Derleme
BibTex RIS Kaynak Göster

INVESTIGATION OF THE STRUCTURES OF CLINICALLY IMPORTANT CATECHOLAMINES AND THEIR DERIVATIVES

Yıl 2024, , 366 - 383, 20.01.2024
https://doi.org/10.33483/jfpau.1369190

Öz

Objective: Dopamine, epinephrine, and norepinephrine which are derivatives of 3,4-dihydroxyphenylethylamine are endogenous compounds with very important biological roles called catecholamines, in monoamine structure. It’s known that these biomolecules carrying the catechol structure control many systems in the organism by stimulating their specific receptors. In particular, it is observed the stimulating effects of these endogenous compounds on the adrenergic and dopaminergic systems. These compounds, which are involved in many biological processes as hormones or neurotransmitters, are also obtained synthetically due to their therapeutic importance and use in the clinical. In addition, many new derivatives have been developed with chemical modifications in order to improve the pharmacological and pharmaceutical properties of endogenous catecholamines. The wide and important clinical use of these compounds makes them valuable for researchers. It’s very important with regard to the development of new derivatives, to research the activities of catecholamines and derivative compounds used in the clinical, to understand their chemical structures, and to investigate the methods of obtaining them.
Result and Discussion: Therefore in this study, the structures and properties of catecholamine derivatives with clinical significance were investigated. As a result of this study, the chemical properties, biosynthesis, and synthetically obtainment methods of catecholamines, their biological activities, and use clinically were revealed.

