Foundation award lecture. Cancer Research, 46(7), 3225–3238.
  • [36] Strebhardt, K., Ullrich, A. (2008). Paul Ehrlich’s magic bullet concept: 100 Years of progress. Nature Reviews Cancer, 8(6), 473–480. [CrossRef]
  • [37] Fani, M., Maecke, H.R., Okarvi, S.M. (2012). Radiolabeled peptides: Valuable tools for the detection and treatment of cancer. Theranostics, 2(5), 481–501. [CrossRef]
  • [38] Fani, M, Maecke, H.R. (2012). Radiopharmaceutical development of radiolabelled peptides. European Journal of Nuclear Medicine and Molecular Imaging, 39(Suppl 1), S11-30. [CrossRef]
  • [39] Reubi, J.C. (2003). Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocrine Reviews, 24(4), 389–427. [CrossRef]
  • [40] Debinski, W., Gibo, D.M., Hulet, S.W., Connor, J.R., Gillespie, G.Y. (1999). Receptor for interleukin 13 is a marker and therapeutic target for human high-grade gliomas. Clinical Cancer Research, 5(5), 985–990.
  • [41] D. Sarma, H., Das, T., Banerjee, S., Venkatesh, M., B. Vidyasagar, P., P. Mishra, K. (2011). Studies on efficacy of a novel 177Lu-labeled porphyrin derivative in regression of tumors in mouse model. Current Radiopharmaceuticals, 4(2), 150–160. [CrossRef]
  • [42] Das, T., Chakraborty, S., Sarma, H.D., Banerjee, S., Venakatesh, M. (2010). A novel 177Lu-labeled porphyrin for possible use in targeted tumor therapy. Nuclear Medicine and Biology, 37(5), 655–663. [CrossRef]
  • [43] Banerjee, S., Das, T., Chakraborty, S., Samuel, G., Korde, A., Venkatesh, M., Pillai, M.R.A. (2005). An estradiol-conjugate for radiolabelling with 177Lu: An attempt to prepare a radiotherapeutic agent. Bioorganic and Medicinal Chemistry, 13(13), 4315–4322. [CrossRef]
  • [44] Das, T., Chakraborty, S., Banerjee, S., Mukherjee, A., Samuel, G., Sarma, H.D., Nair, C.K.K., Kagiya, V.T., Venkatesh, M. (2004). Preparation and preliminary biological evaluation of a 177Lu labeled sanazole derivative for possible use in targeting tumor hypoxia. Bioorganic and Medicinal Chemistry, 12(23), 6077–6084. [CrossRef]
  • [45] Das, T., Chakraborty, S., Banerjee, S., Sarma, H.D., Samuel, G., Venkatesh, M. (2006). Preparation and preliminary biological evaluation of a 177Lu labeled nitroimidazole derivative for possible use in targeted tumor therapy. Radiochimica Acta, 94(6–7), 375–380. [CrossRef]
  • [46] Guarino, A., Cohen, M., Thompson, M., Dharmsathaphorn, K., Giannella, R. (1987). T84 cell receptor binding and guanyl cyclase activation by Escherichia coli heat-stable toxin. American Journal of Physiology - Gastrointestinal and Liver Physiology, 253(6 (16/6)), G775–G780. [CrossRef]
  • [47] Gali, H., Sieckman, G.L., Hoffman, T.J., Owen, N.K., Chin, D.T., Forte, L.R., Volkert, W.A. (2001). In vivo evaluation of an 111In-labeled ST-peptide analog for specific-targeting of human colon cancers. Nuclear Medicine and Biology, 28(8), 903–909. [CrossRef]
  • [48] Forrer, F., Chen, J., Fani, M., Powell, P., Lohri, A., Müller-Brand, J., Moldenhauer, G., Maecke, H.R. (2009). In vitro characterization of 177Lu-radiolabelled chimeric anti-CD20 monoclonal antibody and a preliminary dosimetry study. European Journal of Nuclear Medicine and Molecular Imaging, 36(9), 1443–1452. [CrossRef]
  • [49] Schlom, J., Siler, K., Milenic, D.E., Eggensperger, D., Colcher, D., Miller, L.S., Houchens, D., Cheng, R., Kaplan, D., Goeckeler, W. (1991). Monoclonal antibody-based therapy of a human tumor xenograft with a 177Lutetium-labeled immunoconjugate. Cancer Research, 51, 2889–2896.
