Araştırma Makalesi
BibTex RIS Kaynak Göster

DIOSPYROS MESPILIFORMIS HOCHST. EX A. DC. (EBENACEAE) YAPRAKLARININ FİTOKİMYASAL PROFİLLENDİRMESİ, ANTİOKSİDAN, ANTİDİYABETİK VE ADMET ÇALIŞMASI

Yıl 2024, , 412 - 435, 20.05.2024
https://doi.org/10.33483/jfpau.1354293

Öz

Amaç: Bu çalışmada Diospyros mespiliformis (DM) ham etanol ekstraktı (CR), etil asetat (EEF) ve sulu fraksiyonları (AQF) üzerinde fitokimyasal profilleme, antioksidan, antidiyabetik ve ADMET çalışmasının yapılması amaçlandı.
Gereç ve Yöntem: Fitokimyasallar GC-MS ile tanımlandı. Antioksidan aktivite in vitro ve silico olarak belirlenirken, antidiyabetik ve ADMET in silico olarak belirlendi.
Sonuç ve Tartışma: EEF ve AQF'de sırasıyla tam olarak 54 ve 44 bileşik tanımlandı. 300 µg/ml'de CR (73.59 ± 0.011 µg/ml), EEF (41.28 ± 0.003 µg/ml AAE) ve AQF (31.28 ± 0.005 µg/ml AAE)’den önemli ölçüde (p<0.05) daha yüksek askorbik asit eşdeğeri (AAE) toplam antioksidan kapasitesi (TAC) gösterdi. 100 µg/ml’de AQF'nin (106.84 ± 3.46 µg/ml) toplam indirgeme gücü (TRP), CR'den (93.23 ± 5.63 µg/ml AAE) ve EEF'den (92.35 ± 6.96 µg/ml AAE) önemli ölçüde (p <0.05) daha yüksekti. 1 mg/ml EEF, ferrik tiyosiyanat yönteminde önemli ölçüde (p<0.05) daha yüksek bir inhibisyon yüzdesi (%48.38 ±4.61) ve tiyobarbitürik asit yönteminde daha düşük bir malonaldehid konsantrasyonu (0.75 nmol/ml ±0.01) gösterdi. AQF, 100 µg/ml'de CR (%33.33 ± 2.16) ve EEF'den (%63.64 ± 2.66) önemli ölçüde (p < 0.05) daha yüksek (%82.72 ± 1.88) peroksit temizleme aktivitesi gösterdi. Bileşik VII, ksantin oksidaz ile sırasıyla -8.8 kcal/mol ve 0.35 µM ve NADH oksidaz ile sırasıyla -8.0 kcal/mol ve 1.35 µM ile en düşük bağlanma afinitesini (BA) ve inhibisyon sabitini (Ki) sergiledi. X, CytP450 21A2 ile etkileşime giren en düşük BA (-8.5 kcal/mol) ve Ki'yi (0.58 uM) sergiledi. Bileşik III, PTP1B ile en düşük BA (-7.5 kcal/mol) ve Ki'yi (3.14 µM) sergilerken; bileşik X, PPARy ile sırasıyla -8.5 kcal/mol ve 0.58 µM BA ve Ki değerlerine sahipti. ADMET sonucu, bazı bileşiklerin antioksidan ve antidiyabetik ilaçlar için güçlü adaylar olabileceğini gösterdi. Tüm ekstraktlar önemli antioksidan aktiviteye sahiptir ve tanımlanan bileşiklerin bazıları yeni antioksidanlar ve antidiyabetik ilaçlar için aday olabilir.