Kaynakça

  • 1. Nikolajsen, R.P.H., Hansen, A.M. (2001). Analytical methods for determining urinary catecholamines in healthy subjects. Analytica Chimica Acta, 449, 1-15. [CrossRef]
  • 2. Nagatsu, T. (1973). Biochemistry of Catecholamines; the Biochemical Method, University Park Press, Baltimore, p. 362.
  • 3. Doğan, P. (2005). Katekolamin biosentezi ve metabolik etkileri. Türkiye Klinikleri Dahili Tıp Bilimleri Dergisi, 1(3), 88-92.
  • 4. Clark, C.R., Geffen, G.M., Geffen, L.B. (1987). Catecholamines and attention II: Pharmacological studies inormal humans. Neuroscience and Biobehavioral Reviews, 4, 353-364. [CrossRef]
  • 5. Vieira, I.C., Fatibello-Filho, O. (1998). Spectrophotometric determination of methyldopa and dopamine in pharmaceutical formulations using a crude extract of sweet potato root (Ipomoea batatas (L.) Lam.) as enzymatic source. Talanta, 46(4), 559-564. [CrossRef]
  • 6. Mete, S. Ders notu, Otonom Sinir Sistemine Giriş, Nevşehir Üniversitesi. Web site. Erişim adresi https://sistem.nevsehir.edu.tr/bizdosyalar/c2f433923e6615b388e1cca9a9777378/TTP%20Farmakoloji%202-Otonom%20sininr%20sistemi.pdf. Erişim tarihi: 04.05.2023.
  • 7. Drugbank, Norepinefrin Web site. Erişim adresi https://go.drugbank.com/drugs/DB00368. Erişim tarihi: 04.05.2023.
  • 8. Hardman, J.G., Limbird, L.E., Gilman, A.G. (2006). Goodman ve Gilman´s The Pharmacological Basis of Therapeutics, 11th ed, New York, p. 249.
  • 9. Drugbank, Epinefrin Web site. Erişim adresi https://go.drugbank.com/drugs/DB00668. Erişim tarihi: 04.05.2023.
  • 10. Eczacıbaşı İlaç Pazarlama, Norepinefrin için Kısa Ürün Bilgisi Web site. Erişim adresi: https://www.eczacibasiilac.com.tr/EIP/media/EIP_Media/PDF/Stenor_4m_4ml_IV_Ampul_KUB.pdf. Erişim tarihi: 04.05.2023.
  • 11. Beitollahi, H., Sheikhshoaie, I. (2011). Electrocatalytic and simultaneous determination of isoproterenol, uric acid and folic acid at molybdenum (VI) complex-carbon nanotube paste electrode. Electrochimica Acta, 56(27), 10259-10263. [CrossRef]
  • 12. Bethesda, M.D. (2006). Phenylephrine. National Institute of Child Health and Human Development National Library of Medicine, Drugs and Lactation Database (LactMed) from https://www.ncbi.nlm.nih.gov/books/NBK501438/. Erişim tarihi: 04.05.2023.
  • 13. Cooper, B.E. (2008). Review and update on inotropes and vasopressors. Advanced Critical Care, 19(1), 5-13.
  • 14. Mercier, F.J, Auge, M., Hoffmann, C., Fischer, C., Le Gouez, A. (2013). Maternal hypotension during spinal anesthesia for caesarean delivery. Minerva Anestesiologica, 79(1), 62-73.
  • 15. Price, A.H., Clissold, S.P. (2012). Salbutamol in the 1980s. A reappraisal of its clinical efficacy. Drugs, 38(1), 77-122. [CrossRef]
  • 16. Sultan, K., Zamir, A., Ashraf, W., Imran, I., Saeed, H., Rehman, A.U., Majeed, A., Rasool, M.F. (2023). Clinical pharmacokinetics of terbutaline in humans: A systematic review. Naunyn-Schmiedeberg's Archives of Pharmacology, 396(2), 213-227. [CrossRef]
  • 17. Laccourreye, O., Werner, A., Giroud, J.P., Couloigner, V., Bonfils, P., Bondon-Guitton, E. (2015). Benefits, limits and danger of ephedrine and pseudoephedrine as nasal decongestants. European Annals of Otorhinolaryngology, Head and Neck Diseases, 132(1), 31-34. [CrossRef]
  • 18. Anderson, S.D. (2018). Repurposing drugs as inhaled therapies in asthma. Advanced Drug Delivery Reviews, 133, 19-33. [CrossRef]
  • 19. United States Pharmacopeial Convention. (2007). Drug Information for the Health Care Professional (V1), Thomson/Micromedex, Greenwood Village, CO, 26th ed, p. 2452.
  • 20. Çakal, C. (2010). Doktora tezi. Katekolaminlerin Tayini İçin Mikro Toplam Analiz Sistemlerinin (µTAS) Geliştirilmesi. Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, Türkiye.
  • 21. Ortmer, K. (1981). Kirk-Othmer Encyclopedia of Chemical Technology. New York, John Wiley and Sons, 3rd ed., p. 754.
  • 22. O'Neil, M.J. (2006). The Merck Index-An Encyclopedia of Chemicals, Drugs, and Biologicals. Whitehouse Station, New Jersey, Merck and Co Inc, p. 618.
  • 23. Lide, D.R. (2007). CRC Handbook of Chemistry and Physics. 88th ed, CRC Press, Taylor Francis, Boca Raton, FL. p. 3-400.
  • 24. Blanco, A., Blanco, G. (2017). Medical Biochemistry. 1st ed, Academic Press, Elsevier Science. p.110.
  • 25. Vardanyan, R.S., Hruby, V.J. (2006). Adrenergic (Sympathomimetic) Drugs. Synthesis of Essential Drugs E-Book. 1st ed, Elsevier Science, p. 143-159. [CrossRef]
  • 26. Lehmann H.D., Thyes, M. (2008). Antihypotensives. Ullmann’s Encyclopedia of Industrial Chemistry, New York, John Wiley and Sons, 7th ed., p. 231.
  • 27. Lewis Sr, R.J. (2007). Hawley's Condensed Chemical Dictionary, New York, John Wiley and Sons, 15th ed., p. 506.
  • 28. Sandow, J. (2008). Hormones. Ullmann's Encyclopedia of Industrial Chemistry, New York, John Wiley and Sons, 7th ed., p. 314.
  • 29. Ashford, R.D. (1994) Ashford's Dictionary of Industrial Chemicals. London, England: Wavelength Publications Ltd., p. 380.
  • 30. Palacios, S.M., Palacio, M.A. (2007). Enantiomeric resolution of albuterol sulfate by preferential crystallization. Tetrahedron: Asymmetry, 18(10), 1170-1175. [CrossRef]
  • 31. Beng, H., Zhang, H., Jayachandra, R., Li, J., Wu, J., Tan, W. (2018). Enantioselective resolution of Rac‐terbutaline and evaluation of optically pure R‐terbutaline hydrochloride as an efficient anti‐asthmatic drug. Chirality, 30(6), 759-768. [CrossRef]
  • 32. Lundberg, U. (1995). Methods and applications of stress research. Technology Health Care, 3, 3-9.
  • 33. Bingham, E., Cohrssen, E., Powell, C.H. (2001). Patty's Toxicology. (5th ed), Chemical Health Safety, (p. 301), New York: John Wiley and Sons.
  • 34. Sayın, A. (2008). Dopamin reseptörleri ve sinyal iletim özellikleri. Klinik Psikiyatri, 11, 125-134.
  • 35. Kaplan, N. (2013). Uzmanlık Tezi. Sıçan Siyatik Sinir Bloğunda Bupivakaine İlave Edilen Adjuvan Ajanların Blok Süreleri ile Sodyum ve Kalsiyum Kanal Gen Ekspresyonları Üzerine Etkileri. Anesteziyoloji ve Reanimasyon AnaBilim Dalı, Gaziantep Üniversitesi Tıp Fakültesi, Gaziantep, Türkiye.
  • 36. Cannon, J.G. (2005). The pharmacological basis of therapeutics. L.L. Brunton, J.S. Lazo and K.L. Parker (Eds.), Goodman ve Gilman’s The Pharmacological Basis of Therapeutics, 11th ed., (p. 2021). New York: McGraw Hill.
  • 37. Oradell, N.J. (2009). Physicians’ Desk Reference, 63rd ed, Thomson PDR, Montvale, New Jersey, p. 1024.
  • 38. Bethesda, M.D. (2009). American Hospital (AHFS) Drug Information. G.K. McEvoy (Ed.) American Society of Health-System Pharmacists.
  • 39. Rasmussen, S.G., Thian, F.S., Kobilka, T.S., Choi, H.J., Kuhn, P., Weis, W.I., Kobilka, B.K., Stevens, R.C. (2007). Highresolutioncrystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science, 318, 1258-1265. [CrossRef]
  • 40. Rosenbaum, D.M., Cherezov, V., Hanson, M.A., Rasmussen, S.G., Thian, F.S., Kobilka, T.S., Choi, H.J., Yao, X.J., Weis, W.I., Stevens, R.C., Kobilka, B.K. (2007). GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science, 318, 1266-1273. [CrossRef]
  • 41. Hanson, M.A., Cherezov, V., Griffith, M.T., Roth, C.B., Jaakola, V.P., Chien, E.Y., Velasquez, J., Kuhn, P., Stevens, R.C. (2008). A specific cholesterol binding site is established by the 2.8 angstrom structure of the human β2-adrenergic receptor. Structure, 16, 897-905. [CrossRef]
