Araştırma Makalesi
BibTex RIS Kaynak Göster

MOLEKÜLER YERLEŞTİRME YÖNTEMİYLE ZERUMBONUN EGFR TİROZİN KİNAZ İNHİBİTÖRÜ OLARAK DEĞERLENDİRİLMESİ

Yıl 2023, , 196 - 207, 20.01.2023
https://doi.org/10.33483/jfpau.1172166

Öz

Amaç: EGFR-TK bölgesi, başta akciğer kanseri olmak üzere çeşitli kanser türlerinin başlaması ve ilerlemesinde büyük önem taşımaktadır. Mevcut EGFR-TK inhibitörlerinin çeşitli yan etkilerinin varlığı, onların uygun kanser terapötikleri olarak kullanılmalarını sınırlandırmaktadır. Bu çalışmada, moleküler yerleştirme yaklaşımı ile EGFR'yi hedef alan bir antikanser ajan olarak zerumbonun aktivitesini analiz etmeyi ve aktivitesini kurkumin ile karşılaştırmalı olarak değerlendirmeyi amaçladık.
Gereç ve Yöntem: EGFR'nin zerumbon ve kurkumin ile bağlanmasını etkileyen elektrostatik etkileşimleri değerlendirmek için B3LYP/6-31G(D,P) seviyesinde MEP ve HOMO-LUMO analizleri yapıldı. Bağlanma enerjileri moleküler yerleştirme ile belirlendi ve referans ligand olarak erlotinib ile karşılaştırıldı.
Sonuç ve Tartışma: Yerleştirme çalışmaları, erlotinib (-7.3 kcal/mol) ile karşılaştırıldığında, sırasıyla -8.0 ve -7.6 kcal/mol bağlanma enerjileriyle kurkumin ve zerumbon için daha yüksek bağlanmalar (düşük bağlanma enerjisi) gösterdi. Ancak aralarında önemli bir fark gözlenmedi. Zerumbonun ΔE enerji aralığı 5.09 eV olarak bulundu. Bu sonuç, bu bileşiğin kurkumin (ΔE=3.68 eV) ve erlotinib ile karşılaştırıldığında (ΔE=4.29 eV) daha fazla kararlılığa sahip olduğu anlamına gelmektedir. Ayrıca, zerumbon EGFR ile güçlü hidrojen bağı etkileşimleri gösterdi ve bu da onun hem kurkumin hem de erlotinib'deki gibi EGFR inhibitörü olarak potansiyeli olduğunu göstermiştir. Zerumbonun EGFR-TK'ye karşı inhibitör aktiviteye sahip olabileceği sonucuna varıldı.

Destekleyen Kurum

Yok

Proje Numarası

Yok

Kaynakça

  • 1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394-424. [CrossRef]
  • 2. Howlader, N., Noone, A.M., Krapcho, M., Miller, D., Brest, A., Yu, M., Ruhl, J., Tatalovich, Z., Mariotto, A., Lewis, D.R., Chen, H.S., Feuer, E.J. and Cronin, K.A. (2020). SEER Cancer Statistics Review, 1975-2017. National Cancer Institute, Bethesda, MD. Erişim adresi: https://seer.cancer.gov/csr/1975_2017/ Accessed date: 13.05.2022
  • 3. Ettinger, D.S., Akerley, W., Bepler, G., Blum, M.G., Chang, A., Cheney, R.T., Chirieac, L.R., D’Amico, T.A., Demmy, T.L., Ganti, A.K.P., Govindan, R., Grannis, F.W., Jahan, T., Jahanzeb, M., Johnson, D.H., Kessinger, A., Komaki, R., Kong, F.M., Kris, M.G., Krug, L.M., Le, Q., Lennes, I.T., Martins, R., O'Malley, J., Osarogiagbon, R.U., Otterson, G.A., Patel, J.D., Pisters, K.M., Reckamp, K., Riely, G.J., Rohren, E., Simon, G.R., Swanson, S.J., Wood, D.E., Yang, S.C. (2010). Non-small cell lung cancer: Clinical practice guidelines in oncology. Journal of the National Comprehensive Cancer Network 8(7), 740-801. [CrossRef]
  • 4. Li, S., Liu, Z., Zhu, F., Fan, X., Wu, X., Zhao, H., Jiang, L. (2013). Curcumin lowers erlotinib resistance in non-small cell lung carcinoma cells with mutated EGF receptor. Oncology Research, 21(3), 137-144. [CrossRef]
  • 5. Liu, X., Wang, P., Zhang, C., Ma, Z. (2017). Epidermal growth factor receptor (EGFR): A rising star in the era of precision medicine of lung cancer. Oncotarget, 8(30), 50209-50220. [CrossRef]
  • 6. Hossain, S.L., Mathews, M., Bhyranalyar Nagarajappa, V.S., Kumar, B.K., Veerappa Yelamaggad, C.V., Singh, C.R. (2022). Antiproliferative, apoptosis-inducing activity and molecular docking studies of sydnones compounds. Journal of Cancer Research and Therapeutics, 18(3), 681–690. [CrossRef]
  • 7. Tajuddin, W.N.B.W.M., Lajis, N.H., Abas, F., Othman, I., Naidu, R. (2019). Mechanistic understanding of curcumin’s therapeutic effects in lung cancer. Nutrients, 11(12), 2989. [CrossRef]
  • 8. Bhatia, P., Sharma, V., Alam, O., Manaithiya, A., Alam, P., Kahksha, Alam, M.T., Imran, M. (2020). Novel quinazoline-based EGFR kinase inhibitors: A review focussing on SAR and molecular docking studies (2015-2019). European Journal of Medicinal Chemistry, 204, 112640. [CrossRef]
  • 9. Smith, J. (2005). Erlotinib: Small-molecule targeted therapy in the treatmentof non-small-cell lung cancer. Clinical Therapeutics, 27(10), 1513-1534. [CrossRef]
  • 10. Al-Yozbaki, M., Wilkin, P.J., Gupta, G.K., Wilson, C.M. (2021). Therapeutic potential of natural compounds in lung cancer. Current Medicinal Chemistry, 28(39), 7988-8002. [CrossRef]
  • 11. Batra, H., Pawar, S., Bahl, D. (2019). Curcumin in combination with anti-cancer drugs: A nanomedicine review. Pharmacological Research, 139, 91-105. [CrossRef]
  • 12. Nobari, S., Najafi, R., Mahdavinezhad, A., Jalali, A., Amini, R. (2022). The combination of zerumbone with 5-fluorouracil for sensitizing colorectal cancer-associated fibroblasts to treatment. Evidence-Based Complementary and Alternative Medicine, 2022, 9369328. [CrossRef]
  • 13. Aggarwal, B.B., Kunnumakkara, A.B., Harlkumar, K.B., Tharakan, S. T., Sung, B., Anand, P. (2008). Potential of spice-derived phytochemicals for cancer prevention. Planta Medica, 74(13), 1560-1569. [CrossRef]
  • 14. Hseu, Y.C., Huang, Y.C., Korivi, M., Wu, J.J., Way, T.D., Ou, T.T., Chiu, L.W., Lee, C.C., Lin, M.L., Yang, H.L. (2015). Zerumbone attenuates TGF-β1-mediated epithelial-mesenchymal transition via upregulated E-cadherin expression and downregulated Smad2 signalling pathways in non-small cell lung cancer (A549) cells. Journal of Functional Foods, 18(A), 58-72. [CrossRef]
  • 15. Hu, Z., Zeng, Q., Zhang, B., Liu, H., Wang, W. (2014). Promotion of p53 expression and reactive oxidative stress production is involved in zerumbone-induced cisplatin sensitization of non-small cell lung cancer cells. Biochimie, 107(B), 257-262. [CrossRef]
  • 16. Abdelwahab, S.I., Abdul, A.B., Zain, Z.N.M., Hadi, A.H.A. (2012). Zerumbone inhibits interleukin-6 and induces apoptosis and cell cycle arrest in ovarian and cervical cancer cells. International Immunopharmacology, 12(4), 594-602. [CrossRef]
  • 17. Muhammad Nadzri, N., Abdul, A.B., Sukari, M.A., Abdelwahab, S.I., Eid, E.E.M., Mohan, S., Kamalidehghan, B., Anasamy, T., Ng, K.B., Syam, S., Arbab, I.A., Rahman, H.S., Ali, H.M. (2013). Inclusion complex of zerumbone with hydroxypropyl-β-Cyclodextrin induces apoptosis in liver hepatocellular HepG2 Cells via caspase 8/BID cleavage switch and modulating Bcl2/Bax ratio. Evidence-Based Complementary and Alternative Medicine, 2013, 810632. [CrossRef]
  • 18. Haque, M.A., Jantan, I., Arshad, L., Bukhari, S.N.A. (2017). Exploring the immunomodulatory and anticancer properties of zerumbone. Food and Function, 8(10), 3410-3431. [CrossRef]