Kaynakça

  • 1. American Diabetes Association. (2020). Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2020. Diabetes Care, 43(Supplement_1), S98-S110. [CrossRef]
  • 2. American Diabetes Association Professional Practice Committee. (2022). Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022. Diabetes Care, 45(Supplement_1), S17-S38. [CrossRef]
  • 3. Dahiru, M.M. Samuel, N.M. (2022). A review of the mechanisms of action and side effects of anti-diabetic agents. Trends in Pharmaceutical Sciences, 8(3), 195-210. [CrossRef]
  • 4. Ogurtsova, K., Guariguata, L., Barengo, N.C., Ruiz, P.L.D., Sacre, J.W., Karuranga, S., Sun, H., Boyko, E. J. Magliano, D.J. (2022). IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Research and Clinical Practice, 183, 109118. [CrossRef]
  • 5. Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., Stein, C., Basit, A., Chan, J.C. Mbanya, J.C. (2022). IDF Diabetes Atlas: Global, regional, and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice, 183, 109119. [CrossRef]
  • 6. Dahiru, M.M. (2023). Recent advances in the therapeutic potential phytochemicals in managing diabetes. Journal of Clinical and Basic Research, 7(1), 13-20.
  • 7. Dahiru, M.M., Badgal, E.B. Neksumi, M. (2023). Phytochemical profiling and heavy metals composition of aqueous and ethanol extracts of Anogeissus leiocarpus. Journal of Faculty of Pharmacy of Ankara University, 47(2), 311-323. [CrossRef]
  • 8. Abdel Motaal, A., Salem, H.H., Almaghaslah, D., Alsayari, A., Bin Muhsinah, A., Alfaifi, M.Y., Elbehairi, S.E.I., Shati, A.A. El-Askary, H. (2020). Flavonol glycosides: in vitro inhibition of dppiv, aldose reductase and combating oxidative stress are potential mechanisms for mediating the antidiabetic activity of cleome droserifolia. Molecules, 25(24), 5864. [CrossRef]
  • 9. Abdou, H.M., Hamaad, F.A., Ali, E.Y. Ghoneum, M.H. (2022). Antidiabetic efficacy of Trifolium alexandrinum extracts hesperetin and quercetin in ameliorating carbohydrate metabolism and activating IR and AMPK signaling in the pancreatic tissues of diabetic rats. Biomedicine and Pharmacotherapy, 149, 112838. [CrossRef]
  • 10. Adhikari, B. (2021). Roles of alkaloids from medicinal plants in the management of diabetes mellitus. Journal of Chemistry, 2021, 1-10. [CrossRef]
  • 11. Amah, C.C., Joshua, P.E., Ekpo, D.E., Okoro, J.I., Asomadu, R.O., Obelenwa, U.C. Odiba, A.S. (2022). Ethyl acetate fraction of Fagara zanthoxyloides root-bark possess antidiabetic property against alloxan-induced diabetes and its complications in Wistar rat model. Journal of Ethnopharmacology, 293, 115259. [CrossRef]
  • 12. An, S., Niu, D., Wang, T., Han, B., He, C., Yang, X., Sun, H., Zhao, K., Kang, J. Xue, X. (2021). Total Saponins Isolated from Corni Fructus via Ultrasonic Microwave-Assisted Extraction Attenuate Diabetes in Mice. Foods, 10(3), 670. [CrossRef]
  • 13. Dahiru, M.M. Nadro, M.S. (2022). Anti-diabetic potential of Hyphaene thebaica fruit in streptozotocin-induced diabetic rats. Journal of Experimental and Molecular Biology, 23(1), 29-36. [CrossRef]
  • 14. Tropical Plants Database. (2023). Diospyros mespiliformis. Retrieved July 24, 2023, from https://tropical.theferns.info/viewtropical.php?id=Diospyros+mespiliformis.
  • 15. Suleiman Abdulhamid, A. Osagye, I. (2021). Medicinal and traditional utilization of african ebony (diospyros mespiliformi): A review. International Journal of Current Microbiology and Applied Sciences, 10, 811-817. [CrossRef]
  • 16. Ahmed, A.H. Mahmud, A.F. (2017). Pharmacological activities of Diospyros mespiliformis: A review. International Journal of Pharmacy and Biological Sciences, 7, 93-96.
  • 17. Evans, W.C. (2009). Trease and Evans' pharmacognosy: Elsevier Health Sciences, Amsterdam, p.378.
  • 18. Dahiru, M.M., Badgal, E.B. Musa, N. (2022). Phytochemistry, GS-MS analysis, and heavy metals composition of aqueous and ethanol stem bark extracts of Ximenia americana. GSC Biological and Pharmaceutical Sciences, 21(3), 145-156. [CrossRef]
  • 19. Prieto, P., Pineda, M., Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337-341. [CrossRef]
  • 20. Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307-315. [CrossRef]
  • 21. Kikuzaki, H., Nakatani, N. (1993). Antioxidant effects of some ginger constituents. Journal of Food Science, 58(6), 1407-1410. [CrossRef]
  • 22. Sannigrahi, S., Mazuder, U.K., Pal, D.K., Parida, S. Jain, S. (2010). Antioxidant potential of crude extract and different fractions of Enhydra fluctuans Lour. Iranian journal of pharmaceutical research: IJPR, 9(1), 75. [CrossRef]
  • 23. Kwon, T.W. Watts, B. (2006). Determination of malonaldehyde by ultraviolet spectrophotometry. Journal of Food Science, 28, 627-630. [CrossRef]
  • 24. Zhang, X.Y. (2000). Principles of chemical analysis. Beijing: China Science Press, 275, 276.
  • 25. Sanner, M.F. (1999). Python: A programming language for software integration and development. Journal of Molecular Graphics and Modelling, 17(1), 57-61.
  • 26. Jendele, L., Krivák, R., Škoda, P., Novotný, Hoksza, M.D. (2019). PrankWeb: A web server for ligand binding site prediction and visualization. Nucleic Acids Research, 47(W1), W345-W349. [CrossRef]
  • 27. Laskowski, R.A. Swindells, M.B. (2011). Ligplot+: multiple ligand–protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778-2786. [CrossRef]
  • 28. Adasme, M.F., Linnemann, K.L., Bolz, S.N., Kaiser, F., Salentin, S., Haupt, V.J. Schroeder, M. (2021). PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Research, 49(W1), W530-W534. [CrossRef]
  • 29. Tiwari, S.P., Fuglebakk, E., Hollup, S.M., Skjærven, L., Cragnolini, T., Grindhaug, S.H., Tekle, K. M.Reuter, N. (2014). WEBnm@ v2.0: Web server and services for comparing protein flexibility. BMC Bioinformatics, 15(1), 427. [CrossRef]
  • 30. Ortiz, C.L.D., Completo, G.C., Nacario, R.C., Nellas, R.B. (2019). Potential inhibitors of galactofuranosyltransferase 2 (GlfT2): Molecular docking, 3D-QSAR, and in silico ADMETox studies. Scientific Reports, 9(1), 17096. [CrossRef]
  • 31. Pires, D.E.V., Blundell, T.L., Ascher, D.B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066-4072. [CrossRef]
  • 32. Mohammed Junaid Hussain, D., Sathish Kumar, K., Darul Raiyaan, G.I., Mohamed Khalith, S.B., Sundarapandian, S. Kantha Deivi, A. (2020). Effect of solvents on phytochemical composition and antioxidant activity of Cardiospermum halicacabum (l.) extracts. Pharmacognosy Journal, 12(6), 1241-1251. [CrossRef]
  • 33. Sharma, S., Kumari, A., Dhatwalia, J., Guleria, I., Lal, S., Upadhyay, N., Kumar, V. Kumar, A. (2021). Effect of solvents extraction on phytochemical profile and biological activities of two Ocimum species: A comparative study. Journal of Applied Research on Medicinal and Aromatic Plants, 25, 100348. [CrossRef]
  • 34. Thouri, A., Chahdoura, H., El Arem, A., Omri Hichri, A., Ben Hassin, R. Achour, L. (2017). Effect of solvents extraction on phytochemical components and biological activities of Tunisian date seeds (var. Korkobbi and Arechti). BMC Complementary and Alternative Medicine, 17(1), 248. [CrossRef]
  • 35. Chóez-Guaranda, I., Viteri-Espinoza, R., Barragán-Lucas, A., Quijano-Avilés, M. Manzano, P. (2022). Effect of solvent-solvent partition on antioxidant activity and GC-MS profile of Ilex guayusa Loes. leaves extract and fractions. Natural product research, 36(6), 1570-1574. [CrossRef]
