Derleme
BibTex RIS Kaynak Göster

KANSER TANISI VE TEDAVİSİNDE KULLANILAN MONOKLONAL ANTİKORLAR

Yıl 2023, , 295 - 310, 20.01.2023
https://doi.org/10.33483/jfpau.1196392

Öz

Amaç: Kanser, vücuttaki hücrelerin kontrolsüz çoğalması ile gelişen bir hastalık olup anormal ve kontrolsüzce büyüyen hücreler ile karakterizedir. Kanser insidansı gün geçtikçe artarken, kanser tanı ve tedavisindeki yeni yaklaşımlar da büyük önem kazanmaktadır. Kanser tanısı amacıyla sıklıkla anatomik görüntüleme teknikleri ve nükleer görüntüleme sistemleri kullanılmaktadır. Kanser tedavisinde ise geleneksel yaklaşımların (cerrahi, radyoterapi, kemoterapi) yanı sıra son zamanlarda hedefe yönelik yaklaşımlar da kullanılmaktadır. Kanser tedavisindeki hedefe yönelik yaklaşımlar çoğunlukla küçük moleküllü tirozin kinaz inhibitörleri ve monoklonal antikorları içermektedir. Monoklonal antikorlar ilk olarak antijenle immünize edilmiş farelerin B hücreleri ve miyelom kanser hücrelerinin oluşturduğu hibridomlardan elde edilmiştir. Çoğunlukla, biyolojik materyallerin tanısı, saflaştırılması ve analizlerinde, kanserin tanısı ve tedavisinde ve organ nakillerinde doku reddinin önlenmesinde kullanılmaktadır. Monoklonal antikorların eldesinin az zaman alması ve az maliyetli olması, monoklonal antikorlara büyük avantaj sağlamaktadır. Bu avantajlarının yanında araştırmalar doğrultusunda farklı yan etkiler saptanmış olsa da hedefe spesifik oluşları ve diğer avantajlarından dolayı monoklonal antikorlar günümüzde çokça rağbet görmektedir.