  • 42. Rasmussen, S.G., Choi, H.J., Rosenbaum, D.M., Kobilka, T.S., Thian, F.S., Edwards, P.C., Burghammer, M., Ratnala, V.R., Sanishvili, R., Fischetti, R.F., Schertler, G.F., Weis, W.I., Kobilka, B.K. (2007). Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature, 450, 383-387. [CrossRef]
  • 43. Wacker, D., Fenalti, G., Brown, M.A., Katritch, V., Abagyan, R., Cherezov, V., Stevens, R.C. (2010). Conserved binding mode of human β2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. Journal of the American Chemical Society, 132, 11443-11445. [CrossRef]
  • 44. Rasmussen, S.G., Choi, H.J., Fung, J.J., Pardon, E., Casarosa, P., Chae, P.S., Devree, B.T., Rosenbaum, D.M., Thian, F.S., Kobilka, T.S., Schnapp, A., Konetzki, I., Sunahara, R.K., Gellman, S.H., Pautsch, A., Steyaert, J., Weis, W.I., Kobilka, B.K. (2011). Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature, 469, 175-180. [CrossRef]
  • 45. Rosenbaum, D.M., Zhang, C., Lyons, J.A., Holl, R., Aragao, D., Arlow, D.H., Rasmussen, S.G., Choi, H.J., Devree, B.T., Sunahara, R.K., Chae, P.S., Gellman, S.H., Dror, R.O., Shaw, D.E., Weis, W.I., Caffrey, M., Gmeiner, P., Kobilka, B.K. (2011). Structure and function of an irreversible agonist-β2 adrenoceptor complex. Nature, 469, 236-240. [CrossRef]
  • 46. Warne, T., Serrano-Vega, M.J., Baker, J.G., Moukhametzianov, R., Edwards, P.C., Henderson, R., Leslie, A.G., Tate, C.G., Schertler, G.F. (2008). Structure of a β1-adrenergic G protein- coupled receptor. Nature, 454, 486-491. [CrossRef]
  • 47. Christopher, J.A., Brown, J., Dore, A.S., Errey, J.C., Koglin, M., Marshall, F.H., Myszka, D.G., Rich, R.L., Tate, C.G., Tehan, B., Warne, T., Congreve, M. (2013). Biophysical fragment screening of the β1-adrenergic receptor: Identification of high affinity arylpiperazine leads using structurebased drug design. Journal of Medicinal Chemistry, 56, 3446-3455. [CrossRef]
  • 48. Kolb, P., Rosenbaum, D.M., Irwin, J.J., Fung, J.J., Kobilka, B.K., Shoichet, B.K. (2009). Structure-based discovery of β2-adrenergic receptor ligands. Proceedings of the National Academy of Sciences of the United States of America, 106, 6843-6848. [CrossRef]
  • 49. Kooistra, A.J., Vischer, H.F., McNaught-Flores, D., Leurs, R., de Esch, I.J., de Graaf, C. (2016). Function-specific virtual screening for GPCR ligands using a combined scoring method. Scientific Reports, 6, 28288. [CrossRef]
  • 50. Soriano-Ursúa, M.A., Correa-Basurto, J., Valencia-Hernández, I., Amezcua-Gutiérrez, M.A., Padilla-Martínez, I.I., Trujillo-Ferrara, J.G. (2010). Design, synthesis and in vitro evaluation of (R)-4-(2-(tert-butylamino)-1-hydroxyethyl)-2-(hydroxymethyl)phenyl hydrogen phenylboronate: A novel salbutamol derivative with high intrinsic efficacy on the b2 adrenoceptor. Bioorganic Medicinal Chemistry Letters, 20(19), 5623-5629. [CrossRef]
  • 51. Chetoni, P., Crotti, P., Saettone, M.F. (1994). Albuterol prodrugs for ocular administration: Synthesis and evaluation of the physico-chemical and IOP-depressant properties of three albuterol triesters. International Journal of Pharmaceutics, 105(2), 147-155. [CrossRef]
  • 52. Imanishi, M., Tomishima, Y., Itou, S., Hamashima, H., Nakajima, Y., Washizuka, K., Sakurai, M., Matsui, S., Imamura, E., Ueshima, K., Yamamoto, T., Yamamoto, N., Ishikawa, H., Nakano, K., Unami, N., Hamada, K., Matsumura, Y., Takamura, F., Hattori, K. (2008). Discovery of a novel series of biphenyl benzoic acid derivatives as potent and selective human beta3-adrenergic receptor agonists with good oral bioavailability. Part I. Journal of Medicinal Chemistry, 51(6), 1925-1944. [CrossRef]
  • 53. Wada, Y., Shirahashi, H., Iwanami, T., Ogawa, M., Nakano, S., Morimoto, A., Kasahara, K., Tanaka, E., Takada, Y., Ohashi, S., Mori, M., Shuto, S. (2015). Discovery of novel indazole derivatives as highly potent and selective human β3-adrenergic receptor agonists with the possibility of having no cardiovascular side effects. Journal of Medicinal Chemistry, 58, 6048-6057. [CrossRef]
  • 54. Sahi, S., Tewatia, P., Malik, B.K. (2012). Modeling and simulation studies of human β3 adrenergic receptor and its interactions with agonists. Current Computer-Aided Drug Design, 8, 283-295. [CrossRef]
  • 55. Jin, F., Lu, C., Sun, X., Li, W., Liu, G., Tang, Y. (2011). Insights into the binding modes of human β3-adrenergic receptor agonists with ligand-based and receptor-based methods. Molecular Diversity, 15, 817-831. [CrossRef]
  • 56. Nureki, I., Kobayashi, K., Tanaka, T., Demur, K., Inoue, A., Shihoya, W., Nureki, O. (2022). Cryo-EM structures of the β3 adrenergic receptor bound to solabegron and isoproterenol. Biochemical and Biophysical Research Communications, 611, 158-164. [CrossRef]
  • 57. Hattori, K., Orita, M., Toda, S., Imanishi, M., Itou, S., Nakajima, Y., Tanabe, D., Washizuka, K., Araki, T., Sakurai, M., Matsui, S., Imamura, E., Ueshima, K., Yamamoto, T., Yamamoto, N., Ishikawa, H., Nakano, K., Unami, N., Hamada, K., Matsumura, Y., Takamura, F. (2009). Discovery of highly potent and selective biphenylacylsulfonamide-based beta3-adrenergic receptor agonists and molecular modeling based on the solved X-ray structure of the beta2-adrenergic receptor: Part 6. Bioorganic Medicinal Chemistry Letters, 19, 4679-4683. [CrossRef]
  • 58. Brucker, B.M., King, J., Mudd, P.N., McHale, K. (2022). Selectivity and maximum response of vibegron and mirabegron for β3-adrenergic receptors. Current Therapeutic Research, 96, 100674. [CrossRef]
  • 59. Ardsley, N.Y. (2015). Acorda presents data on inhaled levodopa therapy CVT-301 at international congress of Parkinson’s disease and movement disorders. Acorda Therapeutics, Inc. San Diego, CA.
  • 60. Grosset, D.G., Dhall, R., Gurevich, T., Kassubek, J., Poewe, W.H., Rascol, O., Rudzinska, M., Cormier, J., Sedkov, A., Oh, C. (2020). Inhaled levodopa in Parkinson’s disease patients with OFF periods: A randomized 12-month pulmonary safety study. Parkinsonism and Related Disorders, 71, 4-10. [CrossRef]
  • 61. Tavapadon Web site. Erişim adresi https://www.cerevel.com/compounds/tavapadon/ Erişim tarihi: 20.07.2023.
  • 62. Open-label trial in Parkinson’s disease (TEMPO-4). ClinicalTrials.gov, Identifier: NCT04760769. (Last Update Posted: May 30, 2023) Web site. Erişim adresi https://clinicaltrials.gov/ct2/show/NCT04760769. Erişim tarihi: 20.07.2023.
  • 63. Brice, N.L., Schiffer, H.H., Monenschein, H., Mulligan, V.J., Page, K., Powell, J., Xu, X., Cheung, T., Burley, J.R., Sun, H., Dickson, L., Murphy, S.T., Kaushal, N., Sheardown, S., Lawrence, J., Chen, Y., Bartkowski, D., Kanta, A., Russo, J., Hosea, N., Dawson, L.A., Hitchcock, S.H., Carlton, M.B. (2021). Development of CVN424: A selective and novel GPR6 inverse agonist effective in models of Parkinson disease. Journal of Pharmacology and Experimental Therapeutics, 377(3) 407-416. [CrossRef]
  • 64. Ferreira, J.J., Lees, A., Rocha , J.F., Poewe, W., Rascol, O., Soares-da-Silva, P. (2019). Long-term efficacy of opicapone in fluctuating Parkinson’s disease patients: A pooled analysis of data from two phase 3 clinical trials and their open-label extensions. European Journal of Neurology, 26, 953-960. [CrossRef]
  • 65. Bette, S., Shpiner, D., Singer, C., Moore, H. (2018). Safinamide in the management of patients with Parkinson’s disease not stabilized on levodopa: A review of the current clinical evidence. Therapeutics and Clinical Risk Management, 14, 1737-1745. [CrossRef]

