Araştırma Makalesi
BibTex RIS Kaynak Göster

PREPARATION AND IN-VITRO CHARACTERIZATION OF CONTACT LENSES CONTAINING COENZYME Q10 LOADED MICELLES

Yıl 2024, , 179 - 188, 20.01.2024
https://doi.org/10.33483/jfpau.1400373

Öz

Objective: Coenzyme Q10 (CoQ10) offers potential therapeutic benefits for ocular health, yet faces challenges of poor solubility and bioavailability when applied to the eye. This study aimed to enhance CoQ10 delivery using contact lenses by incorporating CoQ10-loaded polymeric micelles, using Pluronic F127 and solvent evaporation technique.
Material and Method: Polymeric micelles encapsulating CoQ10 were produced via solvent evaporation with Pluronic F127. Commercial contact lenses were subsequently loaded with these micelles. Characterization of the loaded lenses included assessments of light transmittance, swelling behavior, and drug release profile under non-sink conditions, simulating the constraints of the ocular surface.
Result and Discussion: The unloaded lenses exhibited a light transmittance of 91.78±3.29% and swelling percentage of 47.51±4.45% while micelle-loaded lenses demonstrated high light transmittance levels (95.31±0.80%), ensuring optical clarity. Swelling studies showed a slight increase in size to 48.1±4.4%. The lenses effectively encapsulated 403.6±21.8 µg of CoQ10. In vitro release profile exhibited controlled release over six hours, indicating potential for sustained drug delivery. These results highlight the feasibility of micelle-loaded contact lenses for efficient ocular drug delivery, warranting further exploration into their long-term effectiveness and safety.

Etik Beyan

-

Destekleyen Kurum

Trakya Üniversitesi Bilimsel Araştırma Proje Birimi

Proje Numarası

2022/70

Teşekkür

Trakya University Scientific and Technological Research Council has provided the grant this research under the grant 2022/70. The author is grateful to Dr.Burcu Uner for size measurements.

Kaynakça

  • 1. Ciolino, J.B., Stefanescu, C.F., Ross, A.E., Salvador-Culla, B., Cortez, P., Ford, E.M., Wymbs, K.A., Sprague, S.L., Mascoop, D.R., Rudina, S.S., Trauger, S.A., Cade, F., Kohane, D.S. (2014). In vivo performance of a drug-eluting contact lens to treat glaucoma for a month. Biomaterials, 35, 432-439. [CrossRef]
  • 2. Pelusi, L., Mandatori, D., Mastropasqua, L., Agnifili, L., Allegretti, M., Nubile, M., Pandolfi, A. (2023). Innovation in the development of synthetic and natural ocular drug delivery systems for eye diseases treatment: Focusing on drug-loaded ocular inserts, contacts, and intraocular lenses. Pharmaceutics, 15, 625. [CrossRef]
  • 3. Zhao, L., Song, J., Du, Y., Ren, C., Guo, B., Bi, H. (2023). Therapeutic applications of contact lens-based drug delivery systems in ophthalmic diseases. Drug Delivery, 30, 2219419. [CrossRef]
  • 4. Zhang, X., Tohari, M.A., Marcheggiani, F., Zhou, X., Reilly, J., Tiano, L., Shu, X. (2017). Therapeutic potential of co-enzyme Q10 in retinal diseases. Current Medicinal Chemistry, 24, 4329-4339. [CrossRef]
  • 5. Lulli, M., Witort, E., Papucci, L., Torre, E., Schipani, C., Bergamini, C., Dal Monte, M., Capaccioli, S. (2012). Coenzyme Q10 instilled as eye drops on the cornea reaches the retina and protects retinal layers from apoptosis in a mouse model of kainate-induced retinal damage. Investigative Ophthalmology & Visual Science, 53, 8295-8302. [CrossRef]
  • 6. Ergin, A.D., Üner, B., Balcı, Ş., Demirbağ, Ç., Benetti, C., Oltulu, Ç. (2023). Improving the bioavailability and efficacy of coenzyme Q10 on Alzheimer's disease through the arginine based proniosomes. Journal of Pharmaceutical Sciences, 112, 2921-2932. [CrossRef]
  • 7. Zaki, N.M. (2016). Strategies for oral delivery and mitochondrial targeting of CoQ10. Drug Delivery, 23, 1868-1881. [CrossRef]
  • 8. Zhang, J., Wang, S. (2009). Topical use of Coenzyme Q10-loaded liposomes coated with trimethyl chitosan: Tolerance, precorneal retention and anti-cataract effect. International Journal of Pharmaceutics, 372, 66-75. [CrossRef]
  • 9. Sezgin, Z., Yuksel, N., Baykara, T. (2006). Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs. European Journal of Pharmaceutics and Biopharmaceutics, 64, 261-268. [CrossRef]
  • 10. Sezgin-Bayindir, Z., Ergin, A.D., Parmaksiz, M., Elcin, A.E., Elcin, Y.M., Yuksel, N. (2016). Evaluation of various block copolymers for micelle formation and brain drug delivery: In vitro characterization and cellular uptake studies. Journal of Drug Delