Araştırma Makalesi
BibTex RIS Kaynak Göster

STAPHYLOCOCCUS AUREUS'UN KATI LİPİD NANOPARTİKÜLLER İLE ETKİLEŞİMİ

Yıl 2022, , 322 - 329, 29.05.2022
https://doi.org/10.33483/jfpau.1063296

Öz

Amaç: Bakterilerin mevcut antibiyotiklere direnç geliştirme yeteneği, yeni antimikrobiyallerin ya da antimikrobiyal formülasyonların araştırılmasının aciliyetini ortaya koymaktadır. İlaç taşıyıcı sistemler arasında, katı lipid nanopartiküller, hedeflenen ilaç uygulaması için avantajlara sahip, çözüm odaklı sistemler olarak kabul edilir.
Gereç ve Yöntem: Bu çalışmada, antibiyotik iyileştirme çalışmaları için bir ön çalışma olması amacıyla floresein yüklenmiş SLN'lerin Staphylococcus aureus ATCC 29213'e bakteri alımı akış sitometrisi yöntemiyle araştırıldı.
Sonuç ve Tartışma: Floresein-SLN'lerin ~%60'ının 1 saat içinde S. aureus ATCC 29213 hücrelerine alındığı belirlendi. Sonuçların gelecekte antibiyotiklerle yapılacak çalışmalar için umut verici olduğu bulundu.

Kaynakça

  • [1] Arana, L., Gallego, L., Alkorta, I. (2021). Incorporation of antibiotics into solid lipid nanoparticles: a promising approach to reduce antibiotic resistance emergence. Nanomaterials (Basel), 11(5), 1251. [CrossRef]
  • [2] WHO. (2020). Antibiotic resistance. https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance Accessed: 25.01.2022.
  • [3] Sofowora, A., Ogunbodede, E., Onayade, A. (2013). The role and place of medicinal plants in the strategies for disease prevention. African Journal of Traditional, Complementary and Alternative Medicines, 10(5), 210-229. [CrossRef]
  • [4] Yeh, Y.C., Huang, T.H., Yang, S.C., Chen, C.C., Fang, J.Y. (2020). Nano-based drug delivery or targeting to eradicate bacteria for ınfection mitigation: a review of recent advances. Frontiers in Chemistry, 8(286), 1-22. [CrossRef]
  • [5] Jiang, Q., Chen, J., Yang, C., Yin, Y., Yao, K. (2019). Quorum Sensing: A Prospective Therapeutic Target for Bacterial Diseases. BioMed Research International, 2019, 2015978. [CrossRef]
  • [6] Lin, D.M., Koskella, B., Lin, H.C. (2017). Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World Journal of Gastrointestinal Pharmacology and Therapeutics, 8(3),162-173. [CrossRef]
  • [7] Gebreyohannes, G., Nyerere, A., Bii, C., Sbhatu, D.B. (2019). Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon, 5(8), e02192. [CrossRef]
  • [8] Marslin, G., Revina, A.M., Khandelwal, V.K., Balakumar, K., Sheeba, C.J., Franklin, G. (2015). PEGylated ofloxacin nanoparticles render strong antibacterial activity against many clinically important human pathogens. Colloids and Surfaces B: Biointerfaces, 132, 62-70. [CrossRef]
  • [9] Sheeba, C.J., Marslin, G., Revina, A.M., Franklin, G. (2014). Signaling pathways influencing tumor microenvironment and their exploitation for targeted drug delivery. Nanotechnology Reviews, 3(2), 123-151. [CrossRef]
  • [10] Mukherjee, S., Ray, S., Thakur, R.S. (2009). Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian Journal of Pharmaceutical Sciences, 71(4), 349-358. [CrossRef]
  • [11] Munita, J.M., Arias, C.A. (2016). Mechanisms of Antibiotic Resistance. Microbiology Spectrum, 4(2). [CrossRef]
  • [12] Sharma, A., Vaghasiya, K., Ray, E., Verma, R.K. (2018). Nano-encapsulated HHC10 host defense peptide (HDP) reduces the growth of Escherichia coli via multimodal mechanisms. Artificial Cells, Nanomedicine, and Biotechnology, 46(3), 156-165. [CrossRef]
  • [13] Tong, S.Y., Davis, J.S., Eichenberger, E., Holland, T.L., Fowler, V.G. (2015). Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28(3): 603-661. [CrossRef]
  • [14] Oogai, Y., Matsuo, M., Hashimoto, M., Kato, F., Sugai, M., Komatsuzawa, H. (2011). Expression of virulence factors by Staphylococcus aureus grown in serum. Applied and Environmental Microbiology, 77(22), 8097-8105. [CrossRef]
  • [15] Chambers, H.F., Deleo, F.R. (2009). Waves of resistance: Staphylococcus aureus in the antibiotic era. Nature Reviews Microbiology, 7(9), 629-641 [CrossRef]
  • [16] Shapiro, H.M. (2001). Optical measurements in cytometry: light scattering, extinction, absorption, and fluorescence. Methods in Cell Biology, 63, 107-129. [CrossRef]
  • [17] Zucker, R.M., Daniel, K.M. (2012). Detection of TiO2 nanoparticles in cells by flow cytometry. Methods in Molecular Biology, 906, 497-509. [CrossRef]

