Araştırma Makalesi
BibTex RIS Kaynak Göster

INHIBITION OF IRE1α/XBP-1 BRANCH OF UPR BY GSK2850163 DRIVES THE SENSITIVITY TO TAMOXIFEN IN BREAST CANCER CELLS

Yıl 2022, , 839 - 852, 30.09.2022
https://doi.org/10.33483/jfpau.1129575

Öz

Objective: Tamoxifen is used as the leading treatment against breast cancer and has been broadly applied for the last 40 years. However, resistance development against tamoxifen is one of the major limitations in the effective treatment of breast cancer. The aim of our study was to investigate whether blockage of the IRE1α/XBP-1 branch of UPR by GSK2850163 efficiently limited the carcinogenic ability of tamoxifen-resistant MCF-7 cells.
Material and Method: Firstly, tamoxifen-resistant breast cancer cells were obtained by regularly exposing MCF-7 cells to tamoxifen. The biochemical activity of GSK2850163 was confirmed by immunoblotting and qRT-PCR. The possible effect of combined treatment of GSK2850163 and tamoxifen on proliferation, invasion, migration, and colony formation abilities of tamoxifen-resistant breast cancer cells were evaluated by using WST-1 based proliferation assay, Boyden-chamber invasion test, wound-healing assay, and plate colony formation methods, respectively.
Result and Discussion: Here, we showed that specific blockage of the IRE1α/XBP-1 by GSK2850163 efficiently limited the carcinogenic ability of tamoxifen-resistant MCF-7 cells. Moreover, co-treatment with tamoxifen and GSK2850163 significantly reduced the invasion, migration, and colony formation abilities of breast cancer cells through improved the anti-carcinogenic property of tamoxifen. Our results strongly suggested that IRE1α/XBP-1 inhibitors may be potent therapeutics in breast cancer treatment.

Destekleyen Kurum

Suleyman Demirel University internal funds

Proje Numarası

TSG-2021-8302

Teşekkür

We thank Suleyman Demirel University-Innovative Technologies Application and Research Center.

