Derleme
BibTex RIS Kaynak Göster

İKİLİ GÖRÜNTÜLEMEDE NANOPARÇACIKLAR: PET VE FLORESANS GÖRÜNTÜLEME

Yıl 2024, , 658 - 671, 20.05.2024
https://doi.org/10.33483/jfpau.1323924

Öz

Amaç: Moleküler görüntüleme yöntemleri klinik ve preklinik alanlarda popülerlik kazanmaktadır. Bilgisayarlı tomografi (BT), pozitron emisyon tomografisi (PET), tek foton emisyon tomografisi (SPECT), manyetik rezonans (MRI) ve yakın kızılötesi floresans (NIRF) görüntüleme gibi birçok farklı görüntüleme yöntemi vardır ve her birinin farklı avantaj ve dezavantajları vardır. Bu moleküler görüntüleme yöntemlerinin dezavantajlarının üstesinden gelmek için iki veya daha fazla moleküler görüntüleme yönteminin bir kombinasyonu olan multimodal görüntüleme yöntemleri geliştirilmiştir. Bununla birlikte, bu görüntüleme yöntemleri, kullanılan multimodal görüntüleme yöntemlerini geliştirmek için farklı vektörlerle konjuge edilmiştir. Bu alanda görüntüleme yöntemlerinden kaynaklanan bazı dezavantajların üstesinden gelmek için multimodal görüntüleme yöntemlerinin konjugasyonunda ilaç taşıyıcı sistemler, peptitler, proteinler, antikorlar ve aptamerler yaygın olarak kullanılmaktadır. Bu derlemede PET ve NIRF kombinasyonlu görüntüleme modaliteleri anlatılmış ve daha spesifik olarak PET ve NIRF nanoparçacık ikili görüntüleme yöntemleri artıları ve eksileri ile incelenmiştir.
Sonuç ve Tartışma: İkili görüntüleme yöntemleri, tek görüntüleme yöntemlerinin sınırlarını ortadan kaldırır ve biyolojik, anatomik ve fizyolojik süreçlerin daha iyi anlaşılmasını sağlar. Çoklu görüntüleme yöntemleri birkaç dezavantajı olmasına rağmen, düşük maliyet ve toksisite ile birlikte daha yüksek hassasiyet, çözünürlük ve özgüllük sunar.

Kaynakça

  • 1. Beckmann, N., Kneuer, R., Gremlich, H.U., Karmouty-Quintana, H., Blé, F-X., Müller M. (2007). In Vivo mouse imaging and spectroscopy in drug discovery. NMR in Biomedicine, 20, 154-185. [CrossRef]
  • 2. Weissleder, R., Mahmood, U. (2001). Molecular imaging. Radiology, 219, 316-333. [CrossRef]
  • 3. Cui, X., Green, M.A., Blower, P.J., Zhou, D., Yan, Y., Zhang, W., Djanashvili, K., Mathe, D., Veres, D.S., Szigeti, K. (2015). Al(OH)3 facilitated synthesis of water-soluble, magnetic, radiolabelled and fluorescent hydroxyapatite nanoparticles. Chemical Communications (Camb), 51, 9332-9335. [CrossRef]
  • 4. Wu, M., Shu, J. (2018). Multimodal molecular imaging: Current status and future directions. Contrast Media & Molecular Imaging, 2018, 1382183. [CrossRef]
  • 5. Ge, J., Zhang, Q., Zeng, J., Gu, Z., Gao, M. (2020). Radiolabeling nanomaterials for multimodality imaging: New insights into nuclear medicine and cancer diagnosis. Biomaterials, 228,119553. [CrossRef]
  • 6. Smith, B.R., Gambhir, S.S. (2017). Nanomaterials for in vivo imaging. Chemical Reviews, 117, 901-986. [CrossRef]
  • 7. Xing, Y., Zhao, J., Conti, P.S., Chen, K. (2014). Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics, 4, 290-306. [CrossRef]
  • 8. Blamire, A.M. (2008). The technology of MRI-the next 10 years?. British Journal of Radiology, 81, 601-617. [CrossRef]
  • 9. Karpuz, M., Silindir-Gunay, M., Ozer, A.Y. (2018). Current and future approaches for effective cancer imaging and treatment. Cancer Biotherapy and Radiopharmaceuticals, 33, 39-51. [CrossRef]
  • 10. Sarcan, E.T., Silindir-Gunay, M., Ozer, A.Y. (2018). Theranostic polymeric nanoparticles for NIR imaging and photodynamic therapy. International Journal of Pharmaceutics, 551, 329-338. [CrossRef]
  • 11. Ali, Z., Abbasi, A.Z., Zhang, F., Arosio, P., Lascialfari, A., Casula, M.F., Wenk, A., Kreyling, W., Plapper, R., Seidel, M., Niessner, R., Knoll, J., Seubert, A., Parak, W.J. (2011). Multifunctional nanoparticles for dual imaging. Analytical Chemistry, 83, 2877-2882. [CrossRef]
  • 12. Bao, G., Mitragotri, S., Tong, S. (2013). Multifunctional nanoparticles for drug delivery and molecular imaging. Annual Review of Biomedical Engineering, 15, 253-282. [CrossRef]
  • 13. Bhavane, R., Starosolski, Z., Stupin, I., Ghaghada, K.B., Annapragada, A. (2018). NIR-II fluorescence imaging using indocyanine green nanoparticles. Scientific Reports, 8, 14455. [CrossRef]
  • 14. Gao, D., Hu, D., Liu, X., Zhang, X., Yuan, Z., Sheng, Z., Zheng, H. (2020). Recent advances in conjugated polymer nanoparticles for NIR-II imaging and therapy. ACS Applied Polymer Materials, 2, 4241-4257. [CrossRef]
  • 15. Alfano, R.R., Demos, S.G., Gayen, S.K. (1997). Advances in optical imaging of biomedical media. Annals of the New York Academy of Sciences, 820, 248-270. [CrossRef]
  • 16. Frangioni, J.V. (2003). In vivo near-infrared fluorescence imaging. Current Opinion in Chemical Biology, 7, 626-634. [CrossRef]
  • 17. An, F.F., Chan, M., Kommidi, H., Ting, R. (2016). Dual PET and near-infrared fluorescence imaging probes as tools for imaging in oncology. American Journal of Roentgenology, 207, 266-273. [CrossRef]
  • 18. Li, S., Goins, B., Zhang, L., Bao, A. (2012). Novel multifunctional theranostic liposome drug delivery system: Construction, characterization, and multimodality MR, near-infrared fluorescent, and nuclear imaging. Bioconjugate Chemistry, 23, 1322-1332. [CrossRef]
  • 19. Lee, S., Kang, S.W., Ryu, J.H., Na, J.H., Lee, D.E., Han, S.J., Kang, C.M., Choe, Y.S., Lee, K.C., Leary, J.F., Choi, K., Lee, K.H., Kim, K. (2014). Tumor-homing glycol chitosan-based optical/PET dual imaging nanoprobe for cancer diagnosis. Bioconjugate Chemistry, 25, 601-610. [CrossRef]
  • 20. Ballou, B., Ernst, L.A., Waggoner, A.S. (2005). Fluorescence imaging of tumors in vivo. Current Medicinal Chemistry, 12, 795-805.