KLİNİKTE ÖNEMLİ OLAN KATEKOLAMİN VE TÜREVLERİNİN YAPILARININ İNCELENMESİ

Yıl 2024, , 366 - 383, 20.01.2024
https://doi.org/10.33483/jfpau.1369190

Öz

Amaç: Katekolaminler olarak adlandırılan monoamin yapısındaki 3,4-dihidroksifeniletilamin türevi dopamin, epinefrin ve norepinefrin, çok önemli biyolojik rolleri olan endojen bileşiklerdir. Katekol yapısı taşıyan bu biyomoleküllerin, kendine özgü reseptörleri uyararak, organizmadaki pek çok sistemi kontrol ettiği bilinmektedir. Özellikle bu endojen bileşiklerin, adrenerjik ve dopaminerjik sistem üzerinden uyarıcı etkilerinin olduğu görülmektedir. Pek çok biyolojik süreçte hormon veya nörotransmitter olarak yer alan bu bileşikler, terapötik önemleri nedeniyle sentetik olarak da elde edilerek klinikte kullanılmaktadır. Ayrıca, endojen katekolaminlerin farmakolojik ve farmasötik özelliklerini iyileştirmek amacıyla, kimyasal modifikasyonlar ile yeni pek çok türevi geliştirilmiştir. Klinikteki kullanımlarının geniş ve önemli olması, bu bileşikleri araştırmacılar için değerli kılmaktadır. Katekolamin ve türevi bileşiklerin aktivitelerinin incelenmesi kadar kimyasal yapılarının anlaşılması ve sentez yöntemlerinin araştırılması da yeni türevlerin geliştirilmesi açısından çok önemlidir.
Sonuç ve Tartışma: Bu nedenle bu çalışmada klinik önemleri olan katekolamin türevlerinin yapıları ve özellikleri araştırılmıştır. Çalışma sonucunda katekolaminlerin kimyasal özellikleri, biyosentezleri ve sentetik olarak elde edilme yöntemleri ile biyolojik aktiviteleri ve klinikteki kullanımları ortaya konulmuştur.