  • 19. Barathan, M., Vellasamy, K.M., Ibrahim, Z.A., Mariappan, V., Hoong, S.M., Vadivelu, J. (2021). Zerumbone mediates apoptosis and induces secretion of proinflammatory cytokines in breast carcinoma cell culture. Iranian Journal of Basic Medical Sciences, 24(11), 1538-1545. [CrossRef]
  • 20. Dennington, R., Keith, T., Millam, J. (2009). GaussView, Version 5, Semichem Inc., Shawnee Mission, KS.
  • 21. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J. (2010) Gaussian 09, Revision B.01. Gaussian Inc., Wallingford.
  • 22. Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098. [CrossRef]
  • 23. Lee, C., Yang, W., Parr, G.R. (1988). Development of the Colic-Salvetti correlation-energy into a functional of the electron density. American Physical Society, 37(2), 785-789. [CrossRef]
  • 24. Panicker, C.Y., Varghese, H.T., Manjula, P.S., Sarojini, B.K., Narayana, B., War, J.A., Srivastava, S.K., Van Alsenoy, C., Al-Saadi, A.A. (2015). FT-IR, HOMO-LUMO, NBO, MEP analysis and molecular docking study of 3-Methyl-4-{(E)-[4-(methylsulfanyl)-benzylidene]amino}1H-1,2,4-triazole-5(4H)-thione. Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy, 151, 198-207. [CrossRef]
  • 25. Karayel, A. (2021). Molecular stabilities, conformational analyses and molecular docking studies of benzimidazole derivatives bearing 1,2,4-triazole as EGFR inhibitors. Structural Chemistry, 32(3), 1247–1259. [CrossRef]
  • 26. Trott, O., Olson, A.J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461. [CrossRef]
  • 27. Sanner, M.F. (1999). Python: A programming Language for software integration and development. Journal of Molecular Graphics and Modelling, 17(1), 57-61.
  • 28. Chang, Y.M., Chen, C.K.M., Ko, T.P., Chang-Chien, M.W., Wang, A.H.J. (2013). Structural analysis of the antibiotic-recognition mechanism of MarR proteins. Acta Crystallographica Section D: Biological Crystallography, 69(6), 1138-1149. [CrossRef]
  • 29. Stamos, J., Sliwkowski, M.X., Eigenbrot, C. (2002). Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. Journal of Biological Chemistry, 277(48), 46265-46272. [CrossRef]
  • 30. Gázquez, J.L. (2008). Perspectives on the density functional theory of chemical reactivity. Journal of the Mexican Chemical Society, 52(1), 3-10.
  • 31. Ye, M.X., Li, Y., Yin, H., Zhang, J. (2012). Curcumin: Updated molecular mechanisms and intervention targets in human lung cancer. International Journal of Molecular Sciences, 13(3), 3959-3978. [CrossRef]
  • 32. Liang, Y., Zhao, J., Zou, H., Zhang, J., Zhang, T. (2021). In vitro and in silico evaluation of EGFR targeting activities of curcumin and its derivatives. Food and Function, 12(21), 10667-10675. [CrossRef]
  • 33. Songsiang, U., Pitchuanchom, S., Boonyarat, C., Hahnvajanawong, C., Yenjai, C. (2010). Cytotoxicity against cholangiocarcinoma cell lines of zerumbone derivatives. European Journal of Medicinal Chemistry, 45(9), 3794-3802. [CrossRef]
  • 34. Hossam, M., Lasheen, D.S., Abouzid, K.A.M. (2016). Covalent EGFR Inhibitors: Binding mechanisms, synthetic approaches, and clinical profiles. Archiv der Pharmazie, 349(8), 573-593. [CrossRef]
  • 35. Sufi, S.A., Adigopula, L.N., Syed, S.B., Mukherjee, V., Coumar, M.S., Rao, H.S.P., Rajagopalan, R. (2017). In-silico and in-vitro anti-cancer potential of a curcumin analogue (1E, 6E)-1, 7-di (1H-indol-3-yl) hepta-1, 6-diene-3,5-dione. Biomedicine and Pharmacotherapy, 85, 389-398. [CrossRef]
  • 36. Kim, S., Kil, W.H., Lee, J., Oh, S.J., Han, J., Jeon, M., Jung, T., Lee, S.K., Bae, S.Y., Lee, H.C., Lee, J.H., Yi, H.W., Kim, S.W., Nam, S.J., Lee, J.E. (2014). Zerumbone suppresses EGF-induced CD44 expression through the inhibition of STAT3 in breast cancer cells. Oncology Reports, 32(6), 2666-2672. [CrossRef]
  • 37. Shafiee, M., Mohamadzade, E., ShahidSales, S., Khakpouri, S., Maftouh, M., Parizadeh, S.A., Hasanian, S. M., Avan, A. (2017). Current status and perspectives regarding the therapeutic potential of targeting EGFR pathway by curcumin in lung cancer. Current Pharmaceutical Design, 23(13), 2002 - 2008. [CrossRef]
  • 38. Zhang, L., Tao, X., Fu, Q., Ge, C., Li, R., Li, Z., Zhu, Y., Tian, H., Li, Q., Liu, M., Hu, H., Zeng, B., Lin, Z., Li, C., Luo, R., Song, X. (2019). Curcumin inhibits cell proliferation and migration in NSCLC through a synergistic effect on the TLR4/MyD88 and EGFR pathways. Oncology Reports, 42(5), 1843-1855. [CrossRef]
  • 39. Nand, M., Maiti, P., Pant, R., Kumari, M., Chandra, S., Pande, V. (2016). Virtual screening of natural compounds as inhibitors of EGFR 696-1022 T790M associated with non-small cell lung cancer. Bioinformation, 12(6), 311-317 [CrossRef]
  • 40. Ahmad Mir, S., Meher, R.K., Baitharu, I., Nayak, B. (2022). Molecular dynamic simulation, free binding energy calculation of Thiazolo-[2,3-b]quinazolinone derivatives against EGFR-TKD and their anticancer activity. Results in Chemistry, 4, 100418. [CrossRef]