  • 21. Sevick-Muraca, E.M., Rasmussen, J.C. (2008). Molecular imaging with optics: Primer and case for near-infrared fluorescence techniques in personalized medicine. Journal of Biomedical Optics, 13, 041303. [CrossRef]
  • 22. Santra, S., Dutta, D., Walter, G.A., Moudgil, B.M. (2005). Fluorescent nanoparticle probes for cancer imaging. Technology in Cancer Research & Treatment, 4, 593-602. [CrossRef]
  • 23. Altinoglu, E.I., Adair, J.H. (2010). Near infrared imaging with nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2, 461-477. [CrossRef]
  • 24. Rao, J., Dragulescu-Andrasi, A., Yao, H. (2007). Fluorescence imaging in vivo: Recent advances. Curr Opin Biotechnol, 18, 17-25. [CrossRef]
  • 25. Cutler, C.S., Hennkens, H.M., Sisay, N., Huclier-Markai, S., Jurisson, S.S. (2013). Radiometals for combined imaging and therapy. Chemical Reviews, 113, 858-883. [CrossRef]
  • 26. Wadas, T.J., Wong, E.H., Weisman, G.R., Anderson, C.J. (2010). Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chemical Reviews, 110, 2858-2902. [CrossRef]
  • 27. Ariztia, J., Solmont, K., Moise, N.P., Specklin, S., Heck, M.P., Lamande-Langle, S., Kuhnast, B. (2022). PET/Fluorescence Imaging: An overview of the chemical strategies to build dual imaging tools. Bioconjugate Chemistry, 33, 24-52. [CrossRef]
  • 28. Loudos, G., Kagadis, G.C., Psimadas, D. (2011). Current status and future perspectives of in vivo small animal imaging using radiolabeled nanoparticles. European Journal of Radiology, 78, 287-295. [CrossRef]
  • 29. van Dongen, G.A., Visser, G.W., Lub-de Hooge, M.N., de Vries, E.G., Perk, L.R. (2007). Immuno-PET: A navigator in monoclonal antibody development and applications. Oncologist, 12, 1379-1389. [CrossRef]
  • 30. Bentivoglio, V., Varani, M., Lauri, C., Ranieri, D., Signore, A. (2022). Methods for radiolabelling nanoparticles: PET Use (Part 2). Biomolecules, 12(10), 1517. [CrossRef]
  • 31. Sarcan, E.T., Silindir-Gunay, M., Ozer, A.Y., Hartman, N. (2021). 89Zr as a promising radionuclide and it’s applications for effective cancer imaging. Journal of Radioanalytical and Nuclear Chemistry, 330, 15-28. [CrossRef]
  • 32. Same, S., Aghanejad, A., Akbari Nakhjavani, S., Barar, J., Omidi, Y. (2016). Radiolabeled theranostics: Magnetic and gold nanoparticles. Bioimpacts, 6, 169-181. [CrossRef]
  • 33. Cai, W., Chen, K., Li, Z.B., Gambhir, S.S., Chen, X. (2007). Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. Journal of Nuclear Medicine, 48, 1862-1870. [CrossRef]
  • 34. Azhdarinia, A., Ghosh, P., Ghosh, S., Wilganowski, N., Sevick-Muraca, E.M. (2012). Dual-labeling strategies for nuclear and fluorescence molecular imaging: A review and analysis. Molecula Imaging and Biology, 14, 261-276. [CrossRef]
  • 35. Lee, S., Chen, X. (2009). Dual-modality probes for in vivo molecular imaging. Molecular Imaging, 8(2), 87-100. [CrossRef]
  • 36. Abou, D.S., Pickett, J.E., Thorek, D.L. (2015). Nuclear molecular imaging with nanoparticles: Radiochemistry, applications and translation. The British Journal of Radiology, 88, 20150185. [CrossRef]
  • 37. Padmanabhan, P., Kumar, A., Kumar, S., Chaudhary, R.K., Gulyas, B. (2016). Nanoparticles in practice for molecular-imaging applications: An overview. Acta Biomaterialia, 41, 1-16. [CrossRef]
  • 38. Schipper, M.L., Cheng, Z., Lee, S.W., Bentolila, L.A., Iyer, G., Rao, J., Chen, X., Wu, A.M., Weiss, S., Gambhir, S.S. (2007). MicroPET-based biodistribution of quantum dots in living mice. Journal of Nuclear Medicine, 48, 1511-1518. [CrossRef]
  • 39. Cai, W., Chen, X. (2008). Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging. Nature Protocols, 3, 89-96. [CrossRef]
  • 40. Pandey, S., Choudhary, P., Gajbhiye, V., Jadhav, S., Bodas, D. (2023). In vivo imaging of prostate tumor-targeted folic acid conjugated quantum dots. Cancer Nanotechnology, 14, 30. [CrossRef]
  • 41. Rees, K., Massey, M., Tran, M.V., Algar, W.R. (2020). Dextran-Functionalized Quantum Dot Immunoconjugates For Cellular Imaging. In: Fontes A, Santos BS (eds) Quantum Dots: Applications in Biology. Springer US, New York, NY, pp 143-168. [CrossRef]
  • 42. Rees, K., Tran, M.V., Massey, M., Kim, H., Krause, K.D., Algar, W.R. (2020). Dextran-functionalized semiconductor quantum dot bioconjugates for bioanalysis and imaging. Bioconjugate Chemistry, 31, 861-874. [CrossRef]
  • 43. Chu, T.C., Shieh, F., Lavery, L.A., Levy, M., Richards-Kortum, R., Korgel, B.A., Ellington, A.D. (2006). Labeling tumor cells with fluorescent nanocrystal-aptamer bioconjugates. Biosensors and Bioelectronics, 21, 1859-1866. [CrossRef]
  • 44. Fatima, I., Rahdar, A., Sargazi, S., Barani, M., Hassanisaadi, M., Thakur, V.K. (2021). Quantum dots: Synthesis, antibody conjugation, and HER2-Receptor targeting for breast cancer therapy. Journal of Functional Biomaterials, 12(4), 75. [CrossRef]
  • 45. Yemets, A., Plokhovska, S., Pushkarova, N., Blume, Y. (2022). Quantum dot-antibody conjugates for immunofluorescence studies of biomolecules and subcellular structures. Journal of Fluorescence, 32, 1713-1723. [CrossRef]