Kaynakça

  • 1. Momenmovahed, Z., Salehiniya, H. (2019). Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer, 11, 151–164. [CrossRef]
  • 2. Clarke, R., Liu, M.C., Bouker, K.B., Gu, Z., Lee, R.Y., Zhu, Y., Skaar, T.C., Gomez, B., O’Brien, K., Wang, Y., Hilakivi-Clarke, L.A. (2003). Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling. Oncogene, 22(47), 7316–7339. [CrossRef]
  • 3. Shang, Y., Brown, M. (2002). Molecular determinants for the tissue specificity of SERMs. Science, 295(5564), 2465–2468. [CrossRef]
  • 4. Lee, W.L., Cheng, M.H., Chao, H.T., Wang, P.H. (2008). The role of selective estrogen receptor modulators on breast cancer: from tamoxifen to raloxifene. Taiwanese Journal of Obstetrics & Gynecology, 47(1), 24–31. [CrossRef]
  • 5. Avril, T., Vauléon, E., Chevet, E. (2017). Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers. Oncogenesis, 6(8), e373. [CrossRef]
  • 6. Adams, C.J., Kopp, M.C., Larburu, N., Nowak, P.R., Ali, M.M.U. (2019). Structure and molecular mechanism of ER stress signaling by the Unfolded Protein Response signal activator IRE1. Frontiers in Molecular Biosciences, 6, 11. [CrossRef]
  • 7. Hetz, C. (2012). The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nature Reviews - Molecular Cell Biology, 13(2), 89–102. [CrossRef]
  • 8. Zhao, N., Cao, J., Xu, L., Tang, Q., Dobrolecki, L.E., Lv, X., Talukdar, M., Lu, Y., Wang, X., Hu, D.Z, Shi, Q., Xiang, Y., Wang, Y., Liu, X., Bu, W., Jiang, Y., Li, M., Gong, Y., Sun, Z., Ying, H., Yuan, B., Lin, X., Feng, X.H., Hartig, S.M, Li, F., Shen, H., Chen, Y., Han, L., Zeng, Q., Patterson, J.B., Kaipparettu, B.A., Putluri, N., Sicheri, F., Rosen, J.M., Lewis, M.T., Chen, X. (2018). Pharmacological targeting of MYC-regulated IRE1/XBP1 pathway suppresses MYC-driven breast cancer. Journal of Clinical Investigation, 128(4), 1283-1299. [CrossRef]
  • 9. Chen, X., Iliopoulos, D., Zhang, Q., Tang, Q., Greenblatt, M. B., Hatziapostolou, M., Lim, E., Tam, W.L., Ni, M., Chen, Y., Mai, J., Shen, H., Hu, D.Z., Adoro, S., Hu, B., Song, M., Tan, C., Landis, M. D., Ferrari, M., Shin, S. J., Brown, M., Chang, J.C., Liu, X.S., Glimcher, L.H. (2014). XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature, 508(7494), 103–107. [CrossRef]
  • 10. Sheng, X., Nenseth, H.Z., Qu, S., Kuzu, O.F., Frahnow, T., Simon, L., Greene, S., Zeng, Q., Fazli, L., Rennie, P.S., Mills, I. G., Danielsen, H., Theis, F., Patterson, J.B., Jin, Y., Saatcioglu, F. (2019). IRE1α-XBP1s pathway promotes prostate cancer by activating c-MYC signaling. Nature Communications, 10(1), 323. [CrossRef]
  • 11. Ming, J., Ruan, S., Wang, M., Ye, D., Fan, N., Meng, Q., Tian, B., Huang, T. (2015). A novel chemical, STF-083010, reverses tamoxifen-related drug resistance in breast cancer by inhibiting IRE1/XBP1. Oncotarget, 6(38), 40692–40703. [CrossRef]
  • 12. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., Mori, K. (2001). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell, 107(7), 881–891. [CrossRef]
  • 13. Ding, L., Yan, J., Zhu, J., Zhong, H., Lu, Q., Wang, Z., Huang, C., Ye, Q. (2003). Ligand‐independent activation of estrogen receptor α by XBP‐1. Nucleic Acids Research, 31(18), 5266–5274. [CrossRef]
  • 14. Fang, Y., Yan, J., Ding, L., Liu, Y., Zhu, J., Huang, C., Zhao, H., Lu, Q., Zhang, X., Yang, X., Ye, Q. (2004). XBP-1 increases ERalpha transcriptional activity through regulation of large-scale chromatin unfolding. Biochemical and Biophysical Research Communications, 323(1), 269–274. [CrossRef]
  • 15. Gomez, B.P., Riggins, R. B., Shajahan, A.N., Klimach, U., Wang, A., Crawford, A. C., Zhu, Y., Zwart, A., Wang, M., Clarke, R. (2007). Human X-box binding protein-1 confers both estrogen independence and antiestrogen resistance in breast cancer cell lines. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 21(14), 4013–4027. [CrossRef]