Sonuç ve Tartışma: Monoklonal antikorlar ve beraberinde kanser tanı ve tedavisi araştırmaları günümüzde devam etmekle beraber bu konu tıp bilimi açısından önem taşıyan ve merak edilen bir konu olma özelliğini devam ettirmektedir. Bu derlemede kısaca kanser tanısı ve tedavisinde sıklıkla kullanılan monoklonal antikorlar ve hedeflerinden, etki mekanizmalarından ve klinik kullanımlarından bahsedilecektir.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • 1. Köhler, G., Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 256, 495-497. [CrossRef]
  • 2. Liu, J.K.H. (2012). The history of monoclonal antibody development - Progress, remaining challenges and future innovations. Annals of Medicine and Surgery, 3(4), 113-116. [CrossRef]
  • 3. Lim, S.H., Beers, S.A., French, R.R., Johnson, P.W., Glennie, M.J., Cragg, M.S. (2010). Anti-CD20 monoclonal antibodies: historical and future perspectives. Haematologica, 95(1), 135-143. [CrossRef]
  • 4. Ozdemir, A., Kaplan Serin, E., Savas, M. (2018). Cancer risk factors and prevention in Turkey. International Journal of Health Services Research and Policy, 3(3), 143-150. [CrossRef]
  • 5. Roy, P.S., Saikia, B.J. (2016). Cancer and cure: A critical analysis. Indian Journal of Cancer, 53(3), 441-442. [CrossRef]
  • 6. Machlowska, J., Baj, J., Sitarz, M., Maciejewski, R., Sitarz, R. (2020). Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics and treatment strategies. International Journal of Molecular Sciences, 21(11), 4012. [CrossRef]
  • 7. Hanahan, D., Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646-674. [CrossRef]
  • 8. Ekinci, M., İlem Özdemir, D. (2021). Radyofarmasötikler ve teranostikler [Radiopharmaceuticals and theranostics]. Literatür Eczacılık Bilimleri Dergisi, 10(1), 119-132. [CrossRef]
  • 9. Jurczyszyn, A., Charliński, G., Suska, A., Vesole, D.H. (2021). The importance of cytogenetic and molecular aberrations in multiple myeloma. Acta Haematologica Polonica, 52(4), 361-370. [CrossRef]
  • 10. Fonseca, R., Barlogie, B., Bataille, R., Bastard, C., Bergsagel, P.L., Chesi, M., Davies, F.E., Drach, J., Greipp, P.R., Kirsch, I.R., Kuehl, W.M., Hernandez, J.M., Minvielle, S., Pilarski, L.M., Shaughnessy, J.D., Jr, Stewart, A.K., Avet-Loiseau, H. (2004). Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Research, 64(4), 1546-1558. [CrossRef]
  • 11. Couzin-Frankel, J. (2013). Breakthrough of the year 2013. Cancer immunotherapy. Science (New York, N.Y.), 342(6165), 1432-1433. [CrossRef]
  • 12. Reeves, G.K., Beral, V., Green, J., Gathani, T., Bull, D., Million Women Study Collaborators (2006). Hormonal therapy for menopause and breast-cancer risk by histological type: a cohort study and meta-analysis. The Lancet. Oncology, 7(11), 910-918. [CrossRef]
  • 13. Cuzick, J., DeCensi, A., Arun, B., Brown, P.H., Castiglione, M., Dunn, B., Forbes, J.F., Glaus, A., Howell, A., von Minckwitz, G., Vogel, V., Zwierzina, H. (2011). Preventive therapy for breast cancer: a consensus statement. The Lancet. Oncology, 12(5), 496-503. [CrossRef]
  • 14. Caers, J., Vande broek, I., De Raeve, H., Michaux, L., Trullemans, F., Schots, R., Van Camp, B., Vanderkerken, K. (2008). Multiple myeloma-an update on diagnosis and treatment. European Journal of Haematology, 81(5), 329-343. [CrossRef]
  • 15. Swan, R., Miner, T.J. (2006). Current role of surgical therapy in gastric cancer. World Journal of Gastroenterology, 12(3), 372-379. [CrossRef]
  • 16. Santoro, R., Ettorre, G.M., Santoro, E. (2014). Subtotal gastrectomy for gastric cancer. World Journal of Gastroenterology, 20(38), 13667-13680. [CrossRef]
  • 17. GASTRIC (Global Advanced/Adjuvant Stomach Tumor Research International Collaboration) Group, Paoletti, X., Oba, K., Burzykowski, T., Michiels, S., Ohashi, Y., Pignon, J.P., Rougier, P., Sakamoto, J., Sargent, D., Sasako, M., Van Cutsem, E., Buyse, M. (2010). Benefit of adjuvant chemotherapy for resectable gastric cancer: a meta-analysis. JAMA, 303(17), 1729-1737. [CrossRef]
  • 18. Tsai, C., Mueller, A., Maubach, J., Warschkow, R., Nussbaum, D.P., Schmied, B.M., Blazer, D., Gloor, B., Worni, M. (2020). No difference in survival between neo-adjuvant chemotherapy and neo-adjuvant chemoradiation therapy in gastric cardia cancer patients: A contemporary view from the national cancer database. Digestive Surgery, 37(3), 249-257. [CrossRef]
  • 19. Bang, Y.J., Van Cutsem, E., Feyereislova, A., Chung, H.C., Shen, L., Sawaki, A., Lordick, F., Ohtsu, A., Omuro, Y., Satoh, T., Aprile, G., Kulikov, E., Hill, J., Lehle, M., Rüschoff, J., Kang, Y. K., ToGA Trial Investigators (2010). Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet (London, England), 376(9742), 687-697. [CrossRef]
  • 20. Lee, H.T., Lee, J.Y., Lim, H., Lee, S.H., Moon, Y.J., Pyo, H.J., Ryu, S.E., Shin, W., Heo, Y.S. (2017). Molecular mechanism of PD-1/PD-L1 blockade via anti-PD-L1 antibodies atezolizumab and durvalumab. Scientific Reports, 7(1), 5532. [CrossRef]
  • 21. Tjandra, J.J., Ramadi, L., McKenzie, I.F. (1990). Development of human anti-murine antibody (HAMA) response in patients. Immunology and Cell Biology, 68(Pt 6), 367-376. [CrossRef]
  • 22. Salles, G., Barrett, M., Foà, R., Maurer, J., O'Brien, S., Valente, N., Wenger, M., Maloney, D.G. (2017). Rituximab in B-cell hematologic malignancies: A review of 20 years of clinical experience. Advances in Therapy, 34(10), 2232-2273. [CrossRef]
  • 23. Miller, R.A., Maloney, D.G., Warnke, R., Levy, R. (1982). Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. The New England Journal of Medicine, 306(9), 517-522. [CrossRef]
  • 24. Pohlman, B., Sweetenham, J., Macklis, R.M. (2006). Review of clinical radioimmunotherapy. Expert Review of Anticancer Therapy, 6(3), 445-461. [CrossRef]
  • 25. Davies, A.J. (2005). A review of tositumomab and I(131) tositumomab radioimmunotherapy for the treatment of follicular lymphoma. Expert Opinion on Biological Therapy, 5(4), 577-588. [CrossRef]
  • 26. Jaglowski, S.M., Alinari, L., Lapalombella, R., Muthusamy, N., Byrd, J.C. (2010). The clinical application of monoclonal antibodies in chronic lymphocytic leukemia. Blood, 116(19), 3705-3714. [CrossRef]
  • 27. Weiner, G.J. (2010). Rituximab: mechanism of action. Seminars in Hematology, 47(2), 115-123. [CrossRef]
  • 28. Abulayha, A., Bredan, A., El Enshasy, H., Daniels, I. (2014). Rituximab: modes of action, remaining dispute and future perspective. Future Oncology (London, England), 10(15), 2481-2492. [CrossRef]
  • 29. Bowles, J.A., Wang, S.Y., Link, B.K., Allan, B., Beuerlein, G., Campbell, M.A., Marquis, D., Ondek, B., Wooldridge, J.E., Smith, B.J., Breitmeyer, J.B., Weiner, G.J. (2006). Anti-CD20 monoclonal antibody with enhanced affinity for CD16 activates NK cells at lower concentrations and more effectively than rituximab. Blood, 108(8), 2648-2654. [CrossRef]