  • [50] Mulligan, T., Carrasquillo, J.A., Chung, Y., Milenic, D.E., Schlom, J., Feuerstein, I., Paik, C., Perentesis, P., Reynolds, J., Curt, G. (1995). Phase I study of intravenous Lu-labeled CC49 murine monoclonal antibody in patients with advanced adenocarcinoma. Clinical cancer research: an official journal of the American Association for Cancer Research, 1(12), 1447–1454.
  • [51] Houchens, D., Houchens, D., Cheng, R., Kaplan, D., Goeckeler, W. (1991). Monoclonal antibody-based therapy of a human tumor xenograft with a 177Lutetium-labeled immunoconjugate. Cancer Research, 51, 2889–2896.
  • [52] Emmett, L., Willowson, K., Violet, J., Shin, J., Blanksby, A., Lee, J. (2017). Lutetium 177 PSMA radionuclide therapy for men with prostate cancer: a review of the current literature and discussion of practical aspects of therapy. Journal of Medical Radiation Sciences, 64(1), 52–60. [CrossRef]
  • [53] Mhawech-Fauceglia, P., Zhang, S., Terracciano, L., Sauter, G., Chadhuri, A., Herrmann, F.R., Penetrante, R. (2007). Prostate-specific membrane antigen (PSMA) protein expression in normal and neoplastic tissues and its sensitivity and specificity in prostate adenocarcinoma: An immunohistochemical study using mutiple tumour tissue microarray technique. Histopathology, 50(4), 472–483. [CrossRef]
  • [54] Yadav, M.P., Ballal, S., Sahoo, R.K., Dwivedi, S.N., Bal, C. (2019). Radioligand therapy with 177Lu-PSMA for metastatic castration-resistant prostate cancer: A systematic review and meta-analysis. American Journal of Roentgenology, 213(2), 275–285. [CrossRef]
  • [55] Vallabhajosula, S., Goldsmith, S.J., Hamacher, K.A., Kostakoglu, L., Konishi, S., Milowski, M.I., Nanus, D.M., Bander, N.H. (2005). Prediction of myelotoxicity based on bone marrow radiation-absorbed dose: Radioimmunotherapy studies using 90Y- and 177Lu-labeled J591 antibodies specific for prostate-specific membrane antigen. Journal of Nuclear Medicine, 46(5), 850–858.
  • [56] Knapp, F.F.R., Dash, A. (2017). Radiopharmaceuticals for therapy. The Journal of Nuclear Medicine, 58(9), 1526. [CrossRef]
  • [57] Maqsood, M.H., Tameez Ud Din, A., Khan, A.H. (2019). Neuroendocrine tumor therapy with Lutetium-177: A literature review. Cureus, 11(1), e3986. [CrossRef]
  • [58] Frilling, A., Weber, F., Saner, F., Bockisch, A., Hofmann, M., Mueller-Brand, J., Broelsch, C.E. (2006). Treatment with 90Y- and 177Lu-DOTATOC in patients with metastatic neuroendocrine tumors. Surgery, 140(6), 968–977. [CrossRef]
  • [59] Baum, R.P., Kluge, A.W., Kulkarni, H., Schorr-Neufing, U., Niepsch, K., Bitterlich, N., van Echteld, C.J.A. (2016). [177Lu-DOTA]0-D-Phe1-Tyr3-Octreotide (177Lu-DOTA TOC) for peptide receptor radiotherapy in patients with advanced neuroendocrine tumours: A Phase-II study. Theranostics, 6(4), 501–510. [CrossRef]
