Araştırma Makalesi
BibTex RIS Kaynak Göster

CURCUMIN, THE BIOACTIVE COMPOUND OF TURMERIC, MAY IMPROVE THE ANTI-MALIGNANT PROPERTY OF GEMCITABINE IN PROSTATE CANCER CELLS

Yıl 2023, , 739 - 751, 20.09.2023
https://doi.org/10.33483/jfpau.1232868

Öz

Objective: The aim of this study was to investigate the possible synergistic effect of curcumin on the anticancer features of gemcitabine on prostate cancer cells.
Material and Method: The human prostate adenocarcinoma cell line LNCaP was used in the studies. The effect of the co-administration of gemcitabine and curcumin on the viability of LNCaP cells was investigated by the WST-1 assay. Autophagy, ubiquitin-proteasome system (UPS), unfolded protein response (UPR) and cell death-associated proteins, androgenic signaling, proto-oncogenic, angiogenic and epithelial-mesenchymal transition (EMT) associated protein levels were investigated by immunoblotting studies.
Result and Discussion: Our results showed that curcumin potentiated the anticancer effects of gemcitabine on LNCaP cells. Co-administration of curcumin and gemcitabine strengthened the suppressive effect of gemcitabine on cell viability. Moreover, co-administration modulated the autophagy, more strongly stimulated UPS and UPR, suppressed androgenic signaling, led to the activation of cell death-related poly [ADP-ribose] polymerase 1 (PARP-1) and caspase-3 and strongly suppressed the expression levels of proto-oncogenic c-Myc and angiogenic vascular endothelial growth factor-A (VEGF-A). In addition, it was determined that co-administration negatively regulated EMT by stimulating E-cadherin expression and suppressing N-cadherin level. These results suggest that the combined usage of gemcitabine and curcumin may offer a potent therapeutic approach for prostate cancer by enhancing the anticancer effects of gemcitabine.

Destekleyen Kurum

Suleyman Demirel University internal funds

Proje Numarası

TSG-2021-8302, TAB-2020-8253

Teşekkür

We thank Suleyman Demirel University - Innovative Technologies Application and Research Center for equipmental support.