INTERACTION OF STAPHYLOCOCCUS AUREUS WITH SOLID LIPID NANOPARTICLES

Yıl 2022, , 322 - 329, 29.05.2022
https://doi.org/10.33483/jfpau.1063296

Öz

Objective: The ability of bacteria to develop resistance to existing antibiotics has made the search for new antimicrobials or antimicrobial formulations a matter of urgency. Among drug delivery systems, solid lipid nanoparticles are considered solution-oriented systems with advantages for targeted drug delivery.
Material and Method: In this study, the bacterial uptake of SLNs encapsulated with fluorescein into Staphylococcus aureus ATCC 29213 was investigated by a flow cytometry method to be a preliminary study for antibiotic improvement studies.
Result and Discussion: It was determined that ~60% of fluorescein-SLNs were taken into S. aureus ATCC 29213 cells within 1h. The results were found to be promising for future studies with antibiotics.

Kaynakça

  • [1] Arana, L., Gallego, L., Alkorta, I. (2021). Incorporation of antibiotics into solid lipid nanoparticles: a promising approach to reduce antibiotic resistance emergence. Nanomaterials (Basel), 11(5), 1251. [CrossRef]
  • [2] WHO. (2020). Antibiotic resistance. https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance Accessed: 25.01.2022.
  • [3] Sofowora, A., Ogunbodede, E., Onayade, A. (2013). The role and place of medicinal plants in the strategies for disease prevention. African Journal of Traditional, Complementary and Alternative Medicines, 10(5), 210-229. [CrossRef]
  • [4] Yeh, Y.C., Huang, T.H., Yang, S.C., Chen, C.C., Fang, J.Y. (2020). Nano-based drug delivery or targeting to eradicate bacteria for ınfection mitigation: a review of recent advances. Frontiers in Chemistry, 8(286), 1-22. [CrossRef]
  • [5] Jiang, Q., Chen, J., Yang, C., Yin, Y., Yao, K. (2019). Quorum Sensing: A Prospective Therapeutic Target for Bacterial Diseases. BioMed Research International, 2019, 2015978. [CrossRef]
  • [6] Lin, D.M., Koskella, B., Lin, H.C. (2017). Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World Journal of Gastrointestinal Pharmacology and Therapeutics, 8(3),162-173. [CrossRef]
  • [7] Gebreyohannes, G., Nyerere, A., Bii, C., Sbhatu, D.B. (2019). Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon, 5(8), e02192. [CrossRef]
  • [8] Marslin, G., Revina, A.M., Khandelwal, V.K., Balakumar, K., Sheeba, C.J., Franklin, G. (2015). PEGylated ofloxacin nanoparticles render strong antibacterial activity against many clinically important human pathogens. Colloids and Surfaces B: Biointerfaces, 132, 62-70. [CrossRef]
  • [9] Sheeba, C.J., Marslin, G., Revina, A.M., Franklin, G. (2014). Signaling pathways influencing tumor microenvironment and their exploitation for targeted drug delivery. Nanotechnology Reviews, 3(2), 123-151. [CrossRef]
  • [10] Mukherjee, S., Ray, S., Thakur, R.S. (2009). Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian Journal of Pharmaceutical Sciences, 71(4), 349-358. [CrossRef]
  • [11] Munita, J.M., Arias, C.A. (2016). Mechanisms of Antibiotic Resistance. Microbiology Spectrum, 4(2). [CrossRef]
  • [12] Sharma, A., Vaghasiya, K., Ray, E., Verma, R.K. (2018). Nano-encapsulated HHC10 host defense peptide (HDP) reduces the growth of Escherichia coli via multimodal mechanisms. Artificial Cells, Nanomedicine, and Biotechnology, 46(3), 156-165. [CrossRef]
  • [13] Tong, S.Y., Davis, J.S., Eichenberger, E., Holland, T.L., Fowler, V.G. (2015). Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28(3): 603-661. [CrossRef]
  • [14] Oogai, Y., Matsuo, M., Hashimoto, M., Kato, F., Sugai, M., Komatsuzawa, H. (2011). Expression of virulence factors by Staphylococcus aureus grown in serum. Applied and Environmental Microbiology, 77(22), 8097-8105. [CrossRef]
  • [15] Chambers, H.F., Deleo, F.R. (2009). Waves of resistance: Staphylococcus aureus in the antibiotic era. Nature Reviews Microbiology, 7(9), 629-641 [CrossRef]
  • [16] Shapiro, H.M. (2001). Optical measurements in cytometry: light scattering, extinction, absorption, and fluorescence. Methods in Cell Biology, 63, 107-129. [CrossRef]
  • [17] Zucker, R.M., Daniel, K.M. (2012). Detection of TiO2 nanoparticles in cells by flow cytometry. Methods in Molecular Biology, 906, 497-509. [CrossRef]
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Merve Eylül Kıymacı 0000-0001-5343-1064