  • 16. Davies, M.P.A., Barraclough, D.L., Stewart, C., Joyce, K.A., Eccles, R.M., Barraclough, R., Rudland, P.S., Sibson, D.R. (2008). Expression and splicing of the unfolded protein response gene XBP-1 are significantly associated with clinical outcome of endocrine-treated breast cancer. International Journal of Cancer. Journal International Du Cancer, 123(1), 85–88. [CrossRef]
  • 17. Madden, E., Logue, S.E., Healy, S.J., Manie, S., Samali, A. (2019). The role of the unfolded protein response in cancer progression: From oncogenesis to chemoresistance. Biology of the Cell / under the Auspices of the European Cell Biology Organization, 111(1), 1–17. [CrossRef]
  • 18. Robinson, C.M., Talty, A., Logue, S.E., Mnich, K., Gorman, A.M., Samali, A. (2021). An Emerging role for the Unfolded Protein Response in pancreatic cancer. Cancers, 13(2). [CrossRef]
  • 19. Romero-Ramirez, L., Cao, H., Regalado, M.P., Kambham, N., Siemann, D., Kim, J.J., Le, Q. T., Koong, A.C. (2009). X box-binding protein 1 regulates angiogenesis in human pancreatic adenocarcinomas. Translational Oncology, 2(1), 31–38. [CrossRef]
  • 20. Concha, N.O., Smallwood, A., Bonnette, W., Totoritis, R., Zhang, G., Federowicz, K., Yang, J., Qi, H., Chen, S., Campobasso, N., Choudhry, A.E., Shuster, L.E., Evans, K.A., Ralph, J., Sweitzer, S., Heerding, D.A., Buser, C.A., Su, D.S., Phillip DeYoung, M. (2015). Long-Range Inhibitor-Induced Conformational Regulation of human IRE1α endoribonuclease activity. Molecular Pharmacology, 88(6), 1011–1023. [CrossRef]
  • 21. Bujisic, B., De Gassart, A., Tallant, R., Demaria, O., Zaffalon, L., Chelbi, S., Gilliet, M., Bertoni, F., Martinon, F. (2017). Impairment of both IRE1 expression and XBP1 activation is a hallmark of GCB DLBCL and contributes to tumor growth. Blood, 129(17), 2420–2428. [CrossRef]
  • 22. Drogat, B., Auguste, P., Nguyen, D.T., Bouchecareilh, M., Pineau, R., Nalbantoglu, J., Kaufman, R.J., Chevet, E., Bikfalvi, A., Moenner, M. (2007). IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Research, 67(14), 6700–6707. [CrossRef]
  • 23. Franken, N.A.P., Rodermond, H.M., Stap, J., Haveman, J., van Bree, C. (2006). Clonogenic assay of cells in vitro. Nature Protocols, 1(5), 2315–2319. [CrossRef]
  • 24. Wittekind, C., Neid, M. (2005). Cancer invasion and metastasis. Oncology, 69(l), 14–16. [CrossRef]
  • 25. Yang, J., Cheng, D., Zhou, S., Zhu, B., Hu, T., Yang, Q. (2015). Overexpression of X-Box Binding Protein 1 (XBP1) Correlates to Poor Prognosis and Up-Regulation of PI3K/mTOR in Human Osteosarcoma. International Journal of Molecular Sciences, 16(12), 28635–28646. [CrossRef]
  • 26. Tang, C.-H.A., Ranatunga, S., Kriss, C.L., Cubitt, C.L., Tao, J., Pinilla-Ibarz, J.A., Del Valle, J. R., Hu, C.-C. A. (2014). Inhibition of ER stress-associated IRE-1/XBP-1 pathway reduces leukemic cell survival. The Journal of Clinical Investigation, 124(6), 2585–2598. [CrossRef]
  • 27. Sun, Y., Jiang, F., Pan, Y., Chen, X., Chen, J., Wang, Y., Zheng, X., Zhang, J. (2018). XBP1 promotes tumor invasion and is associated with poor prognosis in oral squamous cell carcinoma. Oncology Reports, 40(2), 988–998. [CrossRef]
  • 28. Andres, S.A., Wittliff, J.L. (2011). Relationships of ESR1 and XBP1 expression in human breast carcinoma and stromal cells isolated by laser capture microdissection compared to intact breast cancer tissue. Endocrine, 40(2), 212–221. [CrossRef]
  • 29. Li, H., Chen, X., Gao, Y., Wu, J., Zeng, F., Song, F. (2015). XBP1 induces snail expression to promote epithelial- to-mesenchymal transition and invasion of breast cancer cells. Cellular Signalling, 27(1), 82–89. [CrossRef]