Kaynakça

  • 1. Barsouk, A., Padala, S.A., Vakiti, A., Mohammed, A., Saginala, K., Thandra, K.C., Rawla, P., Barsouk, A. (2020). Epidemiology, staging and management of prostate cancer. Medical Sciences, 8(3), 28. [CrossRef]
  • 2. Siegel, R.L., Miller, K.D., Fuchs, H.E., Jemal, A. (2022). Cancer statistics, 2022. In CA: A Cancer Journal for Clinicians, 72(1), 7-33). [CrossRef]
  • 3. Deisinger, P.J., Hill, T.S., English, J.C. (1996). Human exposure to naturally occurring hydroquinone. Journal of Toxicology and Environmental Health, 47(1), 31-46. [CrossRef]
  • 4. Tannock, I.F., de Wit, R., Berry, W.R., Horti, J., Pluzanska, A., Chi, K.N., Oudard, S., Théodore, C., James, N.D., Turesson, I., Rosenthal, M.A., Eisenberger, M.A., TAX 327 Investigators. (2004). Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. The New England Journal of Medicine, 351(15), 1502-1512. [CrossRef]
  • 5. Lin, S.R., Chang, C.H., Hsu, C.F., Tsai, M.J., Cheng, H., Leong, M.K., Sung, P.J., Chen, J.C., Weng, C.F. (2020). Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence. British Journal of Pharmacology, 177(6), 1409-1423. [CrossRef]
  • 6. Yao, Z., Le, T.H., Du, Q., Mu, H., Liu, C., Zhu, Y. (2021). The Potential clinical value of curcumin and its derivatives in colorectal cancer. Anti-Cancer Agents in Medicinal Chemistry, 21(13), 1626-1637. [CrossRef]
  • 7. Bahrami, A., Ferns, G.A. (2021). Effect of curcumin and its derivates on gastric cancer: Molecular mechanisms. Nutrition and Cancer, 73(9), 1553-1569. [CrossRef]
  • 8. Ruiz de Porras, V., Layos, L., Martínez-Balibrea, E. (2021). Curcumin: A therapeutic strategy for colorectal cancer? Seminars in Cancer Biology, 73, 321-330. [CrossRef]
  • 9. Mirzaei, H., Bagheri, H., Ghasemi, F., Khoi, J.M., Pourhanifeh, M.H., Heyden, Y.V., Mortezapour, E., Nikdasti, A., Jeandet, P., Khan, H., Sahebkar, A. (2021). Anti-cancer activity of curcumin on multiple myeloma. Anti-Cancer Agents in Medicinal Chemistry, 21(5), 575-586. [CrossRef]
  • 10. Nagaraju, G.P., Aliya, S., Zafar, S.F., Basha, R., Diaz, R., El-Rayes, B.F. (2012). The impact of curcumin on breast cancer. Integrative Biology: Quantitative Biosciences from Nano to Macro, 4(9), 996-1007. [CrossRef]
  • 11. Kunnumakkara, A.B., Bordoloi, D., Padmavathi, G., Monisha, J., Roy, N.K., Prasad, S., Aggarwal, B.B. (2017). Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. British Journal of Pharmacology, 174(11), 1325-1348. [CrossRef]
  • 12. Tomeh, M.A., Hadianamrei, R., Zhao, X. (2019). A review of curcumin and its derivatives as anticancer agents. International Journal of Molecular Sciences, 20(5), 1033. [CrossRef]
  • 13. Zoi, V., Galani, V., Lianos, G.D., Voulgaris, S., Kyritsis, A.P., Alexiou, G.A. (2021). The role of curcumin in cancer treatment. Biomedicines, 9(9), 1086. [CrossRef]
  • 14. Toschi, L., Finocchiaro, G., Bartolini, S., Gioia, V., Cappuzzo, F. (2005). Role of gemcitabine in cancer therapy. Future Oncology, 1(1), 7-17. [CrossRef]
  • 15. Correia, A.S., Gärtner, F., Vale, N. (2021). Drug combination and repurposing for cancer therapy: The example of breast cancer. Heliyon, 7(1), e05948. [CrossRef]
  • 16. Nowak-Sliwinska, P., Scapozza, L., Ruizi Altaba, A. (2019). Drug repurposing in oncology: Compounds, pathways, phenotypes and computational approaches for colorectal cancer. Biochimica et Biophysica Acta, Reviews on Cancer, 1871(2), 434-454. [CrossRef]
  • 17. Dorai, T., Gehani, N., Katz, A. (2000). Therapeutic potential of curcumin in human prostate cancer-I. curcumin induces apoptosis in both androgen-dependent and androgen-independent prostate cancer cells. Prostate Cancer and Prostatic Diseases, 3(2), 84-93. [CrossRef]
  • 18. Mukhopadhyay, A., Bueso-Ramos, C., Chatterjee, D., Pantazis, P., Aggarwal, B.B. (2001). Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene, 20(52), 7597-7609. [CrossRef]
  • 19. Lee, J.L., Ahn, J.H., Choi, M.K., Kim, Y., Hong, S.W., Lee, K.H., Jeong, I.G., Song, C., Hong, B.S., Hong, J.H., Ahn, H. (2014). Gemcitabine-oxaliplatin plus prednisolone is active in patients with castration-resistant prostate cancer for whom docetaxel-based chemotherapy failed. British Journal of Cancer, 110(10), 2472-2478.[CrossRef]
  • 20. Guo, Z., Zhang, X., Li, X., Xie, F., Su, B., Zhang, M., Zhou, L. (2015). Expression of oncogenic HMGN5 increases the sensitivity of prostate cancer cells to gemcitabine. Oncology Reports, 33(3), 1519-1525. [CrossRef]
  • 21. Qiao, L., Koutsos, M., Tsai, L.L., Kozoni, V., Guzman, J., Shiff, S.J., Rigas, B. (1996). Staurosporine inhibits the proliferation, alters the cell cycle distribution and induces apoptosis in HT-29 human colon adenocarcinoma cells. Cancer Letters, 107(1), 83-89. [CrossRef]
  • 22. Xie, Z., Xie, Y., Xu, Y., Zhou, H., Xu, W., Dong, Q. (2014). Bafilomycin A1 inhibits autophagy and induces apoptosis in MG63 osteosarcoma cells. Molecular Medicine Reports, 10(2), 1103-1107. [CrossRef]