Kaynakça

  • 1. Nikolajsen, R.P.H., Hansen, A.M. (2001). Analytical methods for determining urinary catecholamines in healthy subjects. Analytica Chimica Acta, 449, 1-15. [CrossRef]
  • 2. Nagatsu, T. (1973). Biochemistry of Catecholamines; the Biochemical Method, University Park Press, Baltimore, p. 362.
  • 3. Doğan, P. (2005). Katekolamin biosentezi ve metabolik etkileri. Türkiye Klinikleri Dahili Tıp Bilimleri Dergisi, 1(3), 88-92.
  • 4. Clark, C.R., Geffen, G.M., Geffen, L.B. (1987). Catecholamines and attention II: Pharmacological studies inormal humans. Neuroscience and Biobehavioral Reviews, 4, 353-364. [CrossRef]
  • 5. Vieira, I.C., Fatibello-Filho, O. (1998). Spectrophotometric determination of methyldopa and dopamine in pharmaceutical formulations using a crude extract of sweet potato root (Ipomoea batatas (L.) Lam.) as enzymatic source. Talanta, 46(4), 559-564. [CrossRef]
  • 6. Mete, S. Ders notu, Otonom Sinir Sistemine Giriş, Nevşehir Üniversitesi. Web site. Erişim adresi https://sistem.nevsehir.edu.tr/bizdosyalar/c2f433923e6615b388e1cca9a9777378/TTP%20Farmakoloji%202-Otonom%20sininr%20sistemi.pdf. Erişim tarihi: 04.05.2023.
  • 7. Drugbank, Norepinefrin Web site. Erişim adresi https://go.drugbank.com/drugs/DB00368. Erişim tarihi: 04.05.2023.
  • 8. Hardman, J.G., Limbird, L.E., Gilman, A.G. (2006). Goodman ve Gilman´s The Pharmacological Basis of Therapeutics, 11th ed, New York, p. 249.
  • 9. Drugbank, Epinefrin Web site. Erişim adresi https://go.drugbank.com/drugs/DB00668. Erişim tarihi: 04.05.2023.
  • 10. Eczacıbaşı İlaç Pazarlama, Norepinefrin için Kısa Ürün Bilgisi Web site. Erişim adresi: https://www.eczacibasiilac.com.tr/EIP/media/EIP_Media/PDF/Stenor_4m_4ml_IV_Ampul_KUB.pdf. Erişim tarihi: 04.05.2023.
  • 11. Beitollahi, H., Sheikhshoaie, I. (2011). Electrocatalytic and simultaneous determination of isoproterenol, uric acid and folic acid at molybdenum (VI) complex-carbon nanotube paste electrode. Electrochimica Acta, 56(27), 10259-10263. [CrossRef]
  • 12. Bethesda, M.D. (2006). Phenylephrine. National Institute of Child Health and Human Development National Library of Medicine, Drugs and Lactation Database (LactMed) from https://www.ncbi.nlm.nih.gov/books/NBK501438/. Erişim tarihi: 04.05.2023.
  • 13. Cooper, B.E. (2008). Review and update on inotropes and vasopressors. Advanced Critical Care, 19(1), 5-13.
  • 14. Mercier, F.J, Auge, M., Hoffmann, C., Fischer, C., Le Gouez, A. (2013). Maternal hypotension during spinal anesthesia for caesarean delivery. Minerva Anestesiologica, 79(1), 62-73.
  • 15. Price, A.H., Clissold, S.P. (2012). Salbutamol in the 1980s. A reappraisal of its clinical efficacy. Drugs, 38(1), 77-122. [CrossRef]
  • 16. Sultan, K., Zamir, A., Ashraf, W., Imran, I., Saeed, H., Rehman, A.U., Majeed, A., Rasool, M.F. (2023). Clinical pharmacokinetics of terbutaline in humans: A systematic review. Naunyn-Schmiedeberg's Archives of Pharmacology, 396(2), 213-227. [CrossRef]
  • 17. Laccourreye, O., Werner, A., Giroud, J.P., Couloigner, V., Bonfils, P., Bondon-Guitton, E. (2015). Benefits, limits and danger of ephedrine and pseudoephedrine as nasal decongestants. European Annals of Otorhinolaryngology, Head and Neck Diseases, 132(1), 31-34. [CrossRef]
  • 18. Anderson, S.D. (2018). Repurposing drugs as inhaled therapies in asthma. Advanced Drug Delivery Reviews, 133, 19-33. [CrossRef]
  • 19. United States Pharmacopeial Convention. (2007). Drug Information for the Health Care Professional (V1), Thomson/Micromedex, Greenwood Village, CO, 26th ed, p. 2452.
  • 20. Çakal, C. (2010). Doktora tezi. Katekolaminlerin Tayini İçin Mikro Toplam Analiz Sistemlerinin (µTAS) Geliştirilmesi. Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, Türkiye.
  • 21. Ortmer, K. (1981). Kirk-Othmer Encyclopedia of Chemical Technology. New York, John Wiley and Sons, 3rd ed., p. 754.
  • 22. O'Neil, M.J. (2006). The Merck Index-An Encyclopedia of Chemicals, Drugs, and Biologicals. Whitehouse Station, New Jersey, Merck and Co Inc, p. 618.
  • 23. Lide, D.R. (2007). CRC Handbook of Chemistry and Physics. 88th ed, CRC Press, Taylor Francis, Boca Raton, FL. p. 3-400.
  • 24. Blanco, A., Blanco, G. (2017). Medical Biochemistry. 1st ed, Academic Press, Elsevier Science. p.110.
  • 25. Vardanyan, R.S., Hruby, V.J. (2006). Adrenergic (Sympathomimetic) Drugs. Synthesis of Essential Drugs E-Book. 1st ed, Elsevier Science, p. 143-159. [CrossRef]
  • 26. Lehmann H.D., Thyes, M. (2008). Antihypotensives. Ullmann’s Encyclopedia of Industrial Chemistry, New York, John Wiley and Sons, 7th ed., p. 231.
  • 27. Lewis Sr, R.J. (2007). Hawley's Condensed Chemical Dictionary, New York, John Wiley and Sons, 15th ed., p. 506.
  • 28. Sandow, J. (2008). Hormones. Ullmann's Encyclopedia of Industrial Chemistry, New York, John Wiley and Sons, 7th ed., p. 314.
  • 29. Ashford, R.D. (1994) Ashford's Dictionary of Industrial Chemicals. London, England: Wavelength Publications Ltd., p. 380.