Yayımlanma Tarihi 29 Mayıs 2022
Gönderilme Tarihi 26 Ocak 2022
Kabul Tarihi 23 Şubat 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Kıymacı, M. E. (2022). INTERACTION OF STAPHYLOCOCCUS AUREUS WITH SOLID LIPID NANOPARTICLES. Journal of Faculty of Pharmacy of Ankara University, 46(2), 322-329. https://doi.org/10.33483/jfpau.1063296
AMA Kıymacı ME. INTERACTION OF STAPHYLOCOCCUS AUREUS WITH SOLID LIPID NANOPARTICLES. Ankara Ecz. Fak. Derg. Mayıs 2022;46(2):322-329. doi:10.33483/jfpau.1063296
Chicago Kıymacı, Merve Eylül. “INTERACTION OF STAPHYLOCOCCUS AUREUS WITH SOLID LIPID NANOPARTICLES”. Journal of Faculty of Pharmacy of Ankara University 46, sy. 2 (Mayıs 2022): 322-29. https://doi.org/10.33483/jfpau.1063296.
EndNote Kıymacı ME (01 Mayıs 2022) INTERACTION OF STAPHYLOCOCCUS AUREUS WITH SOLID LIPID NANOPARTICLES. Journal of Faculty of Pharmacy of Ankara University 46 2 322–329.
IEEE M. E. Kıymacı, “INTERACTION OF STAPHYLOCOCCUS AUREUS WITH SOLID LIPID NANOPARTICLES”, Ankara Ecz. Fak. Derg., c. 46, sy. 2, ss. 322–329, 2022, doi: 10.33483/jfpau.1063296.
ISNAD Kıymacı, Merve Eylül. “INTERACTION OF STAPHYLOCOCCUS AUREUS WITH SOLID LIPID NANOPARTICLES”. Journal of Faculty of Pharmacy of Ankara University 46/2 (Mayıs 2022), 322-329. https://doi.org/10.33483/jfpau.1063296.
JAMA Kıymacı ME. INTERACTION OF STAPHYLOCOCCUS AUREUS WITH SOLID LIPID NANOPARTICLES. Ankara Ecz. Fak. Derg. 2022;46:322–329.
MLA Kıymacı, Merve Eylül. “INTERACTION OF STAPHYLOCOCCUS AUREUS WITH SOLID LIPID NANOPARTICLES”. Journal of Faculty of Pharmacy of Ankara University, c. 46, sy. 2, 2022, ss. 322-9, doi:10.33483/jfpau.1063296.
Vancouver Kıymacı ME. INTERACTION OF STAPHYLOCOCCUS AUREUS WITH SOLID LIPID NANOPARTICLES. Ankara Ecz. Fak. Derg. 2022;46(2):322-9.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.