  • 46. Stroh, M., Zimmer, J.P., Duda, D.G., Levchenko, T.S., Cohen, K.S., Brown, E.B., Scadden, D.T., Torchilin, V.P., Bawendi, M.G., Fukumura, D., Jain, R.K. (2005). Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nature Medicine, 11, 678-682. [CrossRef]
  • 47. Mulder, W.J., Koole, R., Brandwijk, R.J., Storm, G., Chin, P.T., Strijkers, G.J., de Mello Donegá, C., Nicolay, K., Griffioen, A.W. (2006). Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Letters, 6, 1-6. [CrossRef]
  • 48. Kirchner, C., Liedl, T., Kudera, S., Pellegrino, T., Muñoz Javier, A., Gaub, H.E., Stölzle, S., Fertig, N., Parak, W.J. (2005). Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Letters, 5, 331-338. [CrossRef]
  • 49. Hu, K., Wang, H., Tang, G., Huang, T., Tang, X., Liang, X., Yao, S., Nie, D. (2015). In vivo cancer dual-targeting and dual-modality imaging with functionalized quantum dots. Journal of Nuclear Medicine, 56, 1278-1284. [CrossRef]
  • 50. Cai, W., Hsu, A.R., Li, Z.B., Chen, X. (2007). Are quantum dots ready for in vivo imaging in human subjects?. Nanoscale Research Letters, 2, 265-281. [CrossRef]
  • 51. Derfus, A.M., Chan, W.C.W., Bhatia, S.N. (2004). Probing the cytotoxicity of semiconductor quantum dots. Nano Letters, 4, 11-18. [CrossRef]
  • 52. Zimmer, J.P., Kim, S.W., Ohnishi, S., Tanaka, E., Frangioni, J.V., Bawendi, M.G. (2006). Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. Journal of American Chemical Society, 128, 2526-2527. [CrossRef]
  • 53. Ducongé, F., Pons, T., Pestourie, C., Hérin, L., Thézé, B., Gombert, K., Mahler, B., Hinnen, F., Kühnast, B., Dollé, F., Dubertret, B., Tavitian, B. (2008). Fluorine-18-labeled phospholipid quantum dot micelles for in vivo multimodal imaging from whole body to cellular scales. Bioconjugate Chemistry, 19, 1921-1926. [CrossRef]
  • 54. Stockhofe, K., Postema, J.M., Schieferstein, H., Ross, T.L. (2014). Radiolabeling of nanoparticles and polymers for PET imaging. Pharmaceuticals (Basel), 7, 392-418. [CrossRef]
  • 55. Xie, J., Chen, K., Huang, J., Lee, S., Wang, J., Gao, J., Li, X., Chen, X. (2010). PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials, 31, 3016-3022. [CrossRef]
  • 56. Ni, D., Jiang, D., Ehlerding, E.B., Huang, P., Cai, W. (2018). Radiolabeling silica-based nanoparticles via coordination chemistry: Basic principles, strategies, and applications. Accounts of Chemical Research, 51, 778-788. [CrossRef]
  • 57. Chen, F., Ma, K., Zhang, L., Madajewski, B., Zanzonico, P., Sequeira, S., Gonen, M., Wiesner, U., Bradbury, M.S. (2017). Target-or-Clear Zirconium-89 labeled silica nanoparticles for enhanced cancer-directed uptake in melanoma: A comparison of radiolabeling strategies. Chemistry of Materials, 29, 8269-8281. [CrossRef]
  • 58. Juthani, R., Madajewski, B., Yoo, B., Zhang, L., Chen, P.M., Chen, F., Turker, M.Z., Ma, K., Overholtzer, M., Longo, V.A., Carlin, S., Aragon-Sanabria, V., Huse, J., Gonen, M., Zanzonico, P., Rudin, C.M., Wiesner, U., Bradbury, M.S., Brennan, C.W. (2020). Ultrasmall core-shell silica nanoparticles for precision drug delivery in a high-grade malignant brain tumor model. Clinical Cancer Research, 26, 147-158. [CrossRef]
  • 59. Shi, S., Chen, F., Goel, S., Graves, S.A., Luo, H., Theuer, C.P., Engle, J.W., Cai, W. (2018). In vivo tumor-targeted dual-modality PET/Optical imaging with a yolk/shell-structured silica nanosystem. Nanomicro Letters, 10, 65. [CrossRef]
  • 60. Smith, B.R., Gambhir, S.S. (2017). Nanomaterials for in vivo imaging. Chemical Reviews, 117, 901-986. [CrossRef]
  • 61. Rampazzo, E., Genovese, D., Palomba, F., Prodi, L., Zaccheroni, N. (2018). NIR-fluorescent dye doped silica nanoparticles for in vivo imaging, sensing and theranostic. Methods and Applications in Fluorescence, 6, 022002. [CrossRef]
  • 62. Tang, L., Yang, X., Dobrucki, L.W., Chaudhury, I., Yin, Q., Yao, C., Lezmi, S., Helferich, W.G., Fan, T.M., Cheng, J. (2012). Aptamer-functionalized, ultra-small, monodisperse silica nanoconjugates for targeted dual-modal imaging of lymph nodes with metastatic tumors. Angewandte Chemie, 124, 12893-12898. [CrossRef]
  • 63. Rosenholm, J.M., Mamaeva, V., Sahlgren, C., Lindén, M. (2012). Nanoparticles in targeted cancer therapy: Mesoporous silica nanoparticles entering preclinical development stage. Nanomedicine, 7, 111-120. [CrossRef]
  • 64. Caltagirone, C., Bettoschi, A., Garau, A., Montis, R. (2015). Silica-based nanoparticles: A versatile tool for the development of efficient imaging agents. Chemical Society Reviews, 44, 4645-4671. [CrossRef]
  • 65. Zheng, X., Zeng, S., Hu, J., Wu, L., Hou, X. (2018). Applications of silica-based nanoparticles for multimodal bioimaging. Applied Spectroscopy Reviews, 53, 377-394. [CrossRef]
  • 66. Chen, F., Nayak, T.R., Goel, S., Valdovinos, H.F., Hong, H., Theuer, C.P., Barnhart, T.E., Cai, W. (2014). In vivo tumor vasculature targeted PET/NIRF imaging with TRC105(Fab)-conjugated, dual-labeled mesoporous silica nanoparticles. Molecular Pharmacology, 11, 4007-4014. [CrossRef]