  • 36. Basri, A.M., Taha, H. Ahmad, N. (2017). A review on the pharmacological activities and phytochemicals of Alpinia officinarum (Galangal) extracts derived from bioassay-guided fractionation and isolation. Pharmacognosy Reviews, 11(21), 43. [CrossRef]
  • 37. Berk, Z. (2018). Food process engineering and technology: Academic press, Massachusetts, p.379.
  • 38. Ebbo, A.A., Sani, D., Suleiman, M.M., Ahmed, A. Hassan, A.Z. (2019). Phytochemical composition, proximate analysis and antimicrobial screening of the methanolic extract of Diospyros mespiliformis Hochst Ex a. Dc (Ebenaceae). Pharmacognosy Journal, 11(2), 362-368. [CrossRef]
  • 39. Ebbo, A.A., Sani, D., Suleiman, M.M., Ahmad, A. Hassan, A.Z. (2020). Acute and sub-chronic toxicity evaluation of the crude methanolic extract of Diospyros mespiliformis hochst ex a. Dc (ebenaceae) and its fractions. Toxicology Reports, 7, 1138-1144. [CrossRef]
  • 40. Lozano-Grande, M.A., Gorinstein, S., Espitia-Rangel, E., Dávila-Ortiz, G. Martínez-Ayala, A.L. (2018). Plant sources, extraction methods, and uses of squalene. International Journal of Agronomy, 2018, 1829160. [CrossRef]
  • 41. Kaur, G., Tharappel, L.J.P. Kumawat, V. (2018). Research article evaluation of safety and in vitro mechanisms of anti-diabetic activity of β-caryophyllene and l-arginine. Journal of Biological Sciences, 18, 124-134. [CrossRef]
  • 42. Bahadori, M.B., Zengin, G., Bahadori, S., Maggi, F. Dinparast, L. (2017). Chemical composition of essential oil, antioxidant, antidiabetic, anti-obesity, and neuroprotective properties of Prangos gaubae. Natural Product Communications, 12(12), 1945-1948. [CrossRef]
  • 43. Younis, I.Y., Khattab, A.R., Selim, N.M., Sobeh, M., Elhawary, S.S. Bishbishy, M.H.E. (2022). Metabolomics-based profiling of 4 avocado varieties using HPLC-MS/MS and GC/MS and evaluation of their antidiabetic activity. Scientific Reports, 12(1), 4966. [CrossRef]
  • 44. Kumawat, V.S., Kaur, G. (2020). Insulinotropic and antidiabetic effects of β‐caryophyllene with l‐arginine in type 2 diabetic rats. Journal of Food Biochemistry, 44(4), e13156. [CrossRef]
  • 45. Jiang, N., Zhang, Y. (2022). Antidiabetic effects of nerolidol through promoting insulin receptor signaling in high-fat diet and low dose streptozotocin-induced type 2 diabetic rats. Human and Experimental Toxicology, 41. [CrossRef]
  • 46. Goto, T., Kim, Y.I., Funakoshi, K., Teraminami, A., Uemura, T., Hirai, S., Lee, J.Y., Makishima, M., Nakata, R. Inoue, H. (2011). Farnesol, an isoprenoid, improves metabolic abnormalities in mice via both PPARα-dependent and-independent pathways. American Journal of Physiology-Endocrinology and Metabolism, 301(5), E1022-E1032. [CrossRef]
  • 47. Heendeniya, S.N., Keerthirathna, L.R., Manawadu, C.K., Dissanayake, I.H., Ali, R., Mashhour, A., Alzahrani, H., Godakumbura, P., Boudjelal, M. Peiris, D.C. (2020). Therapeutic efficacy of Nyctanthes arbor-tristis flowers to inhibit proliferation of acute and chronic primary human leukemia cells, with adipocyte differentiation and in silico analysis of interactions between survivin protein and selected secondary metabolites. Biomolecules, 10(2), 165. [CrossRef]
  • 48. Gurumallu, S.C., AlRamadneh, T.N., Sarjan, H.N., Bhaskar, A., Pereira, C.M.F., Javaraiah, R. (2022). Synergistic hypoglycemic and hypolipidemic effects of ω-3 and ω-6 fatty acids from Indian flax and sesame seed oils in streptozotocin-induced diabetic rats. Phytomedicine Plus, 2(3), 100284. [CrossRef]
  • 49. Widyawati, T., Syahputra, R.A., Syarifah, S. Sumantri, I.B. (2023). Analysis of antidiabetic activity of squalene via in silico and in vivo assay. Molecules, 28(9), 3783. [CrossRef]
  • 50. Santos-Sánchez, N.F., Salas-Coronado, R., Villanueva-Cañongo, C., Hernández-Carlos, B. (2019). Antioxidant compounds and their antioxidant mechanism. Antioxidants, 10, 1-29. [CrossRef]
  • 51. Zhang, L., Virgous, C., Si, H. (2019). Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. The Journal of Nutritional Biochemistry, 69, 19-30. [CrossRef]
  • 52. Uduwana, S., Abeynayake, N. Wickramasinghe, I. (2023). Synergistic, antagonistic, and additive effects on the resultant antioxidant activity in infusions of green tea with bee honey and Citrus limonum extract as additives. Journal of Agriculture and Food Research, 12, 100571. [CrossRef]
  • 53. Mohamed, H., Ons, M., Yosra, E.T., Rayda, S., Neji, G., Moncef, N. (2009). Chemical composition and antioxidant and radical‐scavenging activities of Periploca laevigata root bark extracts. Journal of the Science of Food and Agriculture, 89(5), 897-905. [CrossRef]
  • 54. Shafekh, E.S., Khalili, M.A.R., Catherine, C.C.W., Syakiroh, S.Z.A., Habibah, U.A., Norhayati, A.H., Farhanah, N.M.Y., Husna, N.Z., Nafizah, S.M.B., Azlina, M. (2012). Total phenolic content and in vitro antioxidant activity of Vigna sinensis. International Food Research Journal, 19(4), 1393.
  • 55. Zhang, P., Li, T., Wu, X., Nice, E.C., Huang, C., Zhang, Y. (2020). Oxidative stress and diabetes: Antioxidative strategies. Frontiers of Medicine, 14, 583-600. [CrossRef]
  • 56. Gunawardena, H.P., Silva, R., Sivakanesan, R., Ranasinghe, P., Katulanda, P. (2019). Poor glycaemic control is associated with increased lipid peroxidation and glutathione peroxidase activity in type 2 diabetes patients. Oxidative Medicine and Cellular Longevity, 2019, 9471697. [CrossRef]
  • 57. Kastritis, P.L., Bonvin, A.M.J.J. (2013). On the binding affinity of macromolecular interactions: daring to ask why proteins interact. Journal of The Royal Society Interface, 10(79), 20120835. [CrossRef]
  • 58. Battelli, M.G., Bortolotti, M., Polito, L.Bolognesi, A. (2018). The role of xanthine oxidoreductase and uric acid in metabolic syndrome. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1864(8), 2557-2565. [CrossRef]
  • 59. Kelley, E.E. (2015). Dispelling dogma and misconceptions regarding the most pharmacologically targetable source of reactive species in inflammatory disease, xanthine oxidoreductase. Archives of Toxicology, 89, 1193-1207. [CrossRef]
  • 60. Hernandez-Hernandez, M.E., Torres-Rasgado, E., Pulido-Perez, P., Nicolás-Toledo, L., Martínez-Gómez, M., Rodríguez-Antolín, J., Pérez-Fuentes, R.Romero, J.R. (2022). Disordered glucose levels are associated with xanthine oxidase activity in overweight type 2 diabetic women. International Journal of Molecular Sciences, 23(19), 11177. [CrossRef]
  • 61. Veith, A., Moorthy, B. (2018). Role of cytochrome P450s in the generation and metabolism of reactive oxygen species. Current Opinion in Toxicology, 7, 44-51. [CrossRef]
  • 62. Gao, H.M., Zhou, H.Hong, J.S. (2012). NADPH oxidases: novel therapeutic targets for neurodegenerative diseases. Trends in Pharmacological Sciences, 33(6), 295-303. [CrossRef]
  • 63. Teimouri, M., Hosseini, H., ArabSadeghabadi, Z., Babaei-Khorzoughi, R., Gorgani-Firuzjaee, Meshkani, S.R. (2022). The role of protein tyrosine phosphatase 1B (PTP1B) in the pathogenesis of type 2 diabetes mellitus and its complications. Journal of Physiology and Biochemistry, 78(2), 307-322. [CrossRef]
  • 64. Frkic, R.L., Richter, K.Bruning, J.B. (2021). The therapeutic potential of inhibiting PPAR&#x3b3; phosphorylation to treat type 2 diabetes. Journal of Biological Chemistry, 297(3). [CrossRef]
  • 65. Vrbanac, J., Slauter, R. (2017). ADME in Drug Discovery. In: A.S. Faqi (Eds.), A Comprehensive Guide to Toxicology in Nonclinical Drug Development, (pp. 39-67). Boston: Academic Press.