  • 30. Palacios, S.M., Palacio, M.A. (2007). Enantiomeric resolution of albuterol sulfate by preferential crystallization. Tetrahedron: Asymmetry, 18(10), 1170-1175. [CrossRef]
  • 31. Beng, H., Zhang, H., Jayachandra, R., Li, J., Wu, J., Tan, W. (2018). Enantioselective resolution of Rac‐terbutaline and evaluation of optically pure R‐terbutaline hydrochloride as an efficient anti‐asthmatic drug. Chirality, 30(6), 759-768. [CrossRef]
  • 32. Lundberg, U. (1995). Methods and applications of stress research. Technology Health Care, 3, 3-9.
  • 33. Bingham, E., Cohrssen, E., Powell, C.H. (2001). Patty's Toxicology. (5th ed), Chemical Health Safety, (p. 301), New York: John Wiley and Sons.
  • 34. Sayın, A. (2008). Dopamin reseptörleri ve sinyal iletim özellikleri. Klinik Psikiyatri, 11, 125-134.
  • 35. Kaplan, N. (2013). Uzmanlık Tezi. Sıçan Siyatik Sinir Bloğunda Bupivakaine İlave Edilen Adjuvan Ajanların Blok Süreleri ile Sodyum ve Kalsiyum Kanal Gen Ekspresyonları Üzerine Etkileri. Anesteziyoloji ve Reanimasyon AnaBilim Dalı, Gaziantep Üniversitesi Tıp Fakültesi, Gaziantep, Türkiye.
  • 36. Cannon, J.G. (2005). The pharmacological basis of therapeutics. L.L. Brunton, J.S. Lazo and K.L. Parker (Eds.), Goodman ve Gilman’s The Pharmacological Basis of Therapeutics, 11th ed., (p. 2021). New York: McGraw Hill.
  • 37. Oradell, N.J. (2009). Physicians’ Desk Reference, 63rd ed, Thomson PDR, Montvale, New Jersey, p. 1024.
  • 38. Bethesda, M.D. (2009). American Hospital (AHFS) Drug Information. G.K. McEvoy (Ed.) American Society of Health-System Pharmacists.
  • 39. Rasmussen, S.G., Thian, F.S., Kobilka, T.S., Choi, H.J., Kuhn, P., Weis, W.I., Kobilka, B.K., Stevens, R.C. (2007). Highresolutioncrystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science, 318, 1258-1265. [CrossRef]
  • 40. Rosenbaum, D.M., Cherezov, V., Hanson, M.A., Rasmussen, S.G., Thian, F.S., Kobilka, T.S., Choi, H.J., Yao, X.J., Weis, W.I., Stevens, R.C., Kobilka, B.K. (2007). GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science, 318, 1266-1273. [CrossRef]
  • 41. Hanson, M.A., Cherezov, V., Griffith, M.T., Roth, C.B., Jaakola, V.P., Chien, E.Y., Velasquez, J., Kuhn, P., Stevens, R.C. (2008). A specific cholesterol binding site is established by the 2.8 angstrom structure of the human β2-adrenergic receptor. Structure, 16, 897-905. [CrossRef]
  • 42. Rasmussen, S.G., Choi, H.J., Rosenbaum, D.M., Kobilka, T.S., Thian, F.S., Edwards, P.C., Burghammer, M., Ratnala, V.R., Sanishvili, R., Fischetti, R.F., Schertler, G.F., Weis, W.I., Kobilka, B.K. (2007). Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature, 450, 383-387. [CrossRef]
  • 43. Wacker, D., Fenalti, G., Brown, M.A., Katritch, V., Abagyan, R., Cherezov, V., Stevens, R.C. (2010). Conserved binding mode of human β2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. Journal of the American Chemical Society, 132, 11443-11445. [CrossRef]
  • 44. Rasmussen, S.G., Choi, H.J., Fung, J.J., Pardon, E., Casarosa, P., Chae, P.S., Devree, B.T., Rosenbaum, D.M., Thian, F.S., Kobilka, T.S., Schnapp, A., Konetzki, I., Sunahara, R.K., Gellman, S.H., Pautsch, A., Steyaert, J., Weis, W.I., Kobilka, B.K. (2011). Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature, 469, 175-180. [CrossRef]
  • 45. Rosenbaum, D.M., Zhang, C., Lyons, J.A., Holl, R., Aragao, D., Arlow, D.H., Rasmussen, S.G., Choi, H.J., Devree, B.T., Sunahara, R.K., Chae, P.S., Gellman, S.H., Dror, R.O., Shaw, D.E., Weis, W.I., Caffrey, M., Gmeiner, P., Kobilka, B.K. (2011). Structure and function of an irreversible agonist-β2 adrenoceptor complex. Nature, 469, 236-240. [CrossRef]
  • 46. Warne, T., Serrano-Vega, M.J., Baker, J.G., Moukhametzianov, R., Edwards, P.C., Henderson, R., Leslie, A.G., Tate, C.G., Schertler, G.F. (2008). Structure of a β1-adrenergic G protein- coupled receptor. Nature, 454, 486-491. [CrossRef]
  • 47. Christopher, J.A., Brown, J., Dore, A.S., Errey, J.C., Koglin, M., Marshall, F.H., Myszka, D.G., Rich, R.L., Tate, C.G., Tehan, B., Warne, T., Congreve, M. (2013). Biophysical fragment screening of the β1-adrenergic receptor: Identification of high affinity arylpiperazine leads using structurebased drug design. Journal of Medicinal Chemistry, 56, 3446-3455. [CrossRef]
  • 48. Kolb, P., Rosenbaum, D.M., Irwin, J.J., Fung, J.J., Kobilka, B.K., Shoichet, B.K. (2009). Structure-based discovery of β2-adrenergic receptor ligands. Proceedings of the National Academy of Sciences of the United States of America, 106, 6843-6848. [CrossRef]
  • 49. Kooistra, A.J., Vischer, H.F., McNaught-Flores, D., Leurs, R., de Esch, I.J., de Graaf, C. (2016). Function-specific virtual screening for GPCR ligands using a combined scoring method. Scientific Reports, 6, 28288. [CrossRef]