  • 67. Chen, F., Hong, H., Goel, S., Graves, S.A., Orbay, H., Ehlerding, E.B., Shi, S., Theuer, C.P., Nickles, R.J., Cai, W. (2015). In vivo tumor vasculature targeting of CuS@MSN based theranostic nanomedicine. ACS Nano, 9, 3926-3934. [CrossRef]
  • 68. Chen, F., Hong, H., Shi, S., Goel, S., Valdovinos, H.F., Hernandez, R., Theuer, C.P., Barnhart, T.E., Cai, W. (2014). Engineering of hollow mesoporous silica nanoparticles for remarkably enhanced tumor active targeting efficacy. Scientific Reports, 4, 5080. [CrossRef]
  • 69. Harmsen, S., Medine, E.I., Moroz, M., Nurili, F., Lobo, J., Dong, Y., Turkekul, M., Pillarsetty, N.V.K., Ting, R., Ponomarev, V., Akin, O., Aras, O. (2021). A dual-modal PET/near infrared fluorescent nanotag for long-term immune cell tracking. Biomaterials, 269, 120630. [CrossRef]
  • 70. Chen, F., Ma, K., Benezra, M., Zhang, L., Cheal, S.M., Phillips, E., Yoo, B., Pauliah, M., Overholtzer, M., Zanzonico, P., Sequeira, S., Gonen, M., Quinn, T., Wiesner, U., Bradbury, M.S. (2017). Cancer-targeting ultrasmall silica nanoparticles for clinical translation: Physicochemical structure and biological property correlations. Chemistry of Materials, 29, 8766-8779. [CrossRef]
  • 71. Benezra, M., Penate-Medina, O., Zanzonico, P.B., Schaer, D., Ow, H., Burns, A., DeStanchina, E., Longo, V., Herz, E., Iyer, S., Wolchok, J., Larson, S.M., Wiesner, U., Bradbury, M.S. (2011). Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. Journal of Clinical Investigation, 121, 2768-2780. [CrossRef]
  • 72. Phillips, E., Penate-Medina, O., Zanzonico, P.B., Carvajal, R.D., Mohan, P., Ye, Y., Humm, J., Gonen, M., Kalaigian, H., Schoder, H., Strauss, H.W., Larson, S.M., Wiesner, U., Bradbury, M.S. (2014). Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Science Translational Medicine, 6, 260ra149. [CrossRef]
  • 73. Mitchell, N., Kalber, T.L., Cooper, M.S., Sunassee, K., Chalker, S.L., Shaw, K.P., Ordidge, K.L., Badar, A., Janes, S.M., Blower, P.J., Lythgoe, M.F., Hailes, H.C., Tabor, A.B. (2013). Incorporation of paramagnetic, fluorescent and PET/SPECT contrast agents into liposomes for multimodal imaging. Biomaterials, 34, 1179-1192. [CrossRef]
  • 74. Perez-Medina, C., Abdel-Atti, D., Zhang, Y., Longo, V.A., Irwin, C.P., Binderup, T., Ruiz-Cabello, J., Fayad, Z.A., Lewis, J.S., Mulder, W.J., Reiner, T. (2014). A modular labeling strategy for in vivo PET and near-infrared fluorescence imaging of nanoparticle tumor targeting. Journal of Nuclear Medicine, 55, 1706-1711. [CrossRef]
  • 75. Puri, A., Loomis, K., Smith, B., Lee, J.H., Yavlovich, A., Heldman, E., Blumenthal, R. (2009). Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Critical Reviews in Therapeutic Drug Carrier Systems, 26, 523-580. [CrossRef]
  • 76. Ghazanfari Hashemi, M., Gholami, M., Alaei, M., Ghazanfari Hashemi, M., Miratashi Yazdi, S.N., Talebi, V., Helali, H. (2023). The most common nanostructures as a contrast agent in medical imaging. Nanomedicine Research Journal, 8, 127-140. [CrossRef]
  • 77. Lobatto, M.E., Binderup, T., Robson, P.M., Giesen, L.F.P., Calcagno, C., Witjes, J., Fay, F., Baxter, S., Wessel, C.H., Eldib, M., Bini, J., Carlin, S.D., Stroes, E.S.G., Storm, G., Kjaer, A., Lewis, J.S., Reiner, T., Fayad, Z.A., Mulder, W.J.M., Perez-Medina, C. (2020). Multimodal positron emission tomography imaging to quantify uptake of (89)Zr-labeled liposomes in the atherosclerotic vessel wall. Bioconjugate Chemistry, 31, 360-368. [CrossRef]
  • 78. Du, Y., Liang, X., Li, Y., Sun, T., Jin, Z., Xue, H., Tian, J. (2017). Nuclear and fluorescent labeled PD-1-liposome-DOX-(64)Cu/IRDye800CW allows improved breast tumor targeted imaging and therapy. Molecular Pharmaceutics, 14, 3978-3986. [CrossRef]

NANOPARTICLES FOR DUAL IMAGING: PET AND FLUORESCENCE IMAGING

Yıl 2024, , 658 - 671, 20.05.2024
https://doi.org/10.33483/jfpau.1323924

Öz

Objective: Molecular imaging methods are gaining popularity in clinical and preclinical fields. There are many different imaging methods such as computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), single photon emission computed tomography (SPECT) and Near-infrared fluorescence (NIRF), and each has different advantages and disadvantages. Multimodal imaging methods, a combination of two or more molecular imaging modalities, have been developed to overcome the disadvantages of these molecular imaging methods. However, these imaging methods are conjugated with different vectors to improve the multimodal imaging methods used. In this field, drug delivery systems, peptides, proteins, antibodies and aptamers have been widely used for conjugation of multimodal imaging modalities to overcome some of the disadvantages that come from imaging modalities. In this review, PET and NIRF combination imaging modalities were explained and more specifically PET and NIRF nanoparticle dual imaging modalities with their pros and cons were investigated.