  • 30. Maloney, D.G., Smith, B., Rose, A. (2002). Rituximab: mechanism of action and resistance. Seminars in Oncology, 29(1 Suppl 2), 2-9.
  • 31. Grandjean, C.L., Garcia, Z., Lemaître, F., Bréart, B., Bousso, P. (2021). Imaging the mechanisms of anti-CD20 therapy in vivo uncovers spatiotemporal bottlenecks in antibody-dependent phagocytosis. Science Advances, 7(8), eabd6167. [CrossRef]
  • 32. Lehmann-Horn, K., Kinzel, S., Weber, M.S. (2017). Deciphering the role of B cells in multiple sclerosis-towards specific targeting of pathogenic function. International Journal of Molecular Sciences, 18(10), 2048. [CrossRef]
  • 33. Mukherjee, S., Ayanambakkam, A., Ibrahimi, S., Schmidt, S., Charkrabarty, J.H., Khawandanah, M. (2018). Ibritumomab tiuxetan (Zevalin) and elevated serum human anti-murine antibody (HAMA). Hematology/Oncology and Stem Cell Therapy, 11(3), 187-188. [CrossRef]
  • 34. Jacobs, S.A. (2007). Yttrium ibritumomab tiuxetan in the treatment of non-Hodgkin's lymphoma: current status and future prospects. Biologics: Targets & Therapy, 1(3), 215-227.
  • 35. Davies, A.J., Rohatiner, A.Z., Howell, S., Britton, K.E., Owens, S.E., Micallef, I.N., Deakin, D. P., Carrington, B.M., Lawrance, J.A., Vinnicombe, S., Mather, S.J., Clayton, J., Foley, R., Jan, H., Kroll, S., Harris, M., Amess, J., Norton, A.J., Lister, T.A., Radford, J.A. (2004). Tositumomab and iodine I 131 tositumomab for recurrent indolent and transformed B-cell non-Hodgkin's lymphoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 22(8), 1469-1479. [CrossRef]
  • 36. Sellebjerg, F., Blinkenberg, M., Sorensen, P.S. (2020). Anti-CD20 monoclonal antibodies for relapsing and progressive multiple sclerosis. CNS Drugs, 34(3), 269-280. [CrossRef]
  • 37. Østergaard, M., Baslund, B., Rigby, W., Rojkovich, B., Jorgensen, C., Dawes, P.T., Wiell, C., Wallace, D.J., Tamer, S.C., Kastberg, H., Petersen, J., Sierakowski, S. (2010). Ofatumumab, a human anti-CD20 monoclonal antibody, for treatment of rheumatoid arthritis with an inadequate response to one or more disease-modifying antirheumatic drugs: results of a randomized, double-blind, placebo-controlled, phase I/II study. Arthritis and Rheumatism, 62(8), 2227-2238. [CrossRef]
  • 38. Reagan, J.L., Castillo, J.J. (2011). Ofatumumab for newly diagnosed and relapsed/refractory chronic lymphocytic leukemia. Expert Review of Anticancer Therapy, 11(2), 151-160. [CrossRef]
  • 39. Freedman, M.S., Kaplan, J.M., Markovic-Plese, S. (2013). Insights into the mechanisms of the therapeutic efficacy of alemtuzumab in multiple sclerosis. Journal of Clinical & Cellular Immunology, 4(4), 1000152. 40. Syed, Y.Y. (2021). Alemtuzumab: A review in relapsing remitting multiple sclerosis. Drugs, 81(1), 157-168. [CrossRef]
  • 41. Rosen, L.S., Jacobs, I.A., Burkes, R.L. (2017). Bevacizumab in colorectal cancer: Current role in treatment and the potential of biosimilars. Targeted Oncology, 12(5), 599-610. [CrossRef]
  • 42. Ng, D., Fung, N., Yip, F., Lai, T. (2020). Ranibizumab for myopic choroidal neovascularization. Expert Opinion on Biological Therapy, 20(12), 1385-1393. [CrossRef]
  • 43. Lee, A., Shirley, M. (2021). Ranibizumab: A review in retinopathy of prematurity. Paediatric Drugs, 23(1), 111-117. [CrossRef]
  • 44. Stahl, A., Lepore, D., Fielder, A., Fleck, B., Reynolds, J.D., Chiang, M.F., Li, J., Liew, M., Maier, R., Zhu, Q., Marlow, N. (2019). Ranibizumab versus laser therapy for the treatment of very low birthweight infants with retinopathy of prematurity (RAINBOW): an open-label randomised controlled trial. The Lancet, 394(10208), 1551-1559. [CrossRef]
  • 45. Fogli, S., Del Re, M., Rofi, E., Posarelli, C., Figus, M., Danesi, R. (2018). Clinical pharmacology of intravitreal anti-VEGF drugs. Eye (London, England), 32(6), 1010-1020. [CrossRef]
  • 46. Neumann, F.J., Kastrati, A., Schmitt, C., Blasini, R., Hadamitzky, M., Mehilli, J., Gawaz, M., Schleef, M., Seyfarth, M., Dirschinger, J., Schömig, A. (2000). Effect of glycoprotein IIb/IIIa receptor blockade with abciximab on clinical and angiographic restenosis rate after the placement of coronary stents following acute myocardial infarction. Journal of the American College of Cardiology, 35(4), 915-921. [CrossRef]
  • 47. Coller, B.S. (1995). The role of platelets in arterial thrombosis and the rationale for blockade of platelet GPIIb/IIIa receptors as antithrombotic therapy. European Heart Journal, 16 Suppl L, 11-15. [CrossRef]
  • 48. Usta, C., Turgut, N.T., Bedel, A. (2016). How abciximab might be clinically useful. International Journal of Cardiology, 222, 1074-1078. [CrossRef]
  • 49. Dell'Aquila, E., Armento, G., Iuliani, M., Simonetti, S., D'Onofrio, L., Zeppola, T., Madaudo, C., Russano, M., Citarella, F., Ribelli, G., Pantano, F., Vincenzi, B., Tonini, G., Santini, D. (2020). Denosumab for cancer-related bone loss. Expert Opinion on Biological Therapy, 20(11), 1261-1274. [CrossRef]
  • 50. Peters, S., Clézardin, P., Márquez-Rodas, I., Niepel, D., Gedye, C. (2019). The RANK-RANKL axis: an opportunity for drug repurposing in cancer? Clinical & Translational Oncology: Official Publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico, 21(8), 977-991. [CrossRef]
  • 51. Peters, S., Danson, S., Hasan, B., Dafni, U., Reinmuth, N., Majem, M., Tournoy, K.G., Mark, M.T., Pless, M., Cobo, M., Rodriguez-Abreu, D., Falchero, L., Moran, T., Ortega Granados, A.L., Monnet, I., Mohorcic, K., Sureda, B.M., Betticher, D., Demedts, I., Macias, J.A., Cuffe, S., Luciani, A., Sanchez, J.G., Curioni-Fontecedro, A., Gautschi, O., Price, G., Coate, L., von Moos, R., Zielinski, C., Provencio, M., Menis, J., Ruepp, B., Pochesci, A., Roschitzki-Voser, H., Besse, B., Rabaglio, M., O'Brien, M.E.R., Stahel, R.A. (2020). A Randomized Open-Label Phase III Trial Evaluating the Addition of Denosumab to Standard First-Line Treatment in Advanced NSCLC: The European Thoracic Oncology Platform (ETOP) and European Organisation for Research and Treatment of Cancer (EORTC) SPLENDOUR Trial. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 15(10), 1647-1656. [CrossRef]
  • 52. Wolchok, J.D., Kluger, H., Callahan, M.K., Postow, M.A., Rizvi, N.A., Lesokhin, A.M., Segal, N.H., Ariyan, C.E., Gordon, R.A., Reed, K., Burke, M.M., Caldwell, A., Kronenberg, S.A., Agunwamba, B.U., Zhang, X., Lowy, I., Inzunza, H.D., Feely, W., Horak, C.E., Hong, Q., Korman, A.J., Wigginton, J.M., Gupta, A., Sznol, M. (2013). Nivolumab plus ipilimumab in advanced melanoma. The New England Journal of Medicine, 369(2), 122-133. [CrossRef]