UPR'NİN IRE1α/XBP-1 DALININ GSK2850163 ARACILI İNHİBİSYONU MEME KANSERİ HÜCRELERİNDE TAMOKSİFENE DUYARLILIĞI ARTIRIR

Yıl 2022, , 839 - 852, 30.09.2022
https://doi.org/10.33483/jfpau.1129575

Öz

Amaç: Tamoksifen meme kanserine karşı önde gelen tedavi olarak kullanılmaktadır ve son 40 yıldır yaygın olarak uygulanmaktadır. Ancak tamoksifene karşı direnç gelişimi meme kanserinin etkin tedavisindeki en büyük sınırlamalardan birisidir. Çalışmamızın amacı, UPR'nin IRE1α/XBP-1 dalının GSK2850163 tarafından bloke edilmesinin, tamoksifene dirençli MCF-7 hücrelerinin kanserojen yeteneğini verimli bir şekilde sınırlayıp sınırlamadığını araştırmaktır.
Gereç ve Yöntem: İlk olarak, MCF-7 hücrelerinin düzenli olarak tamoksifene maruz bırakılmasıyla tamoksifene dirençli meme kanseri hücreleri elde edildi. GSK2850163'ün biyokimyasal aktivitesi, immünoblotlama ve qRT-PCR ile doğrulandı. GSK2850163 ve tamoksifenin kombine tedavisinin tamoksifene dirençli meme kanseri hücrelerinin proliferasyon, invazyon, migrasyon ve koloni oluşturma yetenekleri üzerindeki olası etkileri sırasıyla WST-1 tabanlı proliferasyon testi, Boyden-chamber invazyon testi, yara iyileştirme testi ve plaka koloni oluşturma yöntemleri ile değerlendirildi.
Sonuç ve Tartışma: Çalışmamızda IRE1α/XBP-1’in GSK2850163 tarafından spesifik blokajının, tamoksifene dirençli MCF-7 hücrelerinin kanserojen yeteneğini verimli bir şekilde sınırladığını gösterdik. Ayrıca, tamoksifen ve GSK2850163 ile birlikte tedavi, tamoksifenin anti-kanserojen özelliğini geliştirerek meme kanseri hücrelerinin istila, göç ve koloni oluşturma yeteneklerini önemli ölçüde azalttı. Sonuçlarımız, IRE1α/XBP-1 inhibitörlerinin meme kanseri tedavisinde güçlü terapötikler olabileceğini önermektedir.