Result and Discussion: Dual imaging modalities overcome to limitations of single imaging modalities and provide a better understanding of biological, anatomical, and physiological processes. Multimodal imaging modalities offer higher sensitivity, resolution, and specificity with
lower cost and toxicity although have several disadvantages.

Kaynakça

  • 1. Beckmann, N., Kneuer, R., Gremlich, H.U., Karmouty-Quintana, H., Blé, F-X., Müller M. (2007). In Vivo mouse imaging and spectroscopy in drug discovery. NMR in Biomedicine, 20, 154-185. [CrossRef]
  • 2. Weissleder, R., Mahmood, U. (2001). Molecular imaging. Radiology, 219, 316-333. [CrossRef]
  • 3. Cui, X., Green, M.A., Blower, P.J., Zhou, D., Yan, Y., Zhang, W., Djanashvili, K., Mathe, D., Veres, D.S., Szigeti, K. (2015). Al(OH)3 facilitated synthesis of water-soluble, magnetic, radiolabelled and fluorescent hydroxyapatite nanoparticles. Chemical Communications (Camb), 51, 9332-9335. [CrossRef]
  • 4. Wu, M., Shu, J. (2018). Multimodal molecular imaging: Current status and future directions. Contrast Media & Molecular Imaging, 2018, 1382183. [CrossRef]
  • 5. Ge, J., Zhang, Q., Zeng, J., Gu, Z., Gao, M. (2020). Radiolabeling nanomaterials for multimodality imaging: New insights into nuclear medicine and cancer diagnosis. Biomaterials, 228,119553. [CrossRef]
  • 6. Smith, B.R., Gambhir, S.S. (2017). Nanomaterials for in vivo imaging. Chemical Reviews, 117, 901-986. [CrossRef]
  • 7. Xing, Y., Zhao, J., Conti, P.S., Chen, K. (2014). Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics, 4, 290-306. [CrossRef]
  • 8. Blamire, A.M. (2008). The technology of MRI-the next 10 years?. British Journal of Radiology, 81, 601-617. [CrossRef]
  • 9. Karpuz, M., Silindir-Gunay, M., Ozer, A.Y. (2018). Current and future approaches for effective cancer imaging and treatment. Cancer Biotherapy and Radiopharmaceuticals, 33, 39-51. [CrossRef]
  • 10. Sarcan, E.T., Silindir-Gunay, M., Ozer, A.Y. (2018). Theranostic polymeric nanoparticles for NIR imaging and photodynamic therapy. International Journal of Pharmaceutics, 551, 329-338. [CrossRef]
  • 11. Ali, Z., Abbasi, A.Z., Zhang, F., Arosio, P., Lascialfari, A., Casula, M.F., Wenk, A., Kreyling, W., Plapper, R., Seidel, M., Niessner, R., Knoll, J., Seubert, A., Parak, W.J. (2011). Multifunctional nanoparticles for dual imaging. Analytical Chemistry, 83, 2877-2882. [CrossRef]
  • 12. Bao, G., Mitragotri, S., Tong, S. (2013). Multifunctional nanoparticles for drug delivery and molecular imaging. Annual Review of Biomedical Engineering, 15, 253-282. [CrossRef]
  • 13. Bhavane, R., Starosolski, Z., Stupin, I., Ghaghada, K.B., Annapragada, A. (2018). NIR-II fluorescence imaging using indocyanine green nanoparticles. Scientific Reports, 8, 14455. [CrossRef]
  • 14. Gao, D., Hu, D., Liu, X., Zhang, X., Yuan, Z., Sheng, Z., Zheng, H. (2020). Recent advances in conjugated polymer nanoparticles for NIR-II imaging and therapy. ACS Applied Polymer Materials, 2, 4241-4257. [CrossRef]
  • 15. Alfano, R.R., Demos, S.G., Gayen, S.K. (1997). Advances in optical imaging of biomedical media. Annals of the New York Academy of Sciences, 820, 248-270. [CrossRef]
  • 16. Frangioni, J.V. (2003). In vivo near-infrared fluorescence imaging. Current Opinion in Chemical Biology, 7, 626-634. [CrossRef]
  • 17. An, F.F., Chan, M., Kommidi, H., Ting, R. (2016). Dual PET and near-infrared fluorescence imaging probes as tools for imaging in oncology. American Journal of Roentgenology, 207, 266-273. [CrossRef]
  • 18. Li, S., Goins, B., Zhang, L., Bao, A. (2012). Novel multifunctional theranostic liposome drug delivery system: Construction, characterization, and multimodality MR, near-infrared fluorescent, and nuclear imaging. Bioconjugate Chemistry, 23, 1322-1332. [CrossRef]
  • 19. Lee, S., Kang, S.W., Ryu, J.H., Na, J.H., Lee, D.E., Han, S.J., Kang, C.M., Choe, Y.S., Lee, K.C., Leary, J.F., Choi, K., Lee, K.H., Kim, K. (2014). Tumor-homing glycol chitosan-based optical/PET dual imaging nanoprobe for cancer diagnosis. Bioconjugate Chemistry, 25, 601-610. [CrossRef]
  • 20. Ballou, B., Ernst, L.A., Waggoner, A.S. (2005). Fluorescence imaging of tumors in vivo. Current Medicinal Chemistry, 12, 795-805.