  • 53. Robert, C., Thomas, L., Bondarenko, I., O'Day, S., Weber, J., Garbe, C., Lebbe, C., Baurain, J. F., Testori, A., Grob, J.J., Davidson, N., Richards, J., Maio, M., Hauschild, A., Miller, W.H., Jr, Gascon, P., Lotem, M., Harmankaya, K., Ibrahim, R., Francis, S., Chen, T.T., Humphrey, R., Hoos, A., Wolchok, J.D. (2011). Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. The New England Journal of Medicine, 364(26), 2517-2526. [CrossRef]
  • 54. Topalian, S.L., Hodi, F.S., Brahmer, J.R., Gettinger, S.N., Smith, D.C., McDermott, D.F., Powderly, J.D., Carvajal, R.D., Sosman, J.A., Atkins, M.B., Leming, P.D., Spigel, D.R., Antonia, S.J., Horn, L., Drake, C.G., Pardoll, D.M., Chen, L., Sharfman, W.H., Anders, R.A., Taube, J. M., McMiller, T.L., Xu, H., Korman, A.J., Jure-Kunkel, M., Agrawal, S., McDonald, D., Kollia, G.D., Gupta, A., Wigginton, J.M., Sznol, M. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. The New England Journal of Medicine, 366(26), 2443-2454. [CrossRef]
  • 55. Wong, S.F. (2005). Cetuximab: an epidermal growth factor receptor monoclonal antibody for the treatment of colorectal cancer. Clinical Therapeutics, 27(6), 684-694. [CrossRef]
  • 56. Pozzi, C., Cuomo, A., Spadoni, I., Magni, E., Silvola, A., Conte, A., Sigismund, S., Ravenda, P. S., Bonaldi, T., Zampino, M.G., Cancelliere, C., Di Fiore, P.P., Bardelli, A., Penna, G., Rescigno, M. (2016). The EGFR-specific antibody cetuximab combined with chemotherapy triggers immunogenic cell death. Nature Medicine, 22(6), 624-631. [CrossRef]
  • 57. Dubois, E.A., Cohen, A.F. (2009). Panitumumab. British Journal of Clinical Pharmacology, 68(4), 482-483. [CrossRef]
  • 58. Saltz, L., Easley, C., Kirkpatrick, P. (2006). Fresh from the pipeline: panitumumab. Nature Reviews Drug Discovery, 5, 987-988. [CrossRef]
  • 59. Ogitani, Y., Aida, T., Hagihara, K., Yamaguchi, J., Ishii, C., Harada, N., Soma, M., Okamoto, H., Oitate, M., Arakawa, S., Hirai, T., Atsumi, R., Nakada, T., Hayakawa, I., Abe, Y., Agatsuma, T. (2016). DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 22(20), 5097-5108. [CrossRef]
  • 60. Richard, S., Selle, F., Lotz, J.P., Khalil, A., Gligorov, J., Soares, D.G. (2016). Pertuzumab and trastuzumab: the rationale way to synergy. Anais da Academia Brasileira de Ciencias, 88 Suppl 1, 565-577. [CrossRef]
  • 61. Robert, M., Frenel, J.S., Bourbouloux, E., Berton Rigaud, D., Patsouris, A., Augereau, P., Gourmelon, C., Campone, M. (2020). Pertuzumab for the treatment of breast cancer. Expert Review of Anticancer Therapy, 20(2), 85-95. [CrossRef]
  • 62. Francisco, L.M., Sage, P.T., Sharpe, A.H. (2010). The PD-1 pathway in tolerance and autoimmunity. Immunological Reviews, 236, 219-242. [CrossRef]
  • 63. Lunning, M., Vose, J., Nastoupil, L., Fowler, N., Burger, J.A., Wierda, W.G., Schreeder, M.T., Siddiqi, T., Flowers, C.R., Cohen, J.B., Sportelli, P., Miskin, H.P., Weiss, M.S., O'Brien, S. (2019). Ublituximab and umbralisib in relapsed/refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood, 134(21), 1811-1820. [CrossRef]
  • 64. Gingele, S., Jacobus, T.L., Konen, F.F., Hümmert, M.W., Sühs, K.W., Schwenkenbecher, P., Ahlbrecht, J., Möhn, N., Müschen, L.H., Bönig, L., Alvermann, S., Schmidt, R.E., Stangel, M., Jacobs, R., Skripuletz, T. (2018). Ocrelizumab depletes CD20⁺ T cells in multiple sclerosis patients. Cells, 8(1), 12. [CrossRef]
  • 65. Freeman, C.L., Sehn, L.H. (2018). A tale of two antibodies: obinutuzumab versus rituximab. British Journal of Haematology, 182(1), 29-45. [CrossRef]
  • 66. Assouline, S., Buccheri, V., Delmer, A., Gaidano, G., Trneny, M., Berthillon, N., Brewster, M., Catalani, O., Li, S., McIntyre, C., Sayyed, P., Badoux, X. (2016). Pharmacokinetics, safety, and efficacy of subcutaneous versus intravenous rituximab plus chemotherapy as treatment for chronic lymphocytic leukaemia (SAWYER): a phase 1b, open-label, randomised controlled non-inferiority trial. The Lancet. Haematology, 3(3), e128-e138. [CrossRef]
  • 67. William, B.M., Bierman, P.J. (2010). I-131 tositumomab. Expert Opinion on Biological Therapy, 10(8), 1271-1278. [CrossRef]
  • 68. Montalban, X., Hauser, S.L., Kappos, L., Arnold, D.L., Bar-Or, A., Comi, G., de Seze, J., Giovannoni, G., Hartung, H.P., Hemmer, B., Lublin, F., Rammohan, K.W., Selmaj, K., Traboulsee, A., Sauter, A., Masterman, D., Fontoura, P., Belachew, S., Garren, H., Mairon, N., Chin, P., Wolinsky, J.S., ORATORIO Clinical Investigators (2017). Ocrelizumab versus placebo in primary progressive multiple sclerosis. The New England Journal of Medicine, 376(3), 209-220. [CrossRef]
  • 69. Österborg, A., Udvardy, M., Zaritskey, A., Andersson, P.O., Grosicki, S., Mazur, G., Kaplan, P., Steurer, M., Schuh, A., Montillo, M., Kryachok, I., Middeke, J.M., Kulyaba, Y., Rekhtman, G., Gorczyca, M., Daly, S., Chang, C.N., Lisby, S., Gupta, I. (2016). Phase III, randomized study of ofatumumab versus physicians' choice of therapy and standard versus extended-length ofatumumab in patients with bulky fludarabine-refractory chronic lymphocytic leukemia. Leukemia & Lymphoma, 57(9), 2037-2046. [CrossRef]
  • 70. Jankowitz, R., Joyce, J., Jacobs, S.A. (2008). Anaphylaxis after administration of ibritumomab tiuxetan for follicular non-hodgkin lymphoma. Clinical Nuclear Medicine, 33(2), 94-96. [CrossRef]
  • 71. Devonshire, V., Phillips, R., Wass, H., Da Roza, G., Senior, P. (2018). Monitoring and management of autoimmunity in multiple sclerosis patients treated with alemtuzumab: practical recommendations. Journal of Neurology, 265(11), 2494-2505. [CrossRef]
  • 72. Caon, C., Namey, M., Meyer, C., Mayer, L., Oyuela, P., Margolin, D.H., Rizzo, M. (2015). Prevention and management of infusion-associated reactions in the comparison of alemtuzumab and Rebif(®) efficacy in multiple sclerosis (CARE-MS) program. International Journal of MS Care, 17(4), 191-198. [CrossRef]
  • 73. Stone, G.W., Maehara, A., Witzenbichler, B., Godlewski, J., Parise, H., Dambrink, J.H., Ochala, A., Carlton, T.W., Cristea, E., Wolff, S.D., Brener, S.J., Chowdhary, S., El-Omar, M., Neunteufl, T., Metzger, D.C., Karwoski, T., Dizon, J.M., Mehran, R., Gibson, C.M., INFUSE-AMI Investigators (2012). Intracoronary abciximab and aspiration thrombectomy in patients with large anterior myocardial infarction: the INFUSE-AMI randomized trial. JAMA, 307(17), 1817-1826. [CrossRef]
  • 74. van der Kolk, L.E., Grillo-López, A.J., Baars, J.W., Hack, C.E., van Oers, M.H. (2001). Complement activation plays a key role in the side-effects of rituximab treatment. British Journal of Haematology, 115(4), 807-811. [CrossRef]
  • 75. Florou, D., Katsara, M., Feehan, J., Dardiotis, E., Apostolopoulos, V. (2020). Anti-CD20 agents for multiple sclerosis: Spotlight on ocrelizumab and ofatumumab. Brain Sciences, 10(10), 758. [CrossRef]