PHYTOCHEMICAL PROFILING, ANTIOXIDANT, ANTIDIABETIC, AND ADMET STUDY OF DIOSPYROS MESPILIFORMIS HOCHST. EX A. DC. (EBENACEAE) LEAF

Yıl 2024, , 412 - 435, 20.05.2024
https://doi.org/10.33483/jfpau.1354293

Öz

Objective: This study aimed to carry out phytochemical profiling, antioxidant, antidiabetic, and ADMET study on the crude ethanol extract (CR) of Diospyros mespiliformis (DM) and its ethyl acetate (EEF) and aqueous fractions (AQF).
Material and Method: The phytochemicals were identified by GC-MS. The antioxidant activity was determined in vitro and silico while the antidiabetic and ADMET were in silico.
Result and Discussion: Exactly 54 and 44 compounds were respectively identified in the EEF and AQF. At 300 µg/ml, the CR demonstrated a significantly (p < 0.05) higher ascorbic acid equivalent (AAE) total antioxidant capacity (TAC) (73.59 ± 0.011 µg/ml) than the EEF (41.28 ± 0.003 µg/ml AAE) and AQF (31.28 ± 0.005 µg/ml AAE). The total reducing power (TRP) of the AQF (106.84 ± 3.46 µg/ml) was significantly (p <0.05) higher than the CR (93.23 ± 5.63 µg/ml AAE) and EEF (92.35 ± 6.96 µg/ml AAE) at 100 µg/ml. A significantly (p < 0.05) higher percentage inhibition (48.38% ± 4.61) was demonstrated by the EEF at 1 mg/ml in the ferric thiocyanate and a lower malonaldehyde concentration (0.75 ± 0.01 nmol/ml) in the thiobarbituric acid methods. The AQF demonstrated a significantly (p < 0.05) higher (82.72% ± 1.88) peroxide scavenging activity at 100 µg/ml than the CR (33.33% ± 2.16) and EEF (63.64% ± 2.66). Compound VII exhibited the lowest binding affinity (BA) and inhibition constant (Ki) of -8.8 kcal/mol and 0.35 µM, respectively with xanthine oxidase and -8.0 kcal/mol and 1.35 µM, respectively with NADH oxidase. X exhibited the lowest BA (-8.5 kcal/mol) and Ki (0.58 µM) interacting with CytP450 21A2. Compound III exhibited the lowest BA (-7.5 kcal/mol) and Ki (3.14 µM) with PTP1B while compound X had BA and Ki values of -8.5 kcal/mol and 0.58 µM, respectively with PPARγ. The result of ADMET showed some of the compounds might be strong candidates for antioxidant and antidiabetic drugs. All the extracts possess significant antioxidant activity and some of the identified compounds might be candidates for novel antioxidants and antidiabetic drugs.