  • 23. Fuloria, S., Mehta, J., Chandel, A., Sekar, M., Rani, N.N.I.M., Begum, M.Y., Subramaniyan, V., Chidambaram, K., Thangavelu, L., Nordin, R., Wu, Y.S., Sathasivam, K.V., Lum, P.T., Meenakshi, D.U., Kumarasamy, V., Azad, A.K., Fuloria, N.K. (2022). A comprehensive review on the therapeutic potential of curcuma longa linn. in relation to its major active constituent curcumin. Frontiers in Pharmacology, 13, 820806. [CrossRef]
  • 24. Gupta, S.C., Patchva, S., Aggarwal, B.B. (2013). Therapeutic roles of curcumin: Lessons learned from clinical trials. The AAPS Journal, 15(1), 195-218. [CrossRef]
  • 25. Garcea, G., Berry, D.P., Jones, D.J.L., Singh, R., Dennison, A.R., Farmer, P.B., Sharma, R.A., Steward, W.P., Gescher, A.J. (2005). Consumption of the putative chemopreventive agent curcumin by cancer patients: Assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. In Cancer Epidemiology, Biomarkers & Prevention, 14(1), 120-125. [CrossRef]
  • 26. Cheng, A.L., Hsu, C.H., Lin, J.K., Hsu, M.M., Ho, Y.F., Shen, T.S., Ko, J.Y., Lin, J.T., Lin, B.R., Ming-Shiang, W., Yu, H.S., Jee, S.H., Chen, G.S., Chen, T.M., Chen, C.A., Lai, M.K., Pu, Y.S., Pan, M.H., Wang, Y.J., Tsai, C.C., Hsieh, C.Y. (2001). Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Research, 21(4B), 2895-2900.
  • 27. Shtivelman, E., Beer, T.M., Evans, C.P. (2014). Molecular pathways and targets in prostate cancer. Oncotarget, 5(17), 7217-7259. [CrossRef]
  • 28. Correia, C., Ferreira, A., Santos, J., Lapa, R., Yliperttula, M., Urtti, A., Vale, N. (2021). New in vitro-in silico approach for the prediction of in vivo performance of drug combinations. In Molecules, 26(14), 4257. [CrossRef]
  • 29. Mukhopadhyay, A., Bueso-Ramos, C., Chatterjee, D., Pantazis, P., Aggarwal, B.B. (2001). Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene, 20(52), 7597-7609. [CrossRef]
  • 30. Raj, S.D., Fann, D.Y., Wong, E., Kennedy, B.K. (2021). Natural products as geroprotectors: An autophagy perspective. Medicinal Research Reviews, 41(6), 3118-3155. [CrossRef]
  • 31. Erzurumlu, Y., Dogan, H.K., Catakli, D., Aydogdu, E. (2022). Tarantula cubensis extract induces cell death in prostate cancer by promoting autophagic flux/ER stress responses and decreased epithelial-mesenchymal transition. Revista Brasileira de Farmacognosia, 32(4), 575-582. [CrossRef]
  • 32. Badadani, M. (2012). Autophagy mechanism, regulation, functions, and disorders. International Scholarly Research Notices, 2012, 927064. [CrossRef]
  • 33. Zhang, Z., Singh, R., Aschner, M. (2016). Methods for the detection of autophagy in mammalian cells. Current Protocols in Toxicology, 69, 20.12.1-20.12.26. [CrossRef]
  • 34. Li, Y., Li, S., Wu, H. (2022). Ubiquitination-proteasome system (UPS) and autophagy two main protein degradation machineries in response to cell stress. Cells, 11(5), 851. [CrossRef]
  • 35. Erzurumlu, Y., Ballar, P. (2017). Androgen mediated regulation of endoplasmic reticulum-associated degradation and its effects on prostate cancer. Scientific Reports, 7, 40719. [CrossRef]
  • 36. Erzurumlu, Y., Aydogdu, E., Dogan, H.K., Catakli, D., Muhammed, M.T., Buyuksandic, B. (2022). 1,25(OH)2 D3 induced vitamin D receptor signaling negatively regulates endoplasmic reticulum-associated degradation (ERAD) and androgen receptor signaling in human prostate cancer cells. Cellular Signalling, 103, 110577. [CrossRef]
  • 37. Adams, C.J., Kopp, M.C., Larburu, N., Nowak, P.R., Ali, M.M.U. (2019). Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1. Frontiers in Molecular Biosciences, 6, 11. [CrossRef]
  • 38. Chaitanya, G.V., Steven, A.J., Babu, P.P. (2010). PARP-1 cleavage fragments: Signatures of cell-death proteases in neurodegeneration. Cell Communication and Signaling, 8, 31. [CrossRef]
  • 39. Dai, C., Heemers, H., Sharifi, N. (2017). Androgen signaling in prostate cancer. Cold Spring Harbor Perspectives in Medicine, 7(9), a030452. [CrossRef]
  • 40. Zhu, M.L., Kyprianou, N. (2010). Role of androgens and the androgen receptor in epithelial-mesenchymal transition and invasion of prostate cancer cells. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 24(3), 769-777. [CrossRef]
  • 41. Xu, J., Chen, Y., Olopade, O.I. (2010). MYC and breast cancer. Genes & Cancer, 1(6), 629-640. [CrossRef]
  • 42. Madden, S.K., de Araujo, A.D., Gerhardt, M., Fairlie, D.P., Mason, J.M. (2021). Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Molecular Cancer, 20(1), 3. [CrossRef]
  • 43. Kim, M., Jang, K., Miller, P., Picon-Ruiz, M., Yeasky, T.M., El-Ashry, D., Slingerland, J.M. (2017). VEGFA links self-renewal and metastasis by inducing Sox2 to repress miR-452, driving Slug. Oncogene, 36(36), 5199-5211. [CrossRef]
  • 44. Guttilla Reed, I.K. (2015). Mechanism and regulation of epithelial-mesenchymal transition in cancer. Cell Health and Cytoskeleton, 7, 155-166. [CrossRef]