MONOCLONAL ANTIBODIES USED IN CANCER DIAGNOSIS AND TREATMENT

Yıl 2023, , 295 - 310, 20.01.2023
https://doi.org/10.33483/jfpau.1196392

Öz

Objective: Cancer is a disease that develops with the uncontrolled proliferation of cells in the body and is characterized by abnormal and uncontrolled growth of cells. While the incidence of cancer is increasing day by day, new approaches in the diagnosis and treatment of cancer are gaining great importance. Anatomical imaging techniques and nuclear imaging systems are frequently used for cancer diagnosis. In the treatment of cancer, in addition to traditional approaches (surgery, radiotherapy, chemotherapy), targeted approaches have been used recently. Targeted approaches in cancer treatment mostly include small molecule tyrosine kinase inhibitors and monoclonal antibodies. Monoclonal antibodies were initially obtained from hybridomas formed by B cells and myeloma cancer cells of antigen-immunized mice. It is mostly used in the diagnosis, purification and analysis of biological materials, diagnosis and treatment of cancer, and prevention of tissue rejection in organ transplants. Monoclonal antibodies have great advantages because they take less time to develop and cost less. In addition to these advantages, although different side effects have been detected in the direction of research, monoclonal antibodies are in great demand today due to their target specificity and other advantages.
Result and Discussion: Although research on monoclonal antibodies and cancer diagnosis and treatment continue today, this subject continues to be an important and curious subject in terms of medical science. In this review, monoclonal antibodies, which are frequently used in cancer diagnosis and treatment, and their targets, mechanisms of action and clinical uses will be discussed.