EVALUATION OF ZERUMBONE AS AN EGFR TYROSINE KINASE INHIBITOR BY MOLECULAR DOCKING METHOD

Yıl 2023, , 196 - 207, 20.01.2023
https://doi.org/10.33483/jfpau.1172166

Öz

Objective: EGFR-TK domain is of great importance in the initiation and progression of various cancer types, especially lung cancer. The existing EGFR-TK inhibitors have numerous side effects, which make them improper to be utilized as cancer therapeutics. In this study, we aimed to analyze the activity of zerumbone as an anticancer agent targeting EGFR by molecular docking approach and to evaluate its activity in comparison with curcumin.
Material and Method: MEP and HOMO-LUMO analyses were achieved at B3LYP/6-31G(D,P) level to evaluate electrostatic interactions that affect binding of EGFR with zerumbone and curcumin. Their binding energies were determined by molecular docking and compared with erlotinib as reference ligand.
Result and Discussion: Docking studies showed higher bindings (lower binding energy) for curcumin and zerumbone with binding energies -8.0 and -7.6 kcal/mol, respectively, compared to erlotinib (-7.3 kcal/mol). However, there is no significant difference between them. The ΔE energy gap of zerumbone was 5.09 eV which implies that this compound has more stability in comparison with curcumin (ΔE=3.68 eV) and erlotinib (ΔE=4.29eV). Also, zerumbone showed strong hydrogen bond interactions with EGFR, making it candidate as EGFR inhibitor, as did both in curcumin and erlotinib. It was concluded that zerumbone may have potential for inhibitory activity against EGFR-TK.