Destekleyen Kurum

Tertiary Education Trust Fund of Nigeria

Kaynakça

  • 1. American Diabetes Association. (2020). Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2020. Diabetes Care, 43(Supplement_1), S98-S110. [CrossRef]
  • 2. American Diabetes Association Professional Practice Committee. (2022). Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022. Diabetes Care, 45(Supplement_1), S17-S38. [CrossRef]
  • 3. Dahiru, M.M. Samuel, N.M. (2022). A review of the mechanisms of action and side effects of anti-diabetic agents. Trends in Pharmaceutical Sciences, 8(3), 195-210. [CrossRef]
  • 4. Ogurtsova, K., Guariguata, L., Barengo, N.C., Ruiz, P.L.D., Sacre, J.W., Karuranga, S., Sun, H., Boyko, E. J. Magliano, D.J. (2022). IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Research and Clinical Practice, 183, 109118. [CrossRef]
  • 5. Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., Stein, C., Basit, A., Chan, J.C. Mbanya, J.C. (2022). IDF Diabetes Atlas: Global, regional, and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice, 183, 109119. [CrossRef]
  • 6. Dahiru, M.M. (2023). Recent advances in the therapeutic potential phytochemicals in managing diabetes. Journal of Clinical and Basic Research, 7(1), 13-20.
  • 7. Dahiru, M.M., Badgal, E.B. Neksumi, M. (2023). Phytochemical profiling and heavy metals composition of aqueous and ethanol extracts of Anogeissus leiocarpus. Journal of Faculty of Pharmacy of Ankara University, 47(2), 311-323. [CrossRef]
  • 8. Abdel Motaal, A., Salem, H.H., Almaghaslah, D., Alsayari, A., Bin Muhsinah, A., Alfaifi, M.Y., Elbehairi, S.E.I., Shati, A.A. El-Askary, H. (2020). Flavonol glycosides: in vitro inhibition of dppiv, aldose reductase and combating oxidative stress are potential mechanisms for mediating the antidiabetic activity of cleome droserifolia. Molecules, 25(24), 5864. [CrossRef]
  • 9. Abdou, H.M., Hamaad, F.A., Ali, E.Y. Ghoneum, M.H. (2022). Antidiabetic efficacy of Trifolium alexandrinum extracts hesperetin and quercetin in ameliorating carbohydrate metabolism and activating IR and AMPK signaling in the pancreatic tissues of diabetic rats. Biomedicine and Pharmacotherapy, 149, 112838. [CrossRef]
  • 10. Adhikari, B. (2021). Roles of alkaloids from medicinal plants in the management of diabetes mellitus. Journal of Chemistry, 2021, 1-10. [CrossRef]
  • 11. Amah, C.C., Joshua, P.E., Ekpo, D.E., Okoro, J.I., Asomadu, R.O., Obelenwa, U.C. Odiba, A.S. (2022). Ethyl acetate fraction of Fagara zanthoxyloides root-bark possess antidiabetic property against alloxan-induced diabetes and its complications in Wistar rat model. Journal of Ethnopharmacology, 293, 115259. [CrossRef]
  • 12. An, S., Niu, D., Wang, T., Han, B., He, C., Yang, X., Sun, H., Zhao, K., Kang, J. Xue, X. (2021). Total Saponins Isolated from Corni Fructus via Ultrasonic Microwave-Assisted Extraction Attenuate Diabetes in Mice. Foods, 10(3), 670. [CrossRef]
  • 13. Dahiru, M.M. Nadro, M.S. (2022). Anti-diabetic potential of Hyphaene thebaica fruit in streptozotocin-induced diabetic rats. Journal of Experimental and Molecular Biology, 23(1), 29-36. [CrossRef]
  • 14. Tropical Plants Database. (2023). Diospyros mespiliformis. Retrieved July 24, 2023, from https://tropical.theferns.info/viewtropical.php?id=Diospyros+mespiliformis.
  • 15. Suleiman Abdulhamid, A. Osagye, I. (2021). Medicinal and traditional utilization of african ebony (diospyros mespiliformi): A review. International Journal of Current Microbiology and Applied Sciences, 10, 811-817. [CrossRef]
  • 16. Ahmed, A.H. Mahmud, A.F. (2017). Pharmacological activities of Diospyros mespiliformis: A review. International Journal of Pharmacy and Biological Sciences, 7, 93-96.
  • 17. Evans, W.C. (2009). Trease and Evans' pharmacognosy: Elsevier Health Sciences, Amsterdam, p.378.
  • 18. Dahiru, M.M., Badgal, E.B. Musa, N. (2022). Phytochemistry, GS-MS analysis, and heavy metals composition of aqueous and ethanol stem bark extracts of Ximenia americana. GSC Biological and Pharmaceutical Sciences, 21(3), 145-156. [CrossRef]
  • 19. Prieto, P., Pineda, M., Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337-341. [CrossRef]
  • 20. Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307-315. [CrossRef]
  • 21. Kikuzaki, H., Nakatani, N. (1993). Antioxidant effects of some ginger constituents. Journal of Food Science, 58(6), 1407-1410. [CrossRef]
  • 22. Sannigrahi, S., Mazuder, U.K., Pal, D.K., Parida, S. Jain, S. (2010). Antioxidant potential of crude extract and different fractions of Enhydra fluctuans Lour. Iranian journal of pharmaceutical research: IJPR, 9(1), 75. [CrossRef]
  • 23. Kwon, T.W. Watts, B. (2006). Determination of malonaldehyde by ultraviolet spectrophotometry. Journal of Food Science, 28, 627-630. [CrossRef]
  • 24. Zhang, X.Y. (2000). Principles of chemical analysis. Beijing: China Science Press, 275, 276.
  • 25. Sanner, M.F. (1999). Python: A programming language for software integration and development. Journal of Molecular Graphics and Modelling, 17(1), 57-61.