Proje Numarası

-

Kaynakça

  • 1. Köhler, G., Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 256, 495-497. [CrossRef]
  • 2. Liu, J.K.H. (2012). The history of monoclonal antibody development - Progress, remaining challenges and future innovations. Annals of Medicine and Surgery, 3(4), 113-116. [CrossRef]
  • 3. Lim, S.H., Beers, S.A., French, R.R., Johnson, P.W., Glennie, M.J., Cragg, M.S. (2010). Anti-CD20 monoclonal antibodies: historical and future perspectives. Haematologica, 95(1), 135-143. [CrossRef]
  • 4. Ozdemir, A., Kaplan Serin, E., Savas, M. (2018). Cancer risk factors and prevention in Turkey. International Journal of Health Services Research and Policy, 3(3), 143-150. [CrossRef]
  • 5. Roy, P.S., Saikia, B.J. (2016). Cancer and cure: A critical analysis. Indian Journal of Cancer, 53(3), 441-442. [CrossRef]
  • 6. Machlowska, J., Baj, J., Sitarz, M., Maciejewski, R., Sitarz, R. (2020). Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics and treatment strategies. International Journal of Molecular Sciences, 21(11), 4012. [CrossRef]
  • 7. Hanahan, D., Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646-674. [CrossRef]
  • 8. Ekinci, M., İlem Özdemir, D. (2021). Radyofarmasötikler ve teranostikler [Radiopharmaceuticals and theranostics]. Literatür Eczacılık Bilimleri Dergisi, 10(1), 119-132. [CrossRef]
  • 9. Jurczyszyn, A., Charliński, G., Suska, A., Vesole, D.H. (2021). The importance of cytogenetic and molecular aberrations in multiple myeloma. Acta Haematologica Polonica, 52(4), 361-370. [CrossRef]
  • 10. Fonseca, R., Barlogie, B., Bataille, R., Bastard, C., Bergsagel, P.L., Chesi, M., Davies, F.E., Drach, J., Greipp, P.R., Kirsch, I.R., Kuehl, W.M., Hernandez, J.M., Minvielle, S., Pilarski, L.M., Shaughnessy, J.D., Jr, Stewart, A.K., Avet-Loiseau, H. (2004). Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Research, 64(4), 1546-1558. [CrossRef]
  • 11. Couzin-Frankel, J. (2013). Breakthrough of the year 2013. Cancer immunotherapy. Science (New York, N.Y.), 342(6165), 1432-1433. [CrossRef]
  • 12. Reeves, G.K., Beral, V., Green, J., Gathani, T., Bull, D., Million Women Study Collaborators (2006). Hormonal therapy for menopause and breast-cancer risk by histological type: a cohort study and meta-analysis. The Lancet. Oncology, 7(11), 910-918. [CrossRef]
  • 13. Cuzick, J., DeCensi, A., Arun, B., Brown, P.H., Castiglione, M., Dunn, B., Forbes, J.F., Glaus, A., Howell, A., von Minckwitz, G., Vogel, V., Zwierzina, H. (2011). Preventive therapy for breast cancer: a consensus statement. The Lancet. Oncology, 12(5), 496-503. [CrossRef]
  • 14. Caers, J., Vande broek, I., De Raeve, H., Michaux, L., Trullemans, F., Schots, R., Van Camp, B., Vanderkerken, K. (2008). Multiple myeloma-an update on diagnosis and treatment. European Journal of Haematology, 81(5), 329-343. [CrossRef]
  • 15. Swan, R., Miner, T.J. (2006). Current role of surgical therapy in gastric cancer. World Journal of Gastroenterology, 12(3), 372-379. [CrossRef]
  • 16. Santoro, R., Ettorre, G.M., Santoro, E. (2014). Subtotal gastrectomy for gastric cancer. World Journal of Gastroenterology, 20(38), 13667-13680. [CrossRef]
  • 17. GASTRIC (Global Advanced/Adjuvant Stomach Tumor Research International Collaboration) Group, Paoletti, X., Oba, K., Burzykowski, T., Michiels, S., Ohashi, Y., Pignon, J.P., Rougier, P., Sakamoto, J., Sargent, D., Sasako, M., Van Cutsem, E., Buyse, M. (2010). Benefit of adjuvant chemotherapy for resectable gastric cancer: a meta-analysis. JAMA, 303(17), 1729-1737. [CrossRef]
  • 18. Tsai, C., Mueller, A., Maubach, J., Warschkow, R., Nussbaum, D.P., Schmied, B.M., Blazer, D., Gloor, B., Worni, M. (2020). No difference in survival between neo-adjuvant chemotherapy and neo-adjuvant chemoradiation therapy in gastric cardia cancer patients: A contemporary view from the national cancer database. Digestive Surgery, 37(3), 249-257. [CrossRef]
  • 19. Bang, Y.J., Van Cutsem, E., Feyereislova, A., Chung, H.C., Shen, L., Sawaki, A., Lordick, F., Ohtsu, A., Omuro, Y., Satoh, T., Aprile, G., Kulikov, E., Hill, J., Lehle, M., Rüschoff, J., Kang, Y. K., ToGA Trial Investigators (2010). Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet (London, England), 376(9742), 687-697. [CrossRef]
  • 20. Lee, H.T., Lee, J.Y., Lim, H., Lee, S.H., Moon, Y.J., Pyo, H.J., Ryu, S.E., Shin, W., Heo, Y.S. (2017). Molecular mechanism of PD-1/PD-L1 blockade via anti-PD-L1 antibodies atezolizumab and durvalumab. Scientific Reports, 7(1), 5532. [CrossRef]
  • 21. Tjandra, J.J., Ramadi, L., McKenzie, I.F. (1990). Development of human anti-murine antibody (HAMA) response in patients. Immunology and Cell Biology, 68(Pt 6), 367-376. [CrossRef]
  • 22. Salles, G., Barrett, M., Foà, R., Maurer, J., O'Brien, S., Valente, N., Wenger, M., Maloney, D.G. (2017). Rituximab in B-cell hematologic malignancies: A review of 20 years of clinical experience. Advances in Therapy, 34(10), 2232-2273. [CrossRef]
  • 23. Miller, R.A., Maloney, D.G., Warnke, R., Levy, R. (1982). Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. The New England Journal of Medicine, 306(9), 517-522. [CrossRef]
  • 24. Pohlman, B., Sweetenham, J., Macklis, R.M. (2006). Review of clinical radioimmunotherapy. Expert Review of Anticancer Therapy, 6(3), 445-461. [CrossRef]
  • 25. Davies, A.J. (2005). A review of tositumomab and I(131) tositumomab radioimmunotherapy for the treatment of follicular lymphoma. Expert Opinion on Biological Therapy, 5(4), 577-588. [CrossRef]
  • 26. Jaglowski, S.M., Alinari, L., Lapalombella, R., Muthusamy, N., Byrd, J.C. (2010). The clinical application of monoclonal antibodies in chronic lymphocytic leukemia. Blood, 116(19), 3705-3714. [CrossRef]
  • 27. Weiner, G.J. (2010). Rituximab: mechanism of action. Seminars in Hematology, 47(2), 115-123. [CrossRef]
  • 28. Abulayha, A., Bredan, A., El Enshasy, H., Daniels, I. (2014). Rituximab: modes of action, remaining dispute and future perspective. Future Oncology (London, England), 10(15), 2481-2492. [CrossRef]
  • 29. Bowles, J.A., Wang, S.Y., Link, B.K., Allan, B., Beuerlein, G., Campbell, M.A., Marquis, D., Ondek, B., Wooldridge, J.E., Smith, B.J., Breitmeyer, J.B., Weiner, G.J. (2006). Anti-CD20 monoclonal antibody with enhanced affinity for CD16 activates NK cells at lower concentrations and more effectively than rituximab. Blood, 108(8), 2648-2654. [CrossRef]
  • 30. Maloney, D.G., Smith, B., Rose, A. (2002). Rituximab: mechanism of action and resistance. Seminars in Oncology, 29(1 Suppl 2), 2-9.
  • 31. Grandjean, C.L., Garcia, Z., Lemaître, F., Bréart, B., Bousso, P. (2021). Imaging the mechanisms of anti-CD20 therapy in vivo uncovers spatiotemporal bottlenecks in antibody-dependent phagocytosis. Science Advances, 7(8), eabd6167. [CrossRef]
  • 32. Lehmann-Horn, K., Kinzel, S., Weber, M.S. (2017). Deciphering the role of B cells in multiple sclerosis-towards specific targeting of pathogenic function. International Journal of Molecular Sciences, 18(10), 2048. [CrossRef]
  • 33. Mukherjee, S., Ayanambakkam, A., Ibrahimi, S., Schmidt, S., Charkrabarty, J.H., Khawandanah, M. (2018). Ibritumomab tiuxetan (Zevalin) and elevated serum human anti-murine antibody (HAMA). Hematology/Oncology and Stem Cell Therapy, 11(3), 187-188. [CrossRef]
  • 34. Jacobs, S.A. (2007). Yttrium ibritumomab tiuxetan in the treatment of non-Hodgkin's lymphoma: current status and future prospects. Biologics: Targets & Therapy, 1(3), 215-227.
  • 35. Davies, A.J., Rohatiner, A.Z., Howell, S., Britton, K.E., Owens, S.E., Micallef, I.N., Deakin, D. P., Carrington, B.M., Lawrance, J.A., Vinnicombe, S., Mather, S.J., Clayton, J., Foley, R., Jan, H., Kroll, S., Harris, M., Amess, J., Norton, A.J., Lister, T.A., Radford, J.A. (2004). Tositumomab and iodine I 131 tositumomab for recurrent indolent and transformed B-cell non-Hodgkin's lymphoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 22(8), 1469-1479. [CrossRef]
  • 36. Sellebjerg, F., Blinkenberg, M., Sorensen, P.S. (2020). Anti-CD20 monoclonal antibodies for relapsing and progressive multiple sclerosis. CNS Drugs, 34(3), 269-280. [CrossRef]
  • 37. Østergaard, M., Baslund, B., Rigby, W., Rojkovich, B., Jorgensen, C., Dawes, P.T., Wiell, C., Wallace, D.J., Tamer, S.C., Kastberg, H., Petersen, J., Sierakowski, S. (2010). Ofatumumab, a human anti-CD20 monoclonal antibody, for treatment of rheumatoid arthritis with an inadequate response to one or more disease-modifying antirheumatic drugs: results of a randomized, double-blind, placebo-controlled, phase I/II study. Arthritis and Rheumatism, 62(8), 2227-2238. [CrossRef]
  • 38. Reagan, J.L., Castillo, J.J. (2011). Ofatumumab for newly diagnosed and relapsed/refractory chronic lymphocytic leukemia. Expert Review of Anticancer Therapy, 11(2), 151-160. [CrossRef]
  • 39. Freedman, M.S., Kaplan, J.M., Markovic-Plese, S. (2013). Insights into the mechanisms of the therapeutic efficacy of alemtuzumab in multiple sclerosis. Journal of Clinical & Cellular Immunology, 4(4), 1000152. 40. Syed, Y.Y. (2021). Alemtuzumab: A review in relapsing remitting multiple sclerosis. Drugs, 81(1), 157-168. [CrossRef]
  • 41. Rosen, L.S., Jacobs, I.A., Burkes, R.L. (2017). Bevacizumab in colorectal cancer: Current role in treatment and the potential of biosimilars. Targeted Oncology, 12(5), 599-610. [CrossRef]
  • 42. Ng, D., Fung, N., Yip, F., Lai, T. (2020). Ranibizumab for myopic choroidal neovascularization. Expert Opinion on Biological Therapy, 20(12), 1385-1393. [CrossRef]
  • 43. Lee, A., Shirley, M. (2021). Ranibizumab: A review in retinopathy of prematurity. Paediatric Drugs, 23(1), 111-117. [CrossRef]
  • 44. Stahl, A., Lepore, D., Fielder, A., Fleck, B., Reynolds, J.D., Chiang, M.F., Li, J., Liew, M., Maier, R., Zhu, Q., Marlow, N. (2019). Ranibizumab versus laser therapy for the treatment of very low birthweight infants with retinopathy of prematurity (RAINBOW): an open-label randomised controlled trial. The Lancet, 394(10208), 1551-1559. [CrossRef]