Proje Numarası

Yok

Kaynakça

  • 1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394-424. [CrossRef]
  • 2. Howlader, N., Noone, A.M., Krapcho, M., Miller, D., Brest, A., Yu, M., Ruhl, J., Tatalovich, Z., Mariotto, A., Lewis, D.R., Chen, H.S., Feuer, E.J. and Cronin, K.A. (2020). SEER Cancer Statistics Review, 1975-2017. National Cancer Institute, Bethesda, MD. Erişim adresi: https://seer.cancer.gov/csr/1975_2017/ Accessed date: 13.05.2022
  • 3. Ettinger, D.S., Akerley, W., Bepler, G., Blum, M.G., Chang, A., Cheney, R.T., Chirieac, L.R., D’Amico, T.A., Demmy, T.L., Ganti, A.K.P., Govindan, R., Grannis, F.W., Jahan, T., Jahanzeb, M., Johnson, D.H., Kessinger, A., Komaki, R., Kong, F.M., Kris, M.G., Krug, L.M., Le, Q., Lennes, I.T., Martins, R., O'Malley, J., Osarogiagbon, R.U., Otterson, G.A., Patel, J.D., Pisters, K.M., Reckamp, K., Riely, G.J., Rohren, E., Simon, G.R., Swanson, S.J., Wood, D.E., Yang, S.C. (2010). Non-small cell lung cancer: Clinical practice guidelines in oncology. Journal of the National Comprehensive Cancer Network 8(7), 740-801. [CrossRef]
  • 4. Li, S., Liu, Z., Zhu, F., Fan, X., Wu, X., Zhao, H., Jiang, L. (2013). Curcumin lowers erlotinib resistance in non-small cell lung carcinoma cells with mutated EGF receptor. Oncology Research, 21(3), 137-144. [CrossRef]
  • 5. Liu, X., Wang, P., Zhang, C., Ma, Z. (2017). Epidermal growth factor receptor (EGFR): A rising star in the era of precision medicine of lung cancer. Oncotarget, 8(30), 50209-50220. [CrossRef]
  • 6. Hossain, S.L., Mathews, M., Bhyranalyar Nagarajappa, V.S., Kumar, B.K., Veerappa Yelamaggad, C.V., Singh, C.R. (2022). Antiproliferative, apoptosis-inducing activity and molecular docking studies of sydnones compounds. Journal of Cancer Research and Therapeutics, 18(3), 681–690. [CrossRef]
  • 7. Tajuddin, W.N.B.W.M., Lajis, N.H., Abas, F., Othman, I., Naidu, R. (2019). Mechanistic understanding of curcumin’s therapeutic effects in lung cancer. Nutrients, 11(12), 2989. [CrossRef]
  • 8. Bhatia, P., Sharma, V., Alam, O., Manaithiya, A., Alam, P., Kahksha, Alam, M.T., Imran, M. (2020). Novel quinazoline-based EGFR kinase inhibitors: A review focussing on SAR and molecular docking studies (2015-2019). European Journal of Medicinal Chemistry, 204, 112640. [CrossRef]
  • 9. Smith, J. (2005). Erlotinib: Small-molecule targeted therapy in the treatmentof non-small-cell lung cancer. Clinical Therapeutics, 27(10), 1513-1534. [CrossRef]
  • 10. Al-Yozbaki, M., Wilkin, P.J., Gupta, G.K., Wilson, C.M. (2021). Therapeutic potential of natural compounds in lung cancer. Current Medicinal Chemistry, 28(39), 7988-8002. [CrossRef]
  • 11. Batra, H., Pawar, S., Bahl, D. (2019). Curcumin in combination with anti-cancer drugs: A nanomedicine review. Pharmacological Research, 139, 91-105. [CrossRef]
  • 12. Nobari, S., Najafi, R., Mahdavinezhad, A., Jalali, A., Amini, R. (2022). The combination of zerumbone with 5-fluorouracil for sensitizing colorectal cancer-associated fibroblasts to treatment. Evidence-Based Complementary and Alternative Medicine, 2022, 9369328. [CrossRef]
  • 13. Aggarwal, B.B., Kunnumakkara, A.B., Harlkumar, K.B., Tharakan, S. T., Sung, B., Anand, P. (2008). Potential of spice-derived phytochemicals for cancer prevention. Planta Medica, 74(13), 1560-1569. [CrossRef]