ZERDEÇALIN BİYOAKTİF BİLEŞİĞİ KURKUMİN, GEMSİTABİNİN PROSTAT KANSERİ HÜCRELERİNDEKİ ANTİ-MALİGNANT ÖZELLİĞİNİ GELİŞTİREBİLİR

Yıl 2023, , 739 - 751, 20.09.2023
https://doi.org/10.33483/jfpau.1232868

Öz

Amaç: Bu çalışmanın amacı kurkuminin gemsitabinin prostat kanseri hücreleri üzerindeki antikanser özelliklerine olan olası sinerjistik etkisinin araştırılmasıdır.
Gereç ve Yöntem: Çalışmalarda insan prostat adenokarsinoma hücre hattı LNCaP kullanıldı. Gemsitabin ve kurkuminin birlikte uygulanmasının LNCaP hücrelerinin canlılığı üzerindeki etkisi WST-1 yöntemiyle araştırıldı. Otofaji, ubikitin-proteazom sistemi (UPS), katlanmamış protein yanıtı (UPR) ve hücre ölümü ile ilişkili proteinler, androjenik sinyal, proto-onkojenik, anjiyojenik ve epitelyal-mezankimal geçiş (EMT) ile ilişkili protein düzeyleri immünoblotlama çalışmaları ile incelendi.
Sonuç ve Tartışma: Sonuçlarımız kurkuminin gemsitabinin LNCaP hücreleri üzerindeki anti kanser etkilerini güçlendirdiğini gösterdi. Kurkumin ve gemsitabinin eş uygulaması gemsitabinin hücre canlılığı üzerindeki baskılayıcı etkisini güçlendirdi. Bununla birlikte eş uygulamanın otofajiyi düzenlediği, UPS ve UPR’yi daha güçlü uyardığı, androjenik sinyali baskıladığı, hücre ölümü ile ilişkili PARP-1 ve kaspaz-3 aktivasyonuna yol açtığı, proto-onkojenik c-Myc, anjiyojenik VEGF-A ifade düzeylerini güçlü şekilde baskıladığını gösterdi. Ayrıca eş uygulamanın E-kaderin ifadesini uyararak ve N-kaderin düzeyini baskılayarak EMT’yi negatif düzenlediği belirlendi. Bu sonuçlar, gemsitabin ve kurkuminin birlikte kullanımının, gemsitabinin antikanser etkilerini geliştirerek prostat kanserine yönelik güçlü bir terapötik yaklaşım sunabileceğini düşündürmektedir.