  • 26. Jendele, L., Krivák, R., Škoda, P., Novotný, Hoksza, M.D. (2019). PrankWeb: A web server for ligand binding site prediction and visualization. Nucleic Acids Research, 47(W1), W345-W349. [CrossRef]
  • 27. Laskowski, R.A. Swindells, M.B. (2011). Ligplot+: multiple ligand–protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778-2786. [CrossRef]
  • 28. Adasme, M.F., Linnemann, K.L., Bolz, S.N., Kaiser, F., Salentin, S., Haupt, V.J. Schroeder, M. (2021). PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Research, 49(W1), W530-W534. [CrossRef]
  • 29. Tiwari, S.P., Fuglebakk, E., Hollup, S.M., Skjærven, L., Cragnolini, T., Grindhaug, S.H., Tekle, K. M.Reuter, N. (2014). WEBnm@ v2.0: Web server and services for comparing protein flexibility. BMC Bioinformatics, 15(1), 427. [CrossRef]
  • 30. Ortiz, C.L.D., Completo, G.C., Nacario, R.C., Nellas, R.B. (2019). Potential inhibitors of galactofuranosyltransferase 2 (GlfT2): Molecular docking, 3D-QSAR, and in silico ADMETox studies. Scientific Reports, 9(1), 17096. [CrossRef]
  • 31. Pires, D.E.V., Blundell, T.L., Ascher, D.B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066-4072. [CrossRef]
  • 32. Mohammed Junaid Hussain, D., Sathish Kumar, K., Darul Raiyaan, G.I., Mohamed Khalith, S.B., Sundarapandian, S. Kantha Deivi, A. (2020). Effect of solvents on phytochemical composition and antioxidant activity of Cardiospermum halicacabum (l.) extracts. Pharmacognosy Journal, 12(6), 1241-1251. [CrossRef]
  • 33. Sharma, S., Kumari, A., Dhatwalia, J., Guleria, I., Lal, S., Upadhyay, N., Kumar, V. Kumar, A. (2021). Effect of solvents extraction on phytochemical profile and biological activities of two Ocimum species: A comparative study. Journal of Applied Research on Medicinal and Aromatic Plants, 25, 100348. [CrossRef]
  • 34. Thouri, A., Chahdoura, H., El Arem, A., Omri Hichri, A., Ben Hassin, R. Achour, L. (2017). Effect of solvents extraction on phytochemical components and biological activities of Tunisian date seeds (var. Korkobbi and Arechti). BMC Complementary and Alternative Medicine, 17(1), 248. [CrossRef]
  • 35. Chóez-Guaranda, I., Viteri-Espinoza, R., Barragán-Lucas, A., Quijano-Avilés, M. Manzano, P. (2022). Effect of solvent-solvent partition on antioxidant activity and GC-MS profile of Ilex guayusa Loes. leaves extract and fractions. Natural product research, 36(6), 1570-1574. [CrossRef]
  • 36. Basri, A.M., Taha, H. Ahmad, N. (2017). A review on the pharmacological activities and phytochemicals of Alpinia officinarum (Galangal) extracts derived from bioassay-guided fractionation and isolation. Pharmacognosy Reviews, 11(21), 43. [CrossRef]
  • 37. Berk, Z. (2018). Food process engineering and technology: Academic press, Massachusetts, p.379.
  • 38. Ebbo, A.A., Sani, D., Suleiman, M.M., Ahmed, A. Hassan, A.Z. (2019). Phytochemical composition, proximate analysis and antimicrobial screening of the methanolic extract of Diospyros mespiliformis Hochst Ex a. Dc (Ebenaceae). Pharmacognosy Journal, 11(2), 362-368. [CrossRef]
  • 39. Ebbo, A.A., Sani, D., Suleiman, M.M., Ahmad, A. Hassan, A.Z. (2020). Acute and sub-chronic toxicity evaluation of the crude methanolic extract of Diospyros mespiliformis hochst ex a. Dc (ebenaceae) and its fractions. Toxicology Reports, 7, 1138-1144. [CrossRef]
  • 40. Lozano-Grande, M.A., Gorinstein, S., Espitia-Rangel, E., Dávila-Ortiz, G. Martínez-Ayala, A.L. (2018). Plant sources, extraction methods, and uses of squalene. International Journal of Agronomy, 2018, 1829160. [CrossRef]
  • 41. Kaur, G., Tharappel, L.J.P. Kumawat, V. (2018). Research article evaluation of safety and in vitro mechanisms of anti-diabetic activity of β-caryophyllene and l-arginine. Journal of Biological Sciences, 18, 124-134. [CrossRef]
  • 42. Bahadori, M.B., Zengin, G., Bahadori, S., Maggi, F. Dinparast, L. (2017). Chemical composition of essential oil, antioxidant, antidiabetic, anti-obesity, and neuroprotective properties of Prangos gaubae. Natural Product Communications, 12(12), 1945-1948. [CrossRef]
  • 43. Younis, I.Y., Khattab, A.R., Selim, N.M., Sobeh, M., Elhawary, S.S. Bishbishy, M.H.E. (2022). Metabolomics-based profiling of 4 avocado varieties using HPLC-MS/MS and GC/MS and evaluation of their antidiabetic activity. Scientific Reports, 12(1), 4966. [CrossRef]
  • 44. Kumawat, V.S., Kaur, G. (2020). Insulinotropic and antidiabetic effects of β‐caryophyllene with l‐arginine in type 2 diabetic rats. Journal of Food Biochemistry, 44(4), e13156. [CrossRef]
  • 45. Jiang, N., Zhang, Y. (2022). Antidiabetic effects of nerolidol through promoting insulin receptor signaling in high-fat diet and low dose streptozotocin-induced type 2 diabetic rats. Human and Experimental Toxicology, 41. [CrossRef]
  • 46. Goto, T., Kim, Y.I., Funakoshi, K., Teraminami, A., Uemura, T., Hirai, S., Lee, J.Y., Makishima, M., Nakata, R. Inoue, H. (2011). Farnesol, an isoprenoid, improves metabolic abnormalities in mice via both PPARα-dependent and-independent pathways. American Journal of Physiology-Endocrinology and Metabolism, 301(5), E1022-E1032. [CrossRef]