  • 14. Hseu, Y.C., Huang, Y.C., Korivi, M., Wu, J.J., Way, T.D., Ou, T.T., Chiu, L.W., Lee, C.C., Lin, M.L., Yang, H.L. (2015). Zerumbone attenuates TGF-β1-mediated epithelial-mesenchymal transition via upregulated E-cadherin expression and downregulated Smad2 signalling pathways in non-small cell lung cancer (A549) cells. Journal of Functional Foods, 18(A), 58-72. [CrossRef]
  • 15. Hu, Z., Zeng, Q., Zhang, B., Liu, H., Wang, W. (2014). Promotion of p53 expression and reactive oxidative stress production is involved in zerumbone-induced cisplatin sensitization of non-small cell lung cancer cells. Biochimie, 107(B), 257-262. [CrossRef]
  • 16. Abdelwahab, S.I., Abdul, A.B., Zain, Z.N.M., Hadi, A.H.A. (2012). Zerumbone inhibits interleukin-6 and induces apoptosis and cell cycle arrest in ovarian and cervical cancer cells. International Immunopharmacology, 12(4), 594-602. [CrossRef]
  • 17. Muhammad Nadzri, N., Abdul, A.B., Sukari, M.A., Abdelwahab, S.I., Eid, E.E.M., Mohan, S., Kamalidehghan, B., Anasamy, T., Ng, K.B., Syam, S., Arbab, I.A., Rahman, H.S., Ali, H.M. (2013). Inclusion complex of zerumbone with hydroxypropyl-β-Cyclodextrin induces apoptosis in liver hepatocellular HepG2 Cells via caspase 8/BID cleavage switch and modulating Bcl2/Bax ratio. Evidence-Based Complementary and Alternative Medicine, 2013, 810632. [CrossRef]
  • 18. Haque, M.A., Jantan, I., Arshad, L., Bukhari, S.N.A. (2017). Exploring the immunomodulatory and anticancer properties of zerumbone. Food and Function, 8(10), 3410-3431. [CrossRef]
  • 19. Barathan, M., Vellasamy, K.M., Ibrahim, Z.A., Mariappan, V., Hoong, S.M., Vadivelu, J. (2021). Zerumbone mediates apoptosis and induces secretion of proinflammatory cytokines in breast carcinoma cell culture. Iranian Journal of Basic Medical Sciences, 24(11), 1538-1545. [CrossRef]
  • 20. Dennington, R., Keith, T., Millam, J. (2009). GaussView, Version 5, Semichem Inc., Shawnee Mission, KS.
  • 21. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J. (2010) Gaussian 09, Revision B.01. Gaussian Inc., Wallingford.
  • 22. Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098. [CrossRef]
  • 23. Lee, C., Yang, W., Parr, G.R. (1988). Development of the Colic-Salvetti correlation-energy into a functional of the electron density. American Physical Society, 37(2), 785-789. [CrossRef]
  • 24. Panicker, C.Y., Varghese, H.T., Manjula, P.S., Sarojini, B.K., Narayana, B., War, J.A., Srivastava, S.K., Van Alsenoy, C., Al-Saadi, A.A. (2015). FT-IR, HOMO-LUMO, NBO, MEP analysis and molecular docking study of 3-Methyl-4-{(E)-[4-(methylsulfanyl)-benzylidene]amino}1H-1,2,4-triazole-5(4H)-thione. Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy, 151, 198-207. [CrossRef]
  • 25. Karayel, A. (2021). Molecular stabilities, conformational analyses and molecular docking studies of benzimidazole derivatives bearing 1,2,4-triazole as EGFR inhibitors. Structural Chemistry, 32(3), 1247–1259. [CrossRef]
  • 26. Trott, O., Olson, A.J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461. [CrossRef]
  • 27. Sanner, M.F. (1999). Python: A programming Language for software integration and development. Journal of Molecular Graphics and Modelling, 17(1), 57-61.