Proje Numarası

TSG-2021-8302, TAB-2020-8253

Kaynakça

  • 1. Barsouk, A., Padala, S.A., Vakiti, A., Mohammed, A., Saginala, K., Thandra, K.C., Rawla, P., Barsouk, A. (2020). Epidemiology, staging and management of prostate cancer. Medical Sciences, 8(3), 28. [CrossRef]
  • 2. Siegel, R.L., Miller, K.D., Fuchs, H.E., Jemal, A. (2022). Cancer statistics, 2022. In CA: A Cancer Journal for Clinicians, 72(1), 7-33). [CrossRef]
  • 3. Deisinger, P.J., Hill, T.S., English, J.C. (1996). Human exposure to naturally occurring hydroquinone. Journal of Toxicology and Environmental Health, 47(1), 31-46. [CrossRef]
  • 4. Tannock, I.F., de Wit, R., Berry, W.R., Horti, J., Pluzanska, A., Chi, K.N., Oudard, S., Théodore, C., James, N.D., Turesson, I., Rosenthal, M.A., Eisenberger, M.A., TAX 327 Investigators. (2004). Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. The New England Journal of Medicine, 351(15), 1502-1512. [CrossRef]
  • 5. Lin, S.R., Chang, C.H., Hsu, C.F., Tsai, M.J., Cheng, H., Leong, M.K., Sung, P.J., Chen, J.C., Weng, C.F. (2020). Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence. British Journal of Pharmacology, 177(6), 1409-1423. [CrossRef]
  • 6. Yao, Z., Le, T.H., Du, Q., Mu, H., Liu, C., Zhu, Y. (2021). The Potential clinical value of curcumin and its derivatives in colorectal cancer. Anti-Cancer Agents in Medicinal Chemistry, 21(13), 1626-1637. [CrossRef]
  • 7. Bahrami, A., Ferns, G.A. (2021). Effect of curcumin and its derivates on gastric cancer: Molecular mechanisms. Nutrition and Cancer, 73(9), 1553-1569. [CrossRef]
  • 8. Ruiz de Porras, V., Layos, L., Martínez-Balibrea, E. (2021). Curcumin: A therapeutic strategy for colorectal cancer? Seminars in Cancer Biology, 73, 321-330. [CrossRef]
  • 9. Mirzaei, H., Bagheri, H., Ghasemi, F., Khoi, J.M., Pourhanifeh, M.H., Heyden, Y.V., Mortezapour, E., Nikdasti, A., Jeandet, P., Khan, H., Sahebkar, A. (2021). Anti-cancer activity of curcumin on multiple myeloma. Anti-Cancer Agents in Medicinal Chemistry, 21(5), 575-586. [CrossRef]
  • 10. Nagaraju, G.P., Aliya, S., Zafar, S.F., Basha, R., Diaz, R., El-Rayes, B.F. (2012). The impact of curcumin on breast cancer. Integrative Biology: Quantitative Biosciences from Nano to Macro, 4(9), 996-1007. [CrossRef]
  • 11. Kunnumakkara, A.B., Bordoloi, D., Padmavathi, G., Monisha, J., Roy, N.K., Prasad, S., Aggarwal, B.B. (2017). Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. British Journal of Pharmacology, 174(11), 1325-1348. [CrossRef]
  • 12. Tomeh, M.A., Hadianamrei, R., Zhao, X. (2019). A review of curcumin and its derivatives as anticancer agents. International Journal of Molecular Sciences, 20(5), 1033. [CrossRef]
  • 13. Zoi, V., Galani, V., Lianos, G.D., Voulgaris, S., Kyritsis, A.P., Alexiou, G.A. (2021). The role of curcumin in cancer treatment. Biomedicines, 9(9), 1086. [CrossRef]
  • 14. Toschi, L., Finocchiaro, G., Bartolini, S., Gioia, V., Cappuzzo, F. (2005). Role of gemcitabine in cancer therapy. Future Oncology, 1(1), 7-17. [CrossRef]
  • 15. Correia, A.S., Gärtner, F., Vale, N. (2021). Drug combination and repurposing for cancer therapy: The example of breast cancer. Heliyon, 7(1), e05948. [CrossRef]