Proje Numarası

TSG-2021-8302

Kaynakça

  • 1. Momenmovahed, Z., Salehiniya, H. (2019). Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer, 11, 151–164. [CrossRef]
  • 2. Clarke, R., Liu, M.C., Bouker, K.B., Gu, Z., Lee, R.Y., Zhu, Y., Skaar, T.C., Gomez, B., O’Brien, K., Wang, Y., Hilakivi-Clarke, L.A. (2003). Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling. Oncogene, 22(47), 7316–7339. [CrossRef]
  • 3. Shang, Y., Brown, M. (2002). Molecular determinants for the tissue specificity of SERMs. Science, 295(5564), 2465–2468. [CrossRef]
  • 4. Lee, W.L., Cheng, M.H., Chao, H.T., Wang, P.H. (2008). The role of selective estrogen receptor modulators on breast cancer: from tamoxifen to raloxifene. Taiwanese Journal of Obstetrics & Gynecology, 47(1), 24–31. [CrossRef]
  • 5. Avril, T., Vauléon, E., Chevet, E. (2017). Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers. Oncogenesis, 6(8), e373. [CrossRef]
  • 6. Adams, C.J., Kopp, M.C., Larburu, N., Nowak, P.R., Ali, M.M.U. (2019). Structure and molecular mechanism of ER stress signaling by the Unfolded Protein Response signal activator IRE1. Frontiers in Molecular Biosciences, 6, 11. [CrossRef]
  • 7. Hetz, C. (2012). The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nature Reviews - Molecular Cell Biology, 13(2), 89–102. [CrossRef]
  • 8. Zhao, N., Cao, J., Xu, L., Tang, Q., Dobrolecki, L.E., Lv, X., Talukdar, M., Lu, Y., Wang, X., Hu, D.Z, Shi, Q., Xiang, Y., Wang, Y., Liu, X., Bu, W., Jiang, Y., Li, M., Gong, Y., Sun, Z., Ying, H., Yuan, B., Lin, X., Feng, X.H., Hartig, S.M, Li, F., Shen, H., Chen, Y., Han, L., Zeng, Q., Patterson, J.B., Kaipparettu, B.A., Putluri, N., Sicheri, F., Rosen, J.M., Lewis, M.T., Chen, X. (2018). Pharmacological targeting of MYC-regulated IRE1/XBP1 pathway suppresses MYC-driven breast cancer. Journal of Clinical Investigation, 128(4), 1283-1299. [CrossRef]
  • 9. Chen, X., Iliopoulos, D., Zhang, Q., Tang, Q., Greenblatt, M. B., Hatziapostolou, M., Lim, E., Tam, W.L., Ni, M., Chen, Y., Mai, J., Shen, H., Hu, D.Z., Adoro, S., Hu, B., Song, M., Tan, C., Landis, M. D., Ferrari, M., Shin, S. J., Brown, M., Chang, J.C., Liu, X.S., Glimcher, L.H. (2014). XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature, 508(7494), 103–107. [CrossRef]
  • 10. Sheng, X., Nenseth, H.Z., Qu, S., Kuzu, O.F., Frahnow, T., Simon, L., Greene, S., Zeng, Q., Fazli, L., Rennie, P.S., Mills, I. G., Danielsen, H., Theis, F., Patterson, J.B., Jin, Y., Saatcioglu, F. (2019). IRE1α-XBP1s pathway promotes prostate cancer by activating c-MYC signaling. Nature Communications, 10(1), 323. [CrossRef]
  • 11. Ming, J., Ruan, S., Wang, M., Ye, D., Fan, N., Meng, Q., Tian, B., Huang, T. (2015). A novel chemical, STF-083010, reverses tamoxifen-related drug resistance in breast cancer by inhibiting IRE1/XBP1. Oncotarget, 6(38), 40692–40703. [CrossRef]
  • 12. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., Mori, K. (2001). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell, 107(7), 881–891. [CrossRef]
  • 13. Ding, L., Yan, J., Zhu, J., Zhong, H., Lu, Q., Wang, Z., Huang, C., Ye, Q. (2003). Ligand‐independent activation of estrogen receptor α by XBP‐1. Nucleic Acids Research, 31(18), 5266–5274. [CrossRef]
  • 14. Fang, Y., Yan, J., Ding, L., Liu, Y., Zhu, J., Huang, C., Zhao, H., Lu, Q., Zhang, X., Yang, X., Ye, Q. (2004). XBP-1 increases ERalpha transcriptional activity through regulation of large-scale chromatin unfolding. Biochemical and Biophysical Research Communications, 323(1), 269–274. [CrossRef]
  • 15. Gomez, B.P., Riggins, R. B., Shajahan, A.N., Klimach, U., Wang, A., Crawford, A. C., Zhu, Y., Zwart, A., Wang, M., Clarke, R. (2007). Human X-box binding protein-1 confers both estrogen independence and antiestrogen resistance in breast cancer cell lines. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 21(14), 4013–4027. [CrossRef]