  • 21. Sevick-Muraca, E.M., Rasmussen, J.C. (2008). Molecular imaging with optics: Primer and case for near-infrared fluorescence techniques in personalized medicine. Journal of Biomedical Optics, 13, 041303. [CrossRef]
  • 22. Santra, S., Dutta, D., Walter, G.A., Moudgil, B.M. (2005). Fluorescent nanoparticle probes for cancer imaging. Technology in Cancer Research & Treatment, 4, 593-602. [CrossRef]
  • 23. Altinoglu, E.I., Adair, J.H. (2010). Near infrared imaging with nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2, 461-477. [CrossRef]
  • 24. Rao, J., Dragulescu-Andrasi, A., Yao, H. (2007). Fluorescence imaging in vivo: Recent advances. Curr Opin Biotechnol, 18, 17-25. [CrossRef]
  • 25. Cutler, C.S., Hennkens, H.M., Sisay, N., Huclier-Markai, S., Jurisson, S.S. (2013). Radiometals for combined imaging and therapy. Chemical Reviews, 113, 858-883. [CrossRef]
  • 26. Wadas, T.J., Wong, E.H., Weisman, G.R., Anderson, C.J. (2010). Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chemical Reviews, 110, 2858-2902. [CrossRef]
  • 27. Ariztia, J., Solmont, K., Moise, N.P., Specklin, S., Heck, M.P., Lamande-Langle, S., Kuhnast, B. (2022). PET/Fluorescence Imaging: An overview of the chemical strategies to build dual imaging tools. Bioconjugate Chemistry, 33, 24-52. [CrossRef]
  • 28. Loudos, G., Kagadis, G.C., Psimadas, D. (2011). Current status and future perspectives of in vivo small animal imaging using radiolabeled nanoparticles. European Journal of Radiology, 78, 287-295. [CrossRef]
  • 29. van Dongen, G.A., Visser, G.W., Lub-de Hooge, M.N., de Vries, E.G., Perk, L.R. (2007). Immuno-PET: A navigator in monoclonal antibody development and applications. Oncologist, 12, 1379-1389. [CrossRef]
  • 30. Bentivoglio, V., Varani, M., Lauri, C., Ranieri, D., Signore, A. (2022). Methods for radiolabelling nanoparticles: PET Use (Part 2). Biomolecules, 12(10), 1517. [CrossRef]
  • 31. Sarcan, E.T., Silindir-Gunay, M., Ozer, A.Y., Hartman, N. (2021). 89Zr as a promising radionuclide and it’s applications for effective cancer imaging. Journal of Radioanalytical and Nuclear Chemistry, 330, 15-28. [CrossRef]
  • 32. Same, S., Aghanejad, A., Akbari Nakhjavani, S., Barar, J., Omidi, Y. (2016). Radiolabeled theranostics: Magnetic and gold nanoparticles. Bioimpacts, 6, 169-181. [CrossRef]
  • 33. Cai, W., Chen, K., Li, Z.B., Gambhir, S.S., Chen, X. (2007). Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. Journal of Nuclear Medicine, 48, 1862-1870. [CrossRef]
  • 34. Azhdarinia, A., Ghosh, P., Ghosh, S., Wilganowski, N., Sevick-Muraca, E.M. (2012). Dual-labeling strategies for nuclear and fluorescence molecular imaging: A review and analysis. Molecula Imaging and Biology, 14, 261-276. [CrossRef]
  • 35. Lee, S., Chen, X. (2009). Dual-modality probes for in vivo molecular imaging. Molecular Imaging, 8(2), 87-100. [CrossRef]
  • 36. Abou, D.S., Pickett, J.E., Thorek, D.L. (2015). Nuclear molecular imaging with nanoparticles: Radiochemistry, applications and translation. The British Journal of Radiology, 88, 20150185. [CrossRef]
  • 37. Padmanabhan, P., Kumar, A., Kumar, S., Chaudhary, R.K., Gulyas, B. (2016). Nanoparticles in practice for molecular-imaging applications: An overview. Acta Biomaterialia, 41, 1-16. [CrossRef]
  • 38. Schipper, M.L., Cheng, Z., Lee, S.W., Bentolila, L.A., Iyer, G., Rao, J., Chen, X., Wu, A.M., Weiss, S., Gambhir, S.S. (2007). MicroPET-based biodistribution of quantum dots in living mice. Journal of Nuclear Medicine, 48, 1511-1518. [CrossRef]
  • 39. Cai, W., Chen, X. (2008). Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging. Nature Protocols, 3, 89-96. [CrossRef]
  • 40. Pandey, S., Choudhary, P., Gajbhiye, V., Jadhav, S., Bodas, D. (2023). In vivo imaging of prostate tumor-targeted folic acid conjugated quantum dots. Cancer Nanotechnology, 14, 30. [CrossRef]
  • 41. Rees, K., Massey, M., Tran, M.V., Algar, W.R. (2020). Dextran-Functionalized Quantum Dot Immunoconjugates For Cellular Imaging. In: Fontes A, Santos BS (eds) Quantum Dots: Applications in Biology. Springer US, New York, NY, pp 143-168. [CrossRef]
  • 42. Rees, K., Tran, M.V., Massey, M., Kim, H., Krause, K.D., Algar, W.R. (2020). Dextran-functionalized semiconductor quantum dot bioconjugates for bioanalysis and imaging. Bioconjugate Chemistry, 31, 861-874. [CrossRef]
  • 43. Chu, T.C., Shieh, F., Lavery, L.A., Levy, M., Richards-Kortum, R., Korgel, B.A., Ellington, A.D. (2006). Labeling tumor cells with fluorescent nanocrystal-aptamer bioconjugates. Biosensors and Bioelectronics, 21, 1859-1866. [CrossRef]
  • 44. Fatima, I., Rahdar, A., Sargazi, S., Barani, M., Hassanisaadi, M., Thakur, V.K. (2021). Quantum dots: Synthesis, antibody conjugation, and HER2-Receptor targeting for breast cancer therapy. Journal of Functional Biomaterials, 12(4), 75. [CrossRef]
  • 45. Yemets, A., Plokhovska, S., Pushkarova, N., Blume, Y. (2022). Quantum dot-antibody conjugates for immunofluorescence studies of biomolecules and subcellular structures. Journal of Fluorescence, 32, 1713-1723. [CrossRef]
  • 46. Stroh, M., Zimmer, J.P., Duda, D.G., Levchenko, T.S., Cohen, K.S., Brown, E.B., Scadden, D.T., Torchilin, V.P., Bawendi, M.G., Fukumura, D., Jain, R.K. (2005). Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nature Medicine, 11, 678-682. [CrossRef]