  • 16. Nowak-Sliwinska, P., Scapozza, L., Ruizi Altaba, A. (2019). Drug repurposing in oncology: Compounds, pathways, phenotypes and computational approaches for colorectal cancer. Biochimica et Biophysica Acta, Reviews on Cancer, 1871(2), 434-454. [CrossRef]
  • 17. Dorai, T., Gehani, N., Katz, A. (2000). Therapeutic potential of curcumin in human prostate cancer-I. curcumin induces apoptosis in both androgen-dependent and androgen-independent prostate cancer cells. Prostate Cancer and Prostatic Diseases, 3(2), 84-93. [CrossRef]
  • 18. Mukhopadhyay, A., Bueso-Ramos, C., Chatterjee, D., Pantazis, P., Aggarwal, B.B. (2001). Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene, 20(52), 7597-7609. [CrossRef]
  • 19. Lee, J.L., Ahn, J.H., Choi, M.K., Kim, Y., Hong, S.W., Lee, K.H., Jeong, I.G., Song, C., Hong, B.S., Hong, J.H., Ahn, H. (2014). Gemcitabine-oxaliplatin plus prednisolone is active in patients with castration-resistant prostate cancer for whom docetaxel-based chemotherapy failed. British Journal of Cancer, 110(10), 2472-2478.[CrossRef]
  • 20. Guo, Z., Zhang, X., Li, X., Xie, F., Su, B., Zhang, M., Zhou, L. (2015). Expression of oncogenic HMGN5 increases the sensitivity of prostate cancer cells to gemcitabine. Oncology Reports, 33(3), 1519-1525. [CrossRef]
  • 21. Qiao, L., Koutsos, M., Tsai, L.L., Kozoni, V., Guzman, J., Shiff, S.J., Rigas, B. (1996). Staurosporine inhibits the proliferation, alters the cell cycle distribution and induces apoptosis in HT-29 human colon adenocarcinoma cells. Cancer Letters, 107(1), 83-89. [CrossRef]
  • 22. Xie, Z., Xie, Y., Xu, Y., Zhou, H., Xu, W., Dong, Q. (2014). Bafilomycin A1 inhibits autophagy and induces apoptosis in MG63 osteosarcoma cells. Molecular Medicine Reports, 10(2), 1103-1107. [CrossRef]
  • 23. Fuloria, S., Mehta, J., Chandel, A., Sekar, M., Rani, N.N.I.M., Begum, M.Y., Subramaniyan, V., Chidambaram, K., Thangavelu, L., Nordin, R., Wu, Y.S., Sathasivam, K.V., Lum, P.T., Meenakshi, D.U., Kumarasamy, V., Azad, A.K., Fuloria, N.K. (2022). A comprehensive review on the therapeutic potential of curcuma longa linn. in relation to its major active constituent curcumin. Frontiers in Pharmacology, 13, 820806. [CrossRef]
  • 24. Gupta, S.C., Patchva, S., Aggarwal, B.B. (2013). Therapeutic roles of curcumin: Lessons learned from clinical trials. The AAPS Journal, 15(1), 195-218. [CrossRef]
  • 25. Garcea, G., Berry, D.P., Jones, D.J.L., Singh, R., Dennison, A.R., Farmer, P.B., Sharma, R.A., Steward, W.P., Gescher, A.J. (2005). Consumption of the putative chemopreventive agent curcumin by cancer patients: Assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. In Cancer Epidemiology, Biomarkers & Prevention, 14(1), 120-125. [CrossRef]
  • 26. Cheng, A.L., Hsu, C.H., Lin, J.K., Hsu, M.M., Ho, Y.F., Shen, T.S., Ko, J.Y., Lin, J.T., Lin, B.R., Ming-Shiang, W., Yu, H.S., Jee, S.H., Chen, G.S., Chen, T.M., Chen, C.A., Lai, M.K., Pu, Y.S., Pan, M.H., Wang, Y.J., Tsai, C.C., Hsieh, C.Y. (2001). Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Research, 21(4B), 2895-2900.
  • 27. Shtivelman, E., Beer, T.M., Evans, C.P. (2014). Molecular pathways and targets in prostate cancer. Oncotarget, 5(17), 7217-7259. [CrossRef]
  • 28. Correia, C., Ferreira, A., Santos, J., Lapa, R., Yliperttula, M., Urtti, A., Vale, N. (2021). New in vitro-in silico approach for the prediction of in vivo performance of drug combinations. In Molecules, 26(14), 4257. [CrossRef]