  • 47. Heendeniya, S.N., Keerthirathna, L.R., Manawadu, C.K., Dissanayake, I.H., Ali, R., Mashhour, A., Alzahrani, H., Godakumbura, P., Boudjelal, M. Peiris, D.C. (2020). Therapeutic efficacy of Nyctanthes arbor-tristis flowers to inhibit proliferation of acute and chronic primary human leukemia cells, with adipocyte differentiation and in silico analysis of interactions between survivin protein and selected secondary metabolites. Biomolecules, 10(2), 165. [CrossRef]
  • 48. Gurumallu, S.C., AlRamadneh, T.N., Sarjan, H.N., Bhaskar, A., Pereira, C.M.F., Javaraiah, R. (2022). Synergistic hypoglycemic and hypolipidemic effects of ω-3 and ω-6 fatty acids from Indian flax and sesame seed oils in streptozotocin-induced diabetic rats. Phytomedicine Plus, 2(3), 100284. [CrossRef]
  • 49. Widyawati, T., Syahputra, R.A., Syarifah, S. Sumantri, I.B. (2023). Analysis of antidiabetic activity of squalene via in silico and in vivo assay. Molecules, 28(9), 3783. [CrossRef]
  • 50. Santos-Sánchez, N.F., Salas-Coronado, R., Villanueva-Cañongo, C., Hernández-Carlos, B. (2019). Antioxidant compounds and their antioxidant mechanism. Antioxidants, 10, 1-29. [CrossRef]
  • 51. Zhang, L., Virgous, C., Si, H. (2019). Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. The Journal of Nutritional Biochemistry, 69, 19-30. [CrossRef]
  • 52. Uduwana, S., Abeynayake, N. Wickramasinghe, I. (2023). Synergistic, antagonistic, and additive effects on the resultant antioxidant activity in infusions of green tea with bee honey and Citrus limonum extract as additives. Journal of Agriculture and Food Research, 12, 100571. [CrossRef]
  • 53. Mohamed, H., Ons, M., Yosra, E.T., Rayda, S., Neji, G., Moncef, N. (2009). Chemical composition and antioxidant and radical‐scavenging activities of Periploca laevigata root bark extracts. Journal of the Science of Food and Agriculture, 89(5), 897-905. [CrossRef]
  • 54. Shafekh, E.S., Khalili, M.A.R., Catherine, C.C.W., Syakiroh, S.Z.A., Habibah, U.A., Norhayati, A.H., Farhanah, N.M.Y., Husna, N.Z., Nafizah, S.M.B., Azlina, M. (2012). Total phenolic content and in vitro antioxidant activity of Vigna sinensis. International Food Research Journal, 19(4), 1393.
  • 55. Zhang, P., Li, T., Wu, X., Nice, E.C., Huang, C., Zhang, Y. (2020). Oxidative stress and diabetes: Antioxidative strategies. Frontiers of Medicine, 14, 583-600. [CrossRef]
  • 56. Gunawardena, H.P., Silva, R., Sivakanesan, R., Ranasinghe, P., Katulanda, P. (2019). Poor glycaemic control is associated with increased lipid peroxidation and glutathione peroxidase activity in type 2 diabetes patients. Oxidative Medicine and Cellular Longevity, 2019, 9471697. [CrossRef]
  • 57. Kastritis, P.L., Bonvin, A.M.J.J. (2013). On the binding affinity of macromolecular interactions: daring to ask why proteins interact. Journal of The Royal Society Interface, 10(79), 20120835. [CrossRef]
  • 58. Battelli, M.G., Bortolotti, M., Polito, L.Bolognesi, A. (2018). The role of xanthine oxidoreductase and uric acid in metabolic syndrome. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1864(8), 2557-2565. [CrossRef]
  • 59. Kelley, E.E. (2015). Dispelling dogma and misconceptions regarding the most pharmacologically targetable source of reactive species in inflammatory disease, xanthine oxidoreductase. Archives of Toxicology, 89, 1193-1207. [CrossRef]
  • 60. Hernandez-Hernandez, M.E., Torres-Rasgado, E., Pulido-Perez, P., Nicolás-Toledo, L., Martínez-Gómez, M., Rodríguez-Antolín, J., Pérez-Fuentes, R.Romero, J.R. (2022). Disordered glucose levels are associated with xanthine oxidase activity in overweight type 2 diabetic women. International Journal of Molecular Sciences, 23(19), 11177. [CrossRef]
  • 61. Veith, A., Moorthy, B. (2018). Role of cytochrome P450s in the generation and metabolism of reactive oxygen species. Current Opinion in Toxicology, 7, 44-51. [CrossRef]
  • 62. Gao, H.M., Zhou, H.Hong, J.S. (2012). NADPH oxidases: novel therapeutic targets for neurodegenerative diseases. Trends in Pharmacological Sciences, 33(6), 295-303. [CrossRef]
  • 63. Teimouri, M., Hosseini, H., ArabSadeghabadi, Z., Babaei-Khorzoughi, R., Gorgani-Firuzjaee, Meshkani, S.R. (2022). The role of protein tyrosine phosphatase 1B (PTP1B) in the pathogenesis of type 2 diabetes mellitus and its complications. Journal of Physiology and Biochemistry, 78(2), 307-322. [CrossRef]
  • 64. Frkic, R.L., Richter, K.Bruning, J.B. (2021). The therapeutic potential of inhibiting PPAR&#x3b3; phosphorylation to treat type 2 diabetes. Journal of Biological Chemistry, 297(3). [CrossRef]
  • 65. Vrbanac, J., Slauter, R. (2017). ADME in Drug Discovery. In: A.S. Faqi (Eds.), A Comprehensive Guide to Toxicology in Nonclinical Drug Development, (pp. 39-67). Boston: Academic Press.
Toplam 65 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık Biyokimyası, Temel Farmakoloji
Bölüm Araştırma Makalesi
Yazarlar