  • 47. Mulder, W.J., Koole, R., Brandwijk, R.J., Storm, G., Chin, P.T., Strijkers, G.J., de Mello Donegá, C., Nicolay, K., Griffioen, A.W. (2006). Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Letters, 6, 1-6. [CrossRef]
  • 48. Kirchner, C., Liedl, T., Kudera, S., Pellegrino, T., Muñoz Javier, A., Gaub, H.E., Stölzle, S., Fertig, N., Parak, W.J. (2005). Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Letters, 5, 331-338. [CrossRef]
  • 49. Hu, K., Wang, H., Tang, G., Huang, T., Tang, X., Liang, X., Yao, S., Nie, D. (2015). In vivo cancer dual-targeting and dual-modality imaging with functionalized quantum dots. Journal of Nuclear Medicine, 56, 1278-1284. [CrossRef]
  • 50. Cai, W., Hsu, A.R., Li, Z.B., Chen, X. (2007). Are quantum dots ready for in vivo imaging in human subjects?. Nanoscale Research Letters, 2, 265-281. [CrossRef]
  • 51. Derfus, A.M., Chan, W.C.W., Bhatia, S.N. (2004). Probing the cytotoxicity of semiconductor quantum dots. Nano Letters, 4, 11-18. [CrossRef]
  • 52. Zimmer, J.P., Kim, S.W., Ohnishi, S., Tanaka, E., Frangioni, J.V., Bawendi, M.G. (2006). Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. Journal of American Chemical Society, 128, 2526-2527. [CrossRef]
  • 53. Ducongé, F., Pons, T., Pestourie, C., Hérin, L., Thézé, B., Gombert, K., Mahler, B., Hinnen, F., Kühnast, B., Dollé, F., Dubertret, B., Tavitian, B. (2008). Fluorine-18-labeled phospholipid quantum dot micelles for in vivo multimodal imaging from whole body to cellular scales. Bioconjugate Chemistry, 19, 1921-1926. [CrossRef]
  • 54. Stockhofe, K., Postema, J.M., Schieferstein, H., Ross, T.L. (2014). Radiolabeling of nanoparticles and polymers for PET imaging. Pharmaceuticals (Basel), 7, 392-418. [CrossRef]
  • 55. Xie, J., Chen, K., Huang, J., Lee, S., Wang, J., Gao, J., Li, X., Chen, X. (2010). PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials, 31, 3016-3022. [CrossRef]
  • 56. Ni, D., Jiang, D., Ehlerding, E.B., Huang, P., Cai, W. (2018). Radiolabeling silica-based nanoparticles via coordination chemistry: Basic principles, strategies, and applications. Accounts of Chemical Research, 51, 778-788. [CrossRef]
  • 57. Chen, F., Ma, K., Zhang, L., Madajewski, B., Zanzonico, P., Sequeira, S., Gonen, M., Wiesner, U., Bradbury, M.S. (2017). Target-or-Clear Zirconium-89 labeled silica nanoparticles for enhanced cancer-directed uptake in melanoma: A comparison of radiolabeling strategies. Chemistry of Materials, 29, 8269-8281. [CrossRef]
  • 58. Juthani, R., Madajewski, B., Yoo, B., Zhang, L., Chen, P.M., Chen, F., Turker, M.Z., Ma, K., Overholtzer, M., Longo, V.A., Carlin, S., Aragon-Sanabria, V., Huse, J., Gonen, M., Zanzonico, P., Rudin, C.M., Wiesner, U., Bradbury, M.S., Brennan, C.W. (2020). Ultrasmall core-shell silica nanoparticles for precision drug delivery in a high-grade malignant brain tumor model. Clinical Cancer Research, 26, 147-158. [CrossRef]
  • 59. Shi, S., Chen, F., Goel, S., Graves, S.A., Luo, H., Theuer, C.P., Engle, J.W., Cai, W. (2018). In vivo tumor-targeted dual-modality PET/Optical imaging with a yolk/shell-structured silica nanosystem. Nanomicro Letters, 10, 65. [CrossRef]
  • 60. Smith, B.R., Gambhir, S.S. (2017). Nanomaterials for in vivo imaging. Chemical Reviews, 117, 901-986. [CrossRef]
  • 61. Rampazzo, E., Genovese, D., Palomba, F., Prodi, L., Zaccheroni, N. (2018). NIR-fluorescent dye doped silica nanoparticles for in vivo imaging, sensing and theranostic. Methods and Applications in Fluorescence, 6, 022002. [CrossRef]
  • 62. Tang, L., Yang, X., Dobrucki, L.W., Chaudhury, I., Yin, Q., Yao, C., Lezmi, S., Helferich, W.G., Fan, T.M., Cheng, J. (2012). Aptamer-functionalized, ultra-small, monodisperse silica nanoconjugates for targeted dual-modal imaging of lymph nodes with metastatic tumors. Angewandte Chemie, 124, 12893-12898. [CrossRef]
  • 63. Rosenholm, J.M., Mamaeva, V., Sahlgren, C., Lindén, M. (2012). Nanoparticles in targeted cancer therapy: Mesoporous silica nanoparticles entering preclinical development stage. Nanomedicine, 7, 111-120. [CrossRef]
  • 64. Caltagirone, C., Bettoschi, A., Garau, A., Montis, R. (2015). Silica-based nanoparticles: A versatile tool for the development of efficient imaging agents. Chemical Society Reviews, 44, 4645-4671. [CrossRef]
  • 65. Zheng, X., Zeng, S., Hu, J., Wu, L., Hou, X. (2018). Applications of silica-based nanoparticles for multimodal bioimaging. Applied Spectroscopy Reviews, 53, 377-394. [CrossRef]
  • 66. Chen, F., Nayak, T.R., Goel, S., Valdovinos, H.F., Hong, H., Theuer, C.P., Barnhart, T.E., Cai, W. (2014). In vivo tumor vasculature targeted PET/NIRF imaging with TRC105(Fab)-conjugated, dual-labeled mesoporous silica nanoparticles. Molecular Pharmacology, 11, 4007-4014. [CrossRef]
  • 67. Chen, F., Hong, H., Goel, S., Graves, S.A., Orbay, H., Ehlerding, E.B., Shi, S., Theuer, C.P., Nickles, R.J., Cai, W. (2015). In vivo tumor vasculature targeting of CuS@MSN based theranostic nanomedicine. ACS Nano, 9, 3926-3934. [CrossRef]
  • 68. Chen, F., Hong, H., Shi, S., Goel, S., Valdovinos, H.F., Hernandez, R., Theuer, C.P., Barnhart, T.E., Cai, W. (2014). Engineering of hollow mesoporous silica nanoparticles for remarkably enhanced tumor active targeting efficacy. Scientific Reports, 4, 5080. [CrossRef]