  • [60] Danthala, M., Kallur, K.G., Prashant, G.R., Rajkumar, K., Raghavendra Rao, M. (2014). 177Lu-DOTATATE therapy in patients with neuroendocrine tumours: 5 Years’ experience from a tertiary cancer care centre in India. European Journal of Nuclear Medicine and Molecular Imaging, 41(7), 1319–1326. [CrossRef]
  • [61] Das, T., Banerjee, S., Shinto, A., Kamaleshwaran, K.K., Sarma, H.D. (2014). Preparation of therapeutic dose of 177Lu-DOTA-TATE using a novel single vial freeze-dried kit: A comparison with ‘in-situ’ preparation at hospital radiopharmacy. Current Radiopharmaceuticals, 7(1), 12–19. [CrossRef]
  • [62] Hennrich, U., Kopka, K. (2019). Lutathera®: The first FDA-and EMA-approved radiopharmaceutical for peptide receptor radionuclide therapy. Pharmaceuticals, 12(3), 114. [CrossRef]
  • [63] Chakraborty, S., Das, T., Sarma, H.D., Venkatesh, M., Banerjee, S. (2008). Comparative studies of 177Lu-EDTMP and 177Lu-DOTMP as potential agents for palliative radiotherapy of bone metastasis. Applied Radiation and Isotopes, 66(9), 1196–1205. [CrossRef]
  • [64] Dalla Palma, L. (1998). Diagnostic imaging and interventional therapy of hepatocellular carcinoma. British Journal of Radiology, 71, 808–818. [CrossRef]
  • [65] Subramanian, S., Das, T., Chakraborty, S., Sarma, H.D., Banerjee, S., Samuel, G., Venkatesh, M. (2010). Preparation of 177Lu-labeled oxine in lipiodol as a possible agent for therapy of hepatocellular carcinoma: A preliminary animal study. Cancer Biotherapy and Radiopharmaceuticals, 25(5), 539–543. [CrossRef]
  • [66] Wang, S.J., Lin, W.Y., Chen, M.N., Shen, L.H., Tsai, Z.T., Tinge, G. (1995). Preparation and biodistribution of yttrium-90 Lipiodol in rats following hepatic arterial injection. European Journal of Nuclear Medicine, 22(3), 233–236. [CrossRef]
  • [67] Unni, P.R., Chaudhari, P.R., Venkatesh, M., Ramamoorthy, N., Pillai, M.R.A. (2002). Preparation and bioevaluation of 166Ho labelled hydroxyapatite (HA) particles for radiosynovectomy. Nuclear Medicine and Biology, 29(2), 199–209. [CrossRef]
  • [68] Chakraborty, S., Das, T., Sarma, H.D., Venkatesh, M., Banerjee, S. (2008). Preparation and preliminary studies on 177Lu-labeled hydroxyapatite particles for possible use in the therapy of liver cancer. Nuclear Medicine and Biology, 35(5), 589–597. [CrossRef]
  • [69] Davis, M.A., Chinol, M. (1989). Radiopharmaceuticals for radiation synovectomy: Evaluation of two yttrium-90 particulate agents. Journal of Nuclear Medicine, 30(6), 1047–1055.
  • [70] Schneider, P., Farahati, J., Reiners, C. (2005). Radiosynovectomy in rheumatology, orthopedics, and hemophilia. Journal of Nuclear Medicine, 46(1 suppl), 48S-54S.