  • 45. Fogli, S., Del Re, M., Rofi, E., Posarelli, C., Figus, M., Danesi, R. (2018). Clinical pharmacology of intravitreal anti-VEGF drugs. Eye (London, England), 32(6), 1010-1020. [CrossRef]
  • 46. Neumann, F.J., Kastrati, A., Schmitt, C., Blasini, R., Hadamitzky, M., Mehilli, J., Gawaz, M., Schleef, M., Seyfarth, M., Dirschinger, J., Schömig, A. (2000). Effect of glycoprotein IIb/IIIa receptor blockade with abciximab on clinical and angiographic restenosis rate after the placement of coronary stents following acute myocardial infarction. Journal of the American College of Cardiology, 35(4), 915-921. [CrossRef]
  • 47. Coller, B.S. (1995). The role of platelets in arterial thrombosis and the rationale for blockade of platelet GPIIb/IIIa receptors as antithrombotic therapy. European Heart Journal, 16 Suppl L, 11-15. [CrossRef]
  • 48. Usta, C., Turgut, N.T., Bedel, A. (2016). How abciximab might be clinically useful. International Journal of Cardiology, 222, 1074-1078. [CrossRef]
  • 49. Dell'Aquila, E., Armento, G., Iuliani, M., Simonetti, S., D'Onofrio, L., Zeppola, T., Madaudo, C., Russano, M., Citarella, F., Ribelli, G., Pantano, F., Vincenzi, B., Tonini, G., Santini, D. (2020). Denosumab for cancer-related bone loss. Expert Opinion on Biological Therapy, 20(11), 1261-1274. [CrossRef]
  • 50. Peters, S., Clézardin, P., Márquez-Rodas, I., Niepel, D., Gedye, C. (2019). The RANK-RANKL axis: an opportunity for drug repurposing in cancer? Clinical & Translational Oncology: Official Publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico, 21(8), 977-991. [CrossRef]
  • 51. Peters, S., Danson, S., Hasan, B., Dafni, U., Reinmuth, N., Majem, M., Tournoy, K.G., Mark, M.T., Pless, M., Cobo, M., Rodriguez-Abreu, D., Falchero, L., Moran, T., Ortega Granados, A.L., Monnet, I., Mohorcic, K., Sureda, B.M., Betticher, D., Demedts, I., Macias, J.A., Cuffe, S., Luciani, A., Sanchez, J.G., Curioni-Fontecedro, A., Gautschi, O., Price, G., Coate, L., von Moos, R., Zielinski, C., Provencio, M., Menis, J., Ruepp, B., Pochesci, A., Roschitzki-Voser, H., Besse, B., Rabaglio, M., O'Brien, M.E.R., Stahel, R.A. (2020). A Randomized Open-Label Phase III Trial Evaluating the Addition of Denosumab to Standard First-Line Treatment in Advanced NSCLC: The European Thoracic Oncology Platform (ETOP) and European Organisation for Research and Treatment of Cancer (EORTC) SPLENDOUR Trial. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 15(10), 1647-1656. [CrossRef]
  • 52. Wolchok, J.D., Kluger, H., Callahan, M.K., Postow, M.A., Rizvi, N.A., Lesokhin, A.M., Segal, N.H., Ariyan, C.E., Gordon, R.A., Reed, K., Burke, M.M., Caldwell, A., Kronenberg, S.A., Agunwamba, B.U., Zhang, X., Lowy, I., Inzunza, H.D., Feely, W., Horak, C.E., Hong, Q., Korman, A.J., Wigginton, J.M., Gupta, A., Sznol, M. (2013). Nivolumab plus ipilimumab in advanced melanoma. The New England Journal of Medicine, 369(2), 122-133. [CrossRef]
  • 53. Robert, C., Thomas, L., Bondarenko, I., O'Day, S., Weber, J., Garbe, C., Lebbe, C., Baurain, J. F., Testori, A., Grob, J.J., Davidson, N., Richards, J., Maio, M., Hauschild, A., Miller, W.H., Jr, Gascon, P., Lotem, M., Harmankaya, K., Ibrahim, R., Francis, S., Chen, T.T., Humphrey, R., Hoos, A., Wolchok, J.D. (2011). Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. The New England Journal of Medicine, 364(26), 2517-2526. [CrossRef]
  • 54. Topalian, S.L., Hodi, F.S., Brahmer, J.R., Gettinger, S.N., Smith, D.C., McDermott, D.F., Powderly, J.D., Carvajal, R.D., Sosman, J.A., Atkins, M.B., Leming, P.D., Spigel, D.R., Antonia, S.J., Horn, L., Drake, C.G., Pardoll, D.M., Chen, L., Sharfman, W.H., Anders, R.A., Taube, J. M., McMiller, T.L., Xu, H., Korman, A.J., Jure-Kunkel, M., Agrawal, S., McDonald, D., Kollia, G.D., Gupta, A., Wigginton, J.M., Sznol, M. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. The New England Journal of Medicine, 366(26), 2443-2454. [CrossRef]
  • 55. Wong, S.F. (2005). Cetuximab: an epidermal growth factor receptor monoclonal antibody for the treatment of colorectal cancer. Clinical Therapeutics, 27(6), 684-694. [CrossRef]
  • 56. Pozzi, C., Cuomo, A., Spadoni, I., Magni, E., Silvola, A., Conte, A., Sigismund, S., Ravenda, P. S., Bonaldi, T., Zampino, M.G., Cancelliere, C., Di Fiore, P.P., Bardelli, A., Penna, G., Rescigno, M. (2016). The EGFR-specific antibody cetuximab combined with chemotherapy triggers immunogenic cell death. Nature Medicine, 22(6), 624-631. [CrossRef]
  • 57. Dubois, E.A., Cohen, A.F. (2009). Panitumumab. British Journal of Clinical Pharmacology, 68(4), 482-483. [CrossRef]
  • 58. Saltz, L., Easley, C., Kirkpatrick, P. (2006). Fresh from the pipeline: panitumumab. Nature Reviews Drug Discovery, 5, 987-988. [CrossRef]
  • 59. Ogitani, Y., Aida, T., Hagihara, K., Yamaguchi, J., Ishii, C., Harada, N., Soma, M., Okamoto, H., Oitate, M., Arakawa, S., Hirai, T., Atsumi, R., Nakada, T., Hayakawa, I., Abe, Y., Agatsuma, T. (2016). DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 22(20), 5097-5108. [CrossRef]
  • 60. Richard, S., Selle, F., Lotz, J.P., Khalil, A., Gligorov, J., Soares, D.G. (2016). Pertuzumab and trastuzumab: the rationale way to synergy. Anais da Academia Brasileira de Ciencias, 88 Suppl 1, 565-577. [CrossRef]
  • 61. Robert, M., Frenel, J.S., Bourbouloux, E., Berton Rigaud, D., Patsouris, A., Augereau, P., Gourmelon, C., Campone, M. (2020). Pertuzumab for the treatment of breast cancer. Expert Review of Anticancer Therapy, 20(2), 85-95. [CrossRef]
  • 62. Francisco, L.M., Sage, P.T., Sharpe, A.H. (2010). The PD-1 pathway in tolerance and autoimmunity. Immunological Reviews, 236, 219-242. [CrossRef]
  • 63. Lunning, M., Vose, J., Nastoupil, L., Fowler, N., Burger, J.A., Wierda, W.G., Schreeder, M.T., Siddiqi, T., Flowers, C.R., Cohen, J.B., Sportelli, P., Miskin, H.P., Weiss, M.S., O'Brien, S. (2019). Ublituximab and umbralisib in relapsed/refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood, 134(21), 1811-1820. [CrossRef]
  • 64. Gingele, S., Jacobus, T.L., Konen, F.F., Hümmert, M.W., Sühs, K.W., Schwenkenbecher, P., Ahlbrecht, J., Möhn, N., Müschen, L.H., Bönig, L., Alvermann, S., Schmidt, R.E., Stangel, M., Jacobs, R., Skripuletz, T. (2018). Ocrelizumab depletes CD20⁺ T cells in multiple sclerosis patients. Cells, 8(1), 12. [CrossRef]
  • 65. Freeman, C.L., Sehn, L.H. (2018). A tale of two antibodies: obinutuzumab versus rituximab. British Journal of Haematology, 182(1), 29-45. [CrossRef]
  • 66. Assouline, S., Buccheri, V., Delmer, A., Gaidano, G., Trneny, M., Berthillon, N., Brewster, M., Catalani, O., Li, S., McIntyre, C., Sayyed, P., Badoux, X. (2016). Pharmacokinetics, safety, and efficacy of subcutaneous versus intravenous rituximab plus chemotherapy as treatment for chronic lymphocytic leukaemia (SAWYER): a phase 1b, open-label, randomised controlled non-inferiority trial. The Lancet. Haematology, 3(3), e128-e138. [CrossRef]
  • 67. William, B.M., Bierman, P.J. (2010). I-131 tositumomab. Expert Opinion on Biological Therapy, 10(8), 1271-1278. [CrossRef]
  • 68. Montalban, X., Hauser, S.L., Kappos, L., Arnold, D.L., Bar-Or, A., Comi, G., de Seze, J., Giovannoni, G., Hartung, H.P., Hemmer, B., Lublin, F., Rammohan, K.W., Selmaj, K., Traboulsee, A., Sauter, A., Masterman, D., Fontoura, P., Belachew, S., Garren, H., Mairon, N., Chin, P., Wolinsky, J.S., ORATORIO Clinical Investigators (2017). Ocrelizumab versus placebo in primary progressive multiple sclerosis. The New England Journal of Medicine, 376(3), 209-220. [CrossRef]
  • 69. Österborg, A., Udvardy, M., Zaritskey, A., Andersson, P.O., Grosicki, S., Mazur, G., Kaplan, P., Steurer, M., Schuh, A., Montillo, M., Kryachok, I., Middeke, J.M., Kulyaba, Y., Rekhtman, G., Gorczyca, M., Daly, S., Chang, C.N., Lisby, S., Gupta, I. (2016). Phase III, randomized study of ofatumumab versus physicians' choice of therapy and standard versus extended-length ofatumumab in patients with bulky fludarabine-refractory chronic lymphocytic leukemia. Leukemia & Lymphoma, 57(9), 2037-2046. [CrossRef]
  • 70. Jankowitz, R., Joyce, J., Jacobs, S.A. (2008). Anaphylaxis after administration of ibritumomab tiuxetan for follicular non-hodgkin lymphoma. Clinical Nuclear Medicine, 33(2), 94-96. [CrossRef]
  • 71. Devonshire, V., Phillips, R., Wass, H., Da Roza, G., Senior, P. (2018). Monitoring and management of autoimmunity in multiple sclerosis patients treated with alemtuzumab: practical recommendations. Journal of Neurology, 265(11), 2494-2505. [CrossRef]
  • 72. Caon, C., Namey, M., Meyer, C., Mayer, L., Oyuela, P., Margolin, D.H., Rizzo, M. (2015). Prevention and management of infusion-associated reactions in the comparison of alemtuzumab and Rebif(®) efficacy in multiple sclerosis (CARE-MS) program. International Journal of MS Care, 17(4), 191-198. [CrossRef]
  • 73. Stone, G.W., Maehara, A., Witzenbichler, B., Godlewski, J., Parise, H., Dambrink, J.H., Ochala, A., Carlton, T.W., Cristea, E., Wolff, S.D., Brener, S.J., Chowdhary, S., El-Omar, M., Neunteufl, T., Metzger, D.C., Karwoski, T., Dizon, J.M., Mehran, R., Gibson, C.M., INFUSE-AMI Investigators (2012). Intracoronary abciximab and aspiration thrombectomy in patients with large anterior myocardial infarction: the INFUSE-AMI randomized trial. JAMA, 307(17), 1817-1826. [CrossRef]
  • 74. van der Kolk, L.E., Grillo-López, A.J., Baars, J.W., Hack, C.E., van Oers, M.H. (2001). Complement activation plays a key role in the side-effects of rituximab treatment. British Journal of Haematology, 115(4), 807-811. [CrossRef]
  • 75. Florou, D., Katsara, M., Feehan, J., Dardiotis, E., Apostolopoulos, V. (2020). Anti-CD20 agents for multiple sclerosis: Spotlight on ocrelizumab and ofatumumab. Brain Sciences, 10(10), 758. [CrossRef]
Toplam 74 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Eczacılık ve İlaç Bilimleri
Bölüm Derleme
Yazarlar