  • 28. Chang, Y.M., Chen, C.K.M., Ko, T.P., Chang-Chien, M.W., Wang, A.H.J. (2013). Structural analysis of the antibiotic-recognition mechanism of MarR proteins. Acta Crystallographica Section D: Biological Crystallography, 69(6), 1138-1149. [CrossRef]
  • 29. Stamos, J., Sliwkowski, M.X., Eigenbrot, C. (2002). Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. Journal of Biological Chemistry, 277(48), 46265-46272. [CrossRef]
  • 30. Gázquez, J.L. (2008). Perspectives on the density functional theory of chemical reactivity. Journal of the Mexican Chemical Society, 52(1), 3-10.
  • 31. Ye, M.X., Li, Y., Yin, H., Zhang, J. (2012). Curcumin: Updated molecular mechanisms and intervention targets in human lung cancer. International Journal of Molecular Sciences, 13(3), 3959-3978. [CrossRef]
  • 32. Liang, Y., Zhao, J., Zou, H., Zhang, J., Zhang, T. (2021). In vitro and in silico evaluation of EGFR targeting activities of curcumin and its derivatives. Food and Function, 12(21), 10667-10675. [CrossRef]
  • 33. Songsiang, U., Pitchuanchom, S., Boonyarat, C., Hahnvajanawong, C., Yenjai, C. (2010). Cytotoxicity against cholangiocarcinoma cell lines of zerumbone derivatives. European Journal of Medicinal Chemistry, 45(9), 3794-3802. [CrossRef]
  • 34. Hossam, M., Lasheen, D.S., Abouzid, K.A.M. (2016). Covalent EGFR Inhibitors: Binding mechanisms, synthetic approaches, and clinical profiles. Archiv der Pharmazie, 349(8), 573-593. [CrossRef]
  • 35. Sufi, S.A., Adigopula, L.N., Syed, S.B., Mukherjee, V., Coumar, M.S., Rao, H.S.P., Rajagopalan, R. (2017). In-silico and in-vitro anti-cancer potential of a curcumin analogue (1E, 6E)-1, 7-di (1H-indol-3-yl) hepta-1, 6-diene-3,5-dione. Biomedicine and Pharmacotherapy, 85, 389-398. [CrossRef]
  • 36. Kim, S., Kil, W.H., Lee, J., Oh, S.J., Han, J., Jeon, M., Jung, T., Lee, S.K., Bae, S.Y., Lee, H.C., Lee, J.H., Yi, H.W., Kim, S.W., Nam, S.J., Lee, J.E. (2014). Zerumbone suppresses EGF-induced CD44 expression through the inhibition of STAT3 in breast cancer cells. Oncology Reports, 32(6), 2666-2672. [CrossRef]
  • 37. Shafiee, M., Mohamadzade, E., ShahidSales, S., Khakpouri, S., Maftouh, M., Parizadeh, S.A., Hasanian, S. M., Avan, A. (2017). Current status and perspectives regarding the therapeutic potential of targeting EGFR pathway by curcumin in lung cancer. Current Pharmaceutical Design, 23(13), 2002 - 2008. [CrossRef]
  • 38. Zhang, L., Tao, X., Fu, Q., Ge, C., Li, R., Li, Z., Zhu, Y., Tian, H., Li, Q., Liu, M., Hu, H., Zeng, B., Lin, Z., Li, C., Luo, R., Song, X. (2019). Curcumin inhibits cell proliferation and migration in NSCLC through a synergistic effect on the TLR4/MyD88 and EGFR pathways. Oncology Reports, 42(5), 1843-1855. [CrossRef]
  • 39. Nand, M., Maiti, P., Pant, R., Kumari, M., Chandra, S., Pande, V. (2016). Virtual screening of natural compounds as inhibitors of EGFR 696-1022 T790M associated with non-small cell lung cancer. Bioinformation, 12(6), 311-317 [CrossRef]
  • 40. Ahmad Mir, S., Meher, R.K., Baitharu, I., Nayak, B. (2022). Molecular dynamic simulation, free binding energy calculation of Thiazolo-[2,3-b]quinazolinone derivatives against EGFR-TKD and their anticancer activity. Results in Chemistry, 4, 100418. [CrossRef]
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Dilek Yonar 0000-0001-6480-855X