  • 16. Davies, M.P.A., Barraclough, D.L., Stewart, C., Joyce, K.A., Eccles, R.M., Barraclough, R., Rudland, P.S., Sibson, D.R. (2008). Expression and splicing of the unfolded protein response gene XBP-1 are significantly associated with clinical outcome of endocrine-treated breast cancer. International Journal of Cancer. Journal International Du Cancer, 123(1), 85–88. [CrossRef]
  • 17. Madden, E., Logue, S.E., Healy, S.J., Manie, S., Samali, A. (2019). The role of the unfolded protein response in cancer progression: From oncogenesis to chemoresistance. Biology of the Cell / under the Auspices of the European Cell Biology Organization, 111(1), 1–17. [CrossRef]
  • 18. Robinson, C.M., Talty, A., Logue, S.E., Mnich, K., Gorman, A.M., Samali, A. (2021). An Emerging role for the Unfolded Protein Response in pancreatic cancer. Cancers, 13(2). [CrossRef]
  • 19. Romero-Ramirez, L., Cao, H., Regalado, M.P., Kambham, N., Siemann, D., Kim, J.J., Le, Q. T., Koong, A.C. (2009). X box-binding protein 1 regulates angiogenesis in human pancreatic adenocarcinomas. Translational Oncology, 2(1), 31–38. [CrossRef]
  • 20. Concha, N.O., Smallwood, A., Bonnette, W., Totoritis, R., Zhang, G., Federowicz, K., Yang, J., Qi, H., Chen, S., Campobasso, N., Choudhry, A.E., Shuster, L.E., Evans, K.A., Ralph, J., Sweitzer, S., Heerding, D.A., Buser, C.A., Su, D.S., Phillip DeYoung, M. (2015). Long-Range Inhibitor-Induced Conformational Regulation of human IRE1α endoribonuclease activity. Molecular Pharmacology, 88(6), 1011–1023. [CrossRef]
  • 21. Bujisic, B., De Gassart, A., Tallant, R., Demaria, O., Zaffalon, L., Chelbi, S., Gilliet, M., Bertoni, F., Martinon, F. (2017). Impairment of both IRE1 expression and XBP1 activation is a hallmark of GCB DLBCL and contributes to tumor growth. Blood, 129(17), 2420–2428. [CrossRef]
  • 22. Drogat, B., Auguste, P., Nguyen, D.T., Bouchecareilh, M., Pineau, R., Nalbantoglu, J., Kaufman, R.J., Chevet, E., Bikfalvi, A., Moenner, M. (2007). IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Research, 67(14), 6700–6707. [CrossRef]
  • 23. Franken, N.A.P., Rodermond, H.M., Stap, J., Haveman, J., van Bree, C. (2006). Clonogenic assay of cells in vitro. Nature Protocols, 1(5), 2315–2319. [CrossRef]
  • 24. Wittekind, C., Neid, M. (2005). Cancer invasion and metastasis. Oncology, 69(l), 14–16. [CrossRef]
  • 25. Yang, J., Cheng, D., Zhou, S., Zhu, B., Hu, T., Yang, Q. (2015). Overexpression of X-Box Binding Protein 1 (XBP1) Correlates to Poor Prognosis and Up-Regulation of PI3K/mTOR in Human Osteosarcoma. International Journal of Molecular Sciences, 16(12), 28635–28646. [CrossRef]
  • 26. Tang, C.-H.A., Ranatunga, S., Kriss, C.L., Cubitt, C.L., Tao, J., Pinilla-Ibarz, J.A., Del Valle, J. R., Hu, C.-C. A. (2014). Inhibition of ER stress-associated IRE-1/XBP-1 pathway reduces leukemic cell survival. The Journal of Clinical Investigation, 124(6), 2585–2598. [CrossRef]
  • 27. Sun, Y., Jiang, F., Pan, Y., Chen, X., Chen, J., Wang, Y., Zheng, X., Zhang, J. (2018). XBP1 promotes tumor invasion and is associated with poor prognosis in oral squamous cell carcinoma. Oncology Reports, 40(2), 988–998. [CrossRef]
  • 28. Andres, S.A., Wittliff, J.L. (2011). Relationships of ESR1 and XBP1 expression in human breast carcinoma and stromal cells isolated by laser capture microdissection compared to intact breast cancer tissue. Endocrine, 40(2), 212–221. [CrossRef]
  • 29. Li, H., Chen, X., Gao, Y., Wu, J., Zeng, F., Song, F. (2015). XBP1 induces snail expression to promote epithelial- to-mesenchymal transition and invasion of breast cancer cells. Cellular Signalling, 27(1), 82–89. [CrossRef]
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Yalçın Erzurumlu 0000-0001-6835-4436