  • 69. Harmsen, S., Medine, E.I., Moroz, M., Nurili, F., Lobo, J., Dong, Y., Turkekul, M., Pillarsetty, N.V.K., Ting, R., Ponomarev, V., Akin, O., Aras, O. (2021). A dual-modal PET/near infrared fluorescent nanotag for long-term immune cell tracking. Biomaterials, 269, 120630. [CrossRef]
  • 70. Chen, F., Ma, K., Benezra, M., Zhang, L., Cheal, S.M., Phillips, E., Yoo, B., Pauliah, M., Overholtzer, M., Zanzonico, P., Sequeira, S., Gonen, M., Quinn, T., Wiesner, U., Bradbury, M.S. (2017). Cancer-targeting ultrasmall silica nanoparticles for clinical translation: Physicochemical structure and biological property correlations. Chemistry of Materials, 29, 8766-8779. [CrossRef]
  • 71. Benezra, M., Penate-Medina, O., Zanzonico, P.B., Schaer, D., Ow, H., Burns, A., DeStanchina, E., Longo, V., Herz, E., Iyer, S., Wolchok, J., Larson, S.M., Wiesner, U., Bradbury, M.S. (2011). Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. Journal of Clinical Investigation, 121, 2768-2780. [CrossRef]
  • 72. Phillips, E., Penate-Medina, O., Zanzonico, P.B., Carvajal, R.D., Mohan, P., Ye, Y., Humm, J., Gonen, M., Kalaigian, H., Schoder, H., Strauss, H.W., Larson, S.M., Wiesner, U., Bradbury, M.S. (2014). Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Science Translational Medicine, 6, 260ra149. [CrossRef]
  • 73. Mitchell, N., Kalber, T.L., Cooper, M.S., Sunassee, K., Chalker, S.L., Shaw, K.P., Ordidge, K.L., Badar, A., Janes, S.M., Blower, P.J., Lythgoe, M.F., Hailes, H.C., Tabor, A.B. (2013). Incorporation of paramagnetic, fluorescent and PET/SPECT contrast agents into liposomes for multimodal imaging. Biomaterials, 34, 1179-1192. [CrossRef]
  • 74. Perez-Medina, C., Abdel-Atti, D., Zhang, Y., Longo, V.A., Irwin, C.P., Binderup, T., Ruiz-Cabello, J., Fayad, Z.A., Lewis, J.S., Mulder, W.J., Reiner, T. (2014). A modular labeling strategy for in vivo PET and near-infrared fluorescence imaging of nanoparticle tumor targeting. Journal of Nuclear Medicine, 55, 1706-1711. [CrossRef]
  • 75. Puri, A., Loomis, K., Smith, B., Lee, J.H., Yavlovich, A., Heldman, E., Blumenthal, R. (2009). Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Critical Reviews in Therapeutic Drug Carrier Systems, 26, 523-580. [CrossRef]
  • 76. Ghazanfari Hashemi, M., Gholami, M., Alaei, M., Ghazanfari Hashemi, M., Miratashi Yazdi, S.N., Talebi, V., Helali, H. (2023). The most common nanostructures as a contrast agent in medical imaging. Nanomedicine Research Journal, 8, 127-140. [CrossRef]
  • 77. Lobatto, M.E., Binderup, T., Robson, P.M., Giesen, L.F.P., Calcagno, C., Witjes, J., Fay, F., Baxter, S., Wessel, C.H., Eldib, M., Bini, J., Carlin, S.D., Stroes, E.S.G., Storm, G., Kjaer, A., Lewis, J.S., Reiner, T., Fayad, Z.A., Mulder, W.J.M., Perez-Medina, C. (2020). Multimodal positron emission tomography imaging to quantify uptake of (89)Zr-labeled liposomes in the atherosclerotic vessel wall. Bioconjugate Chemistry, 31, 360-368. [CrossRef]
  • 78. Du, Y., Liang, X., Li, Y., Sun, T., Jin, Z., Xue, H., Tian, J. (2017). Nuclear and fluorescent labeled PD-1-liposome-DOX-(64)Cu/IRDye800CW allows improved breast tumor targeted imaging and therapy. Molecular Pharmaceutics, 14, 3978-3986. [CrossRef]
Toplam 78 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Radyofarmasi
Bölüm Derleme
Yazarlar

Elif Tugce Sarcan 0000-0002-7323-6044

Erken Görünüm Tarihi 22 Şubat 2024
Yayımlanma Tarihi 20 Mayıs 2024
Gönderilme Tarihi 6 Temmuz 2023
Kabul Tarihi 24 Ocak 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Sarcan, E. T. (2024). NANOPARTICLES FOR DUAL IMAGING: PET AND FLUORESCENCE IMAGING. Journal of Faculty of Pharmacy of Ankara University, 48(2), 658-671. https://doi.org/10.33483/jfpau.1323924
AMA Sarcan ET. NANOPARTICLES FOR DUAL IMAGING: PET AND FLUORESCENCE IMAGING. Ankara Ecz. Fak. Derg. Mayıs 2024;48(2):658-671. doi:10.33483/jfpau.1323924
Chicago Sarcan, Elif Tugce. “NANOPARTICLES FOR DUAL IMAGING: PET AND FLUORESCENCE IMAGING”. Journal of Faculty of Pharmacy of Ankara University 48, sy. 2 (Mayıs 2024): 658-71. https://doi.org/10.33483/jfpau.1323924.
EndNote Sarcan ET (01 Mayıs 2024) NANOPARTICLES FOR DUAL IMAGING: PET AND FLUORESCENCE IMAGING. Journal of Faculty of Pharmacy of Ankara University 48 2 658–671.
IEEE E. T. Sarcan, “NANOPARTICLES FOR DUAL IMAGING: PET AND FLUORESCENCE IMAGING”, Ankara Ecz. Fak. Derg., c. 48, sy. 2, ss. 658–671, 2024, doi: 10.33483/jfpau.1323924.
ISNAD Sarcan, Elif Tugce. “NANOPARTICLES FOR DUAL IMAGING: PET AND FLUORESCENCE IMAGING”. Journal of Faculty of Pharmacy of Ankara University 48/2 (Mayıs 2024), 658-671. https://doi.org/10.33483/jfpau.1323924.
JAMA Sarcan ET. NANOPARTICLES FOR DUAL IMAGING: PET AND FLUORESCENCE IMAGING. Ankara Ecz. Fak. Derg. 2024;48:658–671.
MLA Sarcan, Elif Tugce. “NANOPARTICLES FOR DUAL IMAGING: PET AND FLUORESCENCE IMAGING”. Journal of Faculty of Pharmacy of Ankara University, c. 48, sy. 2, 2024, ss. 658-71, doi:10.33483/jfpau.1323924.
Vancouver Sarcan ET. NANOPARTICLES FOR DUAL IMAGING: PET AND FLUORESCENCE IMAGING. Ankara Ecz. Fak. Derg. 2024;48(2):658-71.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.