  • 50. Soriano-Ursúa, M.A., Correa-Basurto, J., Valencia-Hernández, I., Amezcua-Gutiérrez, M.A., Padilla-Martínez, I.I., Trujillo-Ferrara, J.G. (2010). Design, synthesis and in vitro evaluation of (R)-4-(2-(tert-butylamino)-1-hydroxyethyl)-2-(hydroxymethyl)phenyl hydrogen phenylboronate: A novel salbutamol derivative with high intrinsic efficacy on the b2 adrenoceptor. Bioorganic Medicinal Chemistry Letters, 20(19), 5623-5629. [CrossRef]
  • 51. Chetoni, P., Crotti, P., Saettone, M.F. (1994). Albuterol prodrugs for ocular administration: Synthesis and evaluation of the physico-chemical and IOP-depressant properties of three albuterol triesters. International Journal of Pharmaceutics, 105(2), 147-155. [CrossRef]
  • 52. Imanishi, M., Tomishima, Y., Itou, S., Hamashima, H., Nakajima, Y., Washizuka, K., Sakurai, M., Matsui, S., Imamura, E., Ueshima, K., Yamamoto, T., Yamamoto, N., Ishikawa, H., Nakano, K., Unami, N., Hamada, K., Matsumura, Y., Takamura, F., Hattori, K. (2008). Discovery of a novel series of biphenyl benzoic acid derivatives as potent and selective human beta3-adrenergic receptor agonists with good oral bioavailability. Part I. Journal of Medicinal Chemistry, 51(6), 1925-1944. [CrossRef]
  • 53. Wada, Y., Shirahashi, H., Iwanami, T., Ogawa, M., Nakano, S., Morimoto, A., Kasahara, K., Tanaka, E., Takada, Y., Ohashi, S., Mori, M., Shuto, S. (2015). Discovery of novel indazole derivatives as highly potent and selective human β3-adrenergic receptor agonists with the possibility of having no cardiovascular side effects. Journal of Medicinal Chemistry, 58, 6048-6057. [CrossRef]
  • 54. Sahi, S., Tewatia, P., Malik, B.K. (2012). Modeling and simulation studies of human β3 adrenergic receptor and its interactions with agonists. Current Computer-Aided Drug Design, 8, 283-295. [CrossRef]
  • 55. Jin, F., Lu, C., Sun, X., Li, W., Liu, G., Tang, Y. (2011). Insights into the binding modes of human β3-adrenergic receptor agonists with ligand-based and receptor-based methods. Molecular Diversity, 15, 817-831. [CrossRef]
  • 56. Nureki, I., Kobayashi, K., Tanaka, T., Demur, K., Inoue, A., Shihoya, W., Nureki, O. (2022). Cryo-EM structures of the β3 adrenergic receptor bound to solabegron and isoproterenol. Biochemical and Biophysical Research Communications, 611, 158-164. [CrossRef]
  • 57. Hattori, K., Orita, M., Toda, S., Imanishi, M., Itou, S., Nakajima, Y., Tanabe, D., Washizuka, K., Araki, T., Sakurai, M., Matsui, S., Imamura, E., Ueshima, K., Yamamoto, T., Yamamoto, N., Ishikawa, H., Nakano, K., Unami, N., Hamada, K., Matsumura, Y., Takamura, F. (2009). Discovery of highly potent and selective biphenylacylsulfonamide-based beta3-adrenergic receptor agonists and molecular modeling based on the solved X-ray structure of the beta2-adrenergic receptor: Part 6. Bioorganic Medicinal Chemistry Letters, 19, 4679-4683. [CrossRef]
  • 58. Brucker, B.M., King, J., Mudd, P.N., McHale, K. (2022). Selectivity and maximum response of vibegron and mirabegron for β3-adrenergic receptors. Current Therapeutic Research, 96, 100674. [CrossRef]
  • 59. Ardsley, N.Y. (2015). Acorda presents data on inhaled levodopa therapy CVT-301 at international congress of Parkinson’s disease and movement disorders. Acorda Therapeutics, Inc. San Diego, CA.
  • 60. Grosset, D.G., Dhall, R., Gurevich, T., Kassubek, J., Poewe, W.H., Rascol, O., Rudzinska, M., Cormier, J., Sedkov, A., Oh, C. (2020). Inhaled levodopa in Parkinson’s disease patients with OFF periods: A randomized 12-month pulmonary safety study. Parkinsonism and Related Disorders, 71, 4-10. [CrossRef]
  • 61. Tavapadon Web site. Erişim adresi https://www.cerevel.com/compounds/tavapadon/ Erişim tarihi: 20.07.2023.
  • 62. Open-label trial in Parkinson’s disease (TEMPO-4). ClinicalTrials.gov, Identifier: NCT04760769. (Last Update Posted: May 30, 2023) Web site. Erişim adresi https://clinicaltrials.gov/ct2/show/NCT04760769. Erişim tarihi: 20.07.2023.
  • 63. Brice, N.L., Schiffer, H.H., Monenschein, H., Mulligan, V.J., Page, K., Powell, J., Xu, X., Cheung, T., Burley, J.R., Sun, H., Dickson, L., Murphy, S.T., Kaushal, N., Sheardown, S., Lawrence, J., Chen, Y., Bartkowski, D., Kanta, A., Russo, J., Hosea, N., Dawson, L.A., Hitchcock, S.H., Carlton, M.B. (2021). Development of CVN424: A selective and novel GPR6 inverse agonist effective in models of Parkinson disease. Journal of Pharmacology and Experimental Therapeutics, 377(3) 407-416. [CrossRef]
  • 64. Ferreira, J.J., Lees, A., Rocha , J.F., Poewe, W., Rascol, O., Soares-da-Silva, P. (2019). Long-term efficacy of opicapone in fluctuating Parkinson’s disease patients: A pooled analysis of data from two phase 3 clinical trials and their open-label extensions. European Journal of Neurology, 26, 953-960. [CrossRef]
  • 65. Bette, S., Shpiner, D., Singer, C., Moore, H. (2018). Safinamide in the management of patients with Parkinson’s disease not stabilized on levodopa: A review of the current clinical evidence. Therapeutics and Clinical Risk Management, 14, 1737-1745. [CrossRef]
Toplam 65 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Eczacılık Bilimleri
Bölüm Derleme
Yazarlar