  • 29. Mukhopadhyay, A., Bueso-Ramos, C., Chatterjee, D., Pantazis, P., Aggarwal, B.B. (2001). Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene, 20(52), 7597-7609. [CrossRef]
  • 30. Raj, S.D., Fann, D.Y., Wong, E., Kennedy, B.K. (2021). Natural products as geroprotectors: An autophagy perspective. Medicinal Research Reviews, 41(6), 3118-3155. [CrossRef]
  • 31. Erzurumlu, Y., Dogan, H.K., Catakli, D., Aydogdu, E. (2022). Tarantula cubensis extract induces cell death in prostate cancer by promoting autophagic flux/ER stress responses and decreased epithelial-mesenchymal transition. Revista Brasileira de Farmacognosia, 32(4), 575-582. [CrossRef]
  • 32. Badadani, M. (2012). Autophagy mechanism, regulation, functions, and disorders. International Scholarly Research Notices, 2012, 927064. [CrossRef]
  • 33. Zhang, Z., Singh, R., Aschner, M. (2016). Methods for the detection of autophagy in mammalian cells. Current Protocols in Toxicology, 69, 20.12.1-20.12.26. [CrossRef]
  • 34. Li, Y., Li, S., Wu, H. (2022). Ubiquitination-proteasome system (UPS) and autophagy two main protein degradation machineries in response to cell stress. Cells, 11(5), 851. [CrossRef]
  • 35. Erzurumlu, Y., Ballar, P. (2017). Androgen mediated regulation of endoplasmic reticulum-associated degradation and its effects on prostate cancer. Scientific Reports, 7, 40719. [CrossRef]
  • 36. Erzurumlu, Y., Aydogdu, E., Dogan, H.K., Catakli, D., Muhammed, M.T., Buyuksandic, B. (2022). 1,25(OH)2 D3 induced vitamin D receptor signaling negatively regulates endoplasmic reticulum-associated degradation (ERAD) and androgen receptor signaling in human prostate cancer cells. Cellular Signalling, 103, 110577. [CrossRef]
  • 37. Adams, C.J., Kopp, M.C., Larburu, N., Nowak, P.R., Ali, M.M.U. (2019). Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1. Frontiers in Molecular Biosciences, 6, 11. [CrossRef]
  • 38. Chaitanya, G.V., Steven, A.J., Babu, P.P. (2010). PARP-1 cleavage fragments: Signatures of cell-death proteases in neurodegeneration. Cell Communication and Signaling, 8, 31. [CrossRef]
  • 39. Dai, C., Heemers, H., Sharifi, N. (2017). Androgen signaling in prostate cancer. Cold Spring Harbor Perspectives in Medicine, 7(9), a030452. [CrossRef]
  • 40. Zhu, M.L., Kyprianou, N. (2010). Role of androgens and the androgen receptor in epithelial-mesenchymal transition and invasion of prostate cancer cells. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 24(3), 769-777. [CrossRef]
  • 41. Xu, J., Chen, Y., Olopade, O.I. (2010). MYC and breast cancer. Genes & Cancer, 1(6), 629-640. [CrossRef]
  • 42. Madden, S.K., de Araujo, A.D., Gerhardt, M., Fairlie, D.P., Mason, J.M. (2021). Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Molecular Cancer, 20(1), 3. [CrossRef]
  • 43. Kim, M., Jang, K., Miller, P., Picon-Ruiz, M., Yeasky, T.M., El-Ashry, D., Slingerland, J.M. (2017). VEGFA links self-renewal and metastasis by inducing Sox2 to repress miR-452, driving Slug. Oncogene, 36(36), 5199-5211. [CrossRef]
  • 44. Guttilla Reed, I.K. (2015). Mechanism and regulation of epithelial-mesenchymal transition in cancer. Cell Health and Cytoskeleton, 7, 155-166. [CrossRef]
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Yalçın Erzurumlu 0000-0001-6835-4436