Burcu Baba 0000-0003-0994-3577

Arzu Karayel 0000-0002-3369-8690

Proje Numarası Yok
Yayımlanma Tarihi 20 Ocak 2023
Gönderilme Tarihi 8 Eylül 2022
Kabul Tarihi 29 Kasım 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Yonar, D., Baba, B., & Karayel, A. (2023). EVALUATION OF ZERUMBONE AS AN EGFR TYROSINE KINASE INHIBITOR BY MOLECULAR DOCKING METHOD. Journal of Faculty of Pharmacy of Ankara University, 47(1), 196-207. https://doi.org/10.33483/jfpau.1172166
AMA Yonar D, Baba B, Karayel A. EVALUATION OF ZERUMBONE AS AN EGFR TYROSINE KINASE INHIBITOR BY MOLECULAR DOCKING METHOD. Ankara Ecz. Fak. Derg. Ocak 2023;47(1):196-207. doi:10.33483/jfpau.1172166
Chicago Yonar, Dilek, Burcu Baba, ve Arzu Karayel. “EVALUATION OF ZERUMBONE AS AN EGFR TYROSINE KINASE INHIBITOR BY MOLECULAR DOCKING METHOD”. Journal of Faculty of Pharmacy of Ankara University 47, sy. 1 (Ocak 2023): 196-207. https://doi.org/10.33483/jfpau.1172166.
EndNote Yonar D, Baba B, Karayel A (01 Ocak 2023) EVALUATION OF ZERUMBONE AS AN EGFR TYROSINE KINASE INHIBITOR BY MOLECULAR DOCKING METHOD. Journal of Faculty of Pharmacy of Ankara University 47 1 196–207.
IEEE D. Yonar, B. Baba, ve A. Karayel, “EVALUATION OF ZERUMBONE AS AN EGFR TYROSINE KINASE INHIBITOR BY MOLECULAR DOCKING METHOD”, Ankara Ecz. Fak. Derg., c. 47, sy. 1, ss. 196–207, 2023, doi: 10.33483/jfpau.1172166.
ISNAD Yonar, Dilek vd. “EVALUATION OF ZERUMBONE AS AN EGFR TYROSINE KINASE INHIBITOR BY MOLECULAR DOCKING METHOD”. Journal of Faculty of Pharmacy of Ankara University 47/1 (Ocak 2023), 196-207. https://doi.org/10.33483/jfpau.1172166.
JAMA Yonar D, Baba B, Karayel A. EVALUATION OF ZERUMBONE AS AN EGFR TYROSINE KINASE INHIBITOR BY MOLECULAR DOCKING METHOD. Ankara Ecz. Fak. Derg. 2023;47:196–207.
MLA Yonar, Dilek vd. “EVALUATION OF ZERUMBONE AS AN EGFR TYROSINE KINASE INHIBITOR BY MOLECULAR DOCKING METHOD”. Journal of Faculty of Pharmacy of Ankara University, c. 47, sy. 1, 2023, ss. 196-07, doi:10.33483/jfpau.1172166.
Vancouver Yonar D, Baba B, Karayel A. EVALUATION OF ZERUMBONE AS AN EGFR TYROSINE KINASE INHIBITOR BY MOLECULAR DOCKING METHOD. Ankara Ecz. Fak. Derg. 2023;47(1):196-207.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.