  • [71] Fellner, M., Biesalski, B., Bausbacher, N., Kubícek, V., Hermann, P., Rösch, F., Thews, O. (2012). 68Ga-BPAMD: PET-imaging of bone metastases with a generator-based positron emitter. Nuclear Medicine and Biology, 39(7), 993–999. [CrossRef]
  • [72] Baum, R.P., Kulkarni, H.R. (2012). Theranostics: From molecular imaging using Ga-68 labeled tracers and PET/CT to personalized radionuclide therapy - the bad berka experience. Theranostics, 2(5), 437–447. [CrossRef]
  • [73] Singh, N., Krishna, B.A., Vyas, M., Venkatesh, M., Banerjee, S., Das, T., Vimal Nair, K.V., Sudipta. (2011). Lutetium DOTATATE whole body scans: A novel approach for evaluation of neuroendocrine tumors. Indian Journal of Nuclear Medicine, 26(3), 135-138. [CrossRef]
Toplam 73 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Eczacılık ve İlaç Bilimleri
Bölüm Derleme
Yazarlar

Dorukhan Hışır 0000-0001-6779-2995

Meliha Ekinci 0000-0003-1319-3756

Derya İlem-özdemir 0000-0002-1062-498X

Proje Numarası -
Yayımlanma Tarihi 29 Ocak 2022
Gönderilme Tarihi 10 Ekim 2021
Kabul Tarihi 1 Kasım 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Hışır, D., Ekinci, M., & İlem-özdemir, D. (2022). HEDEFE YÖNELİK TEDAVİDE GÜNCEL YAKLAŞIMLAR: LUTESYUM-177 İLE İŞARETLİ RADYOFARMASÖTİKLER. Journal of Faculty of Pharmacy of Ankara University, 46(1), 209-230. https://doi.org/10.33483/jfpau.1007773
AMA Hışır D, Ekinci M, İlem-özdemir D. HEDEFE YÖNELİK TEDAVİDE GÜNCEL YAKLAŞIMLAR: LUTESYUM-177 İLE İŞARETLİ RADYOFARMASÖTİKLER. Ankara Ecz. Fak. Derg. Ocak 2022;46(1):209-230. doi:10.33483/jfpau.1007773
Chicago Hışır, Dorukhan, Meliha Ekinci, ve Derya İlem-özdemir. “HEDEFE YÖNELİK TEDAVİDE GÜNCEL YAKLAŞIMLAR: LUTESYUM-177 İLE İŞARETLİ RADYOFARMASÖTİKLER”. Journal of Faculty of Pharmacy of Ankara University 46, sy. 1 (Ocak 2022): 209-30. https://doi.org/10.33483/jfpau.1007773.
EndNote Hışır D, Ekinci M, İlem-özdemir D (01 Ocak 2022) HEDEFE YÖNELİK TEDAVİDE GÜNCEL YAKLAŞIMLAR: LUTESYUM-177 İLE İŞARETLİ RADYOFARMASÖTİKLER. Journal of Faculty of Pharmacy of Ankara University 46 1 209–230.
IEEE D. Hışır, M. Ekinci, ve D. İlem-özdemir, “HEDEFE YÖNELİK TEDAVİDE GÜNCEL YAKLAŞIMLAR: LUTESYUM-177 İLE İŞARETLİ RADYOFARMASÖTİKLER”, Ankara Ecz. Fak. Derg., c. 46, sy. 1, ss. 209–230, 2022, doi: 10.33483/jfpau.1007773.
ISNAD Hışır, Dorukhan vd. “HEDEFE YÖNELİK TEDAVİDE GÜNCEL YAKLAŞIMLAR: LUTESYUM-177 İLE İŞARETLİ RADYOFARMASÖTİKLER”. Journal of Faculty of Pharmacy of Ankara University 46/1 (Ocak 2022), 209-230. https://doi.org/10.33483/jfpau.1007773.
JAMA Hışır D, Ekinci M, İlem-özdemir D. HEDEFE YÖNELİK TEDAVİDE GÜNCEL YAKLAŞIMLAR: LUTESYUM-177 İLE İŞARETLİ RADYOFARMASÖTİKLER. Ankara Ecz. Fak. Derg. 2022;46:209–230.
MLA Hışır, Dorukhan vd. “HEDEFE YÖNELİK TEDAVİDE GÜNCEL YAKLAŞIMLAR: LUTESYUM-177 İLE İŞARETLİ RADYOFARMASÖTİKLER”. Journal of Faculty of Pharmacy of Ankara University, c. 46, sy. 1, 2022, ss. 209-30, doi:10.33483/jfpau.1007773.
Vancouver Hışır D, Ekinci M, İlem-özdemir D. HEDEFE YÖNELİK TEDAVİDE GÜNCEL YAKLAŞIMLAR: LUTESYUM-177 İLE İŞARETLİ RADYOFARMASÖTİKLER. Ankara Ecz. Fak. Derg. 2022;46(1):209-30.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.