Hatice Kübra Doğan 0000-0002-6061-1300

Deniz Çataklı 0000-0001-7327-5396

Proje Numarası TSG-2021-8302, TAB-2020-8253
Erken Görünüm Tarihi 14 Haziran 2023
Yayımlanma Tarihi 20 Eylül 2023
Gönderilme Tarihi 11 Ocak 2023
Kabul Tarihi 9 Mayıs 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Erzurumlu, Y., Doğan, H. K., & Çataklı, D. (2023). CURCUMIN, THE BIOACTIVE COMPOUND OF TURMERIC, MAY IMPROVE THE ANTI-MALIGNANT PROPERTY OF GEMCITABINE IN PROSTATE CANCER CELLS. Journal of Faculty of Pharmacy of Ankara University, 47(3), 739-751. https://doi.org/10.33483/jfpau.1232868
AMA Erzurumlu Y, Doğan HK, Çataklı D. CURCUMIN, THE BIOACTIVE COMPOUND OF TURMERIC, MAY IMPROVE THE ANTI-MALIGNANT PROPERTY OF GEMCITABINE IN PROSTATE CANCER CELLS. Ankara Ecz. Fak. Derg. Eylül 2023;47(3):739-751. doi:10.33483/jfpau.1232868
Chicago Erzurumlu, Yalçın, Hatice Kübra Doğan, ve Deniz Çataklı. “CURCUMIN, THE BIOACTIVE COMPOUND OF TURMERIC, MAY IMPROVE THE ANTI-MALIGNANT PROPERTY OF GEMCITABINE IN PROSTATE CANCER CELLS”. Journal of Faculty of Pharmacy of Ankara University 47, sy. 3 (Eylül 2023): 739-51. https://doi.org/10.33483/jfpau.1232868.
EndNote Erzurumlu Y, Doğan HK, Çataklı D (01 Eylül 2023) CURCUMIN, THE BIOACTIVE COMPOUND OF TURMERIC, MAY IMPROVE THE ANTI-MALIGNANT PROPERTY OF GEMCITABINE IN PROSTATE CANCER CELLS. Journal of Faculty of Pharmacy of Ankara University 47 3 739–751.
IEEE Y. Erzurumlu, H. K. Doğan, ve D. Çataklı, “CURCUMIN, THE BIOACTIVE COMPOUND OF TURMERIC, MAY IMPROVE THE ANTI-MALIGNANT PROPERTY OF GEMCITABINE IN PROSTATE CANCER CELLS”, Ankara Ecz. Fak. Derg., c. 47, sy. 3, ss. 739–751, 2023, doi: 10.33483/jfpau.1232868.
ISNAD Erzurumlu, Yalçın vd. “CURCUMIN, THE BIOACTIVE COMPOUND OF TURMERIC, MAY IMPROVE THE ANTI-MALIGNANT PROPERTY OF GEMCITABINE IN PROSTATE CANCER CELLS”. Journal of Faculty of Pharmacy of Ankara University 47/3 (Eylül 2023), 739-751. https://doi.org/10.33483/jfpau.1232868.
JAMA Erzurumlu Y, Doğan HK, Çataklı D. CURCUMIN, THE BIOACTIVE COMPOUND OF TURMERIC, MAY IMPROVE THE ANTI-MALIGNANT PROPERTY OF GEMCITABINE IN PROSTATE CANCER CELLS. Ankara Ecz. Fak. Derg. 2023;47:739–751.
MLA Erzurumlu, Yalçın vd. “CURCUMIN, THE BIOACTIVE COMPOUND OF TURMERIC, MAY IMPROVE THE ANTI-MALIGNANT PROPERTY OF GEMCITABINE IN PROSTATE CANCER CELLS”. Journal of Faculty of Pharmacy of Ankara University, c. 47, sy. 3, 2023, ss. 739-51, doi:10.33483/jfpau.1232868.
Vancouver Erzurumlu Y, Doğan HK, Çataklı D. CURCUMIN, THE BIOACTIVE COMPOUND OF TURMERIC, MAY IMPROVE THE ANTI-MALIGNANT PROPERTY OF GEMCITABINE IN PROSTATE CANCER CELLS. Ankara Ecz. Fak. Derg. 2023;47(3):739-51.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.