Merve Babaç 0000-0003-3098-5982

Meliha Ekinci 0000-0003-1319-3756

Derya İlem-özdemir 0000-0002-1062-498X

Proje Numarası -
Yayımlanma Tarihi 20 Ocak 2023
Gönderilme Tarihi 29 Ekim 2022
Kabul Tarihi 24 Aralık 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Babaç, M., Ekinci, M., & İlem-özdemir, D. (2023). KANSER TANISI VE TEDAVİSİNDE KULLANILAN MONOKLONAL ANTİKORLAR. Journal of Faculty of Pharmacy of Ankara University, 47(1), 295-310. https://doi.org/10.33483/jfpau.1196392
AMA Babaç M, Ekinci M, İlem-özdemir D. KANSER TANISI VE TEDAVİSİNDE KULLANILAN MONOKLONAL ANTİKORLAR. Ankara Ecz. Fak. Derg. Ocak 2023;47(1):295-310. doi:10.33483/jfpau.1196392
Chicago Babaç, Merve, Meliha Ekinci, ve Derya İlem-özdemir. “KANSER TANISI VE TEDAVİSİNDE KULLANILAN MONOKLONAL ANTİKORLAR”. Journal of Faculty of Pharmacy of Ankara University 47, sy. 1 (Ocak 2023): 295-310. https://doi.org/10.33483/jfpau.1196392.
EndNote Babaç M, Ekinci M, İlem-özdemir D (01 Ocak 2023) KANSER TANISI VE TEDAVİSİNDE KULLANILAN MONOKLONAL ANTİKORLAR. Journal of Faculty of Pharmacy of Ankara University 47 1 295–310.
IEEE M. Babaç, M. Ekinci, ve D. İlem-özdemir, “KANSER TANISI VE TEDAVİSİNDE KULLANILAN MONOKLONAL ANTİKORLAR”, Ankara Ecz. Fak. Derg., c. 47, sy. 1, ss. 295–310, 2023, doi: 10.33483/jfpau.1196392.
ISNAD Babaç, Merve vd. “KANSER TANISI VE TEDAVİSİNDE KULLANILAN MONOKLONAL ANTİKORLAR”. Journal of Faculty of Pharmacy of Ankara University 47/1 (Ocak 2023), 295-310. https://doi.org/10.33483/jfpau.1196392.
JAMA Babaç M, Ekinci M, İlem-özdemir D. KANSER TANISI VE TEDAVİSİNDE KULLANILAN MONOKLONAL ANTİKORLAR. Ankara Ecz. Fak. Derg. 2023;47:295–310.
MLA Babaç, Merve vd. “KANSER TANISI VE TEDAVİSİNDE KULLANILAN MONOKLONAL ANTİKORLAR”. Journal of Faculty of Pharmacy of Ankara University, c. 47, sy. 1, 2023, ss. 295-10, doi:10.33483/jfpau.1196392.
Vancouver Babaç M, Ekinci M, İlem-özdemir D. KANSER TANISI VE TEDAVİSİNDE KULLANILAN MONOKLONAL ANTİKORLAR. Ankara Ecz. Fak. Derg. 2023;47(1):295-310.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.