Özden Tarı 0000-0001-9280-6594

Mustafa Kürtül 0000-0002-9580-3871

Erken Görünüm Tarihi 30 Kasım 2023
Yayımlanma Tarihi 20 Ocak 2024
Gönderilme Tarihi 30 Eylül 2023
Kabul Tarihi 9 Kasım 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Tarı, Ö., & Kürtül, M. (2024). KLİNİKTE ÖNEMLİ OLAN KATEKOLAMİN VE TÜREVLERİNİN YAPILARININ İNCELENMESİ. Journal of Faculty of Pharmacy of Ankara University, 48(1), 366-383. https://doi.org/10.33483/jfpau.1369190
AMA Tarı Ö, Kürtül M. KLİNİKTE ÖNEMLİ OLAN KATEKOLAMİN VE TÜREVLERİNİN YAPILARININ İNCELENMESİ. Ankara Ecz. Fak. Derg. Ocak 2024;48(1):366-383. doi:10.33483/jfpau.1369190
Chicago Tarı, Özden, ve Mustafa Kürtül. “KLİNİKTE ÖNEMLİ OLAN KATEKOLAMİN VE TÜREVLERİNİN YAPILARININ İNCELENMESİ”. Journal of Faculty of Pharmacy of Ankara University 48, sy. 1 (Ocak 2024): 366-83. https://doi.org/10.33483/jfpau.1369190.
EndNote Tarı Ö, Kürtül M (01 Ocak 2024) KLİNİKTE ÖNEMLİ OLAN KATEKOLAMİN VE TÜREVLERİNİN YAPILARININ İNCELENMESİ. Journal of Faculty of Pharmacy of Ankara University 48 1 366–383.
IEEE Ö. Tarı ve M. Kürtül, “KLİNİKTE ÖNEMLİ OLAN KATEKOLAMİN VE TÜREVLERİNİN YAPILARININ İNCELENMESİ”, Ankara Ecz. Fak. Derg., c. 48, sy. 1, ss. 366–383, 2024, doi: 10.33483/jfpau.1369190.
ISNAD Tarı, Özden - Kürtül, Mustafa. “KLİNİKTE ÖNEMLİ OLAN KATEKOLAMİN VE TÜREVLERİNİN YAPILARININ İNCELENMESİ”. Journal of Faculty of Pharmacy of Ankara University 48/1 (Ocak 2024), 366-383. https://doi.org/10.33483/jfpau.1369190.
JAMA Tarı Ö, Kürtül M. KLİNİKTE ÖNEMLİ OLAN KATEKOLAMİN VE TÜREVLERİNİN YAPILARININ İNCELENMESİ. Ankara Ecz. Fak. Derg. 2024;48:366–383.
MLA Tarı, Özden ve Mustafa Kürtül. “KLİNİKTE ÖNEMLİ OLAN KATEKOLAMİN VE TÜREVLERİNİN YAPILARININ İNCELENMESİ”. Journal of Faculty of Pharmacy of Ankara University, c. 48, sy. 1, 2024, ss. 366-83, doi:10.33483/jfpau.1369190.
Vancouver Tarı Ö, Kürtül M. KLİNİKTE ÖNEMLİ OLAN KATEKOLAMİN VE TÜREVLERİNİN YAPILARININ İNCELENMESİ. Ankara Ecz. Fak. Derg. 2024;48(1):366-83.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.