Muhammad Mubarak Dahıru 0000-0002-1252-3699

Neksumi Musa 0000-0003-1389-021X

Erken Görünüm Tarihi 9 Şubat 2024
Yayımlanma Tarihi 20 Mayıs 2024
Gönderilme Tarihi 2 Eylül 2023
Kabul Tarihi 22 Ocak 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Dahıru, M. M., & Musa, N. (2024). PHYTOCHEMICAL PROFILING, ANTIOXIDANT, ANTIDIABETIC, AND ADMET STUDY OF DIOSPYROS MESPILIFORMIS HOCHST. EX A. DC. (EBENACEAE) LEAF. Journal of Faculty of Pharmacy of Ankara University, 48(2), 412-435. https://doi.org/10.33483/jfpau.1354293
AMA Dahıru MM, Musa N. PHYTOCHEMICAL PROFILING, ANTIOXIDANT, ANTIDIABETIC, AND ADMET STUDY OF DIOSPYROS MESPILIFORMIS HOCHST. EX A. DC. (EBENACEAE) LEAF. Ankara Ecz. Fak. Derg. Mayıs 2024;48(2):412-435. doi:10.33483/jfpau.1354293
Chicago Dahıru, Muhammad Mubarak, ve Neksumi Musa. “PHYTOCHEMICAL PROFILING, ANTIOXIDANT, ANTIDIABETIC, AND ADMET STUDY OF DIOSPYROS MESPILIFORMIS HOCHST. EX A. DC. (EBENACEAE) LEAF”. Journal of Faculty of Pharmacy of Ankara University 48, sy. 2 (Mayıs 2024): 412-35. https://doi.org/10.33483/jfpau.1354293.
EndNote Dahıru MM, Musa N (01 Mayıs 2024) PHYTOCHEMICAL PROFILING, ANTIOXIDANT, ANTIDIABETIC, AND ADMET STUDY OF DIOSPYROS MESPILIFORMIS HOCHST. EX A. DC. (EBENACEAE) LEAF. Journal of Faculty of Pharmacy of Ankara University 48 2 412–435.
IEEE M. M. Dahıru ve N. Musa, “PHYTOCHEMICAL PROFILING, ANTIOXIDANT, ANTIDIABETIC, AND ADMET STUDY OF DIOSPYROS MESPILIFORMIS HOCHST. EX A. DC. (EBENACEAE) LEAF”, Ankara Ecz. Fak. Derg., c. 48, sy. 2, ss. 412–435, 2024, doi: 10.33483/jfpau.1354293.
ISNAD Dahıru, Muhammad Mubarak - Musa, Neksumi. “PHYTOCHEMICAL PROFILING, ANTIOXIDANT, ANTIDIABETIC, AND ADMET STUDY OF DIOSPYROS MESPILIFORMIS HOCHST. EX A. DC. (EBENACEAE) LEAF”. Journal of Faculty of Pharmacy of Ankara University 48/2 (Mayıs 2024), 412-435. https://doi.org/10.33483/jfpau.1354293.
JAMA Dahıru MM, Musa N. PHYTOCHEMICAL PROFILING, ANTIOXIDANT, ANTIDIABETIC, AND ADMET STUDY OF DIOSPYROS MESPILIFORMIS HOCHST. EX A. DC. (EBENACEAE) LEAF. Ankara Ecz. Fak. Derg. 2024;48:412–435.
MLA Dahıru, Muhammad Mubarak ve Neksumi Musa. “PHYTOCHEMICAL PROFILING, ANTIOXIDANT, ANTIDIABETIC, AND ADMET STUDY OF DIOSPYROS MESPILIFORMIS HOCHST. EX A. DC. (EBENACEAE) LEAF”. Journal of Faculty of Pharmacy of Ankara University, c. 48, sy. 2, 2024, ss. 412-35, doi:10.33483/jfpau.1354293.
Vancouver Dahıru MM, Musa N. PHYTOCHEMICAL PROFILING, ANTIOXIDANT, ANTIDIABETIC, AND ADMET STUDY OF DIOSPYROS MESPILIFORMIS HOCHST. EX A. DC. (EBENACEAE) LEAF. Ankara Ecz. Fak. Derg. 2024;48(2):412-35.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.