Hatice Kübra Doğan 0000-0002-6061-1300

Deniz Çataklı 0000-0001-7327-5396

Proje Numarası TSG-2021-8302
Yayımlanma Tarihi 30 Eylül 2022
Gönderilme Tarihi 12 Haziran 2022
Kabul Tarihi 2 Ağustos 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Erzurumlu, Y., Doğan, H. K., & Çataklı, D. (2022). INHIBITION OF IRE1α/XBP-1 BRANCH OF UPR BY GSK2850163 DRIVES THE SENSITIVITY TO TAMOXIFEN IN BREAST CANCER CELLS. Journal of Faculty of Pharmacy of Ankara University, 46(3), 839-852. https://doi.org/10.33483/jfpau.1129575
AMA Erzurumlu Y, Doğan HK, Çataklı D. INHIBITION OF IRE1α/XBP-1 BRANCH OF UPR BY GSK2850163 DRIVES THE SENSITIVITY TO TAMOXIFEN IN BREAST CANCER CELLS. Ankara Ecz. Fak. Derg. Eylül 2022;46(3):839-852. doi:10.33483/jfpau.1129575
Chicago Erzurumlu, Yalçın, Hatice Kübra Doğan, ve Deniz Çataklı. “INHIBITION OF IRE1α/XBP-1 BRANCH OF UPR BY GSK2850163 DRIVES THE SENSITIVITY TO TAMOXIFEN IN BREAST CANCER CELLS”. Journal of Faculty of Pharmacy of Ankara University 46, sy. 3 (Eylül 2022): 839-52. https://doi.org/10.33483/jfpau.1129575.
EndNote Erzurumlu Y, Doğan HK, Çataklı D (01 Eylül 2022) INHIBITION OF IRE1α/XBP-1 BRANCH OF UPR BY GSK2850163 DRIVES THE SENSITIVITY TO TAMOXIFEN IN BREAST CANCER CELLS. Journal of Faculty of Pharmacy of Ankara University 46 3 839–852.
IEEE Y. Erzurumlu, H. K. Doğan, ve D. Çataklı, “INHIBITION OF IRE1α/XBP-1 BRANCH OF UPR BY GSK2850163 DRIVES THE SENSITIVITY TO TAMOXIFEN IN BREAST CANCER CELLS”, Ankara Ecz. Fak. Derg., c. 46, sy. 3, ss. 839–852, 2022, doi: 10.33483/jfpau.1129575.
ISNAD Erzurumlu, Yalçın vd. “INHIBITION OF IRE1α/XBP-1 BRANCH OF UPR BY GSK2850163 DRIVES THE SENSITIVITY TO TAMOXIFEN IN BREAST CANCER CELLS”. Journal of Faculty of Pharmacy of Ankara University 46/3 (Eylül 2022), 839-852. https://doi.org/10.33483/jfpau.1129575.
JAMA Erzurumlu Y, Doğan HK, Çataklı D. INHIBITION OF IRE1α/XBP-1 BRANCH OF UPR BY GSK2850163 DRIVES THE SENSITIVITY TO TAMOXIFEN IN BREAST CANCER CELLS. Ankara Ecz. Fak. Derg. 2022;46:839–852.
MLA Erzurumlu, Yalçın vd. “INHIBITION OF IRE1α/XBP-1 BRANCH OF UPR BY GSK2850163 DRIVES THE SENSITIVITY TO TAMOXIFEN IN BREAST CANCER CELLS”. Journal of Faculty of Pharmacy of Ankara University, c. 46, sy. 3, 2022, ss. 839-52, doi:10.33483/jfpau.1129575.
Vancouver Erzurumlu Y, Doğan HK, Çataklı D. INHIBITION OF IRE1α/XBP-1 BRANCH OF UPR BY GSK2850163 DRIVES THE SENSITIVITY TO TAMOXIFEN IN BREAST CANCER CELLS. Ankara Ecz. Fak. Derg. 2022;46(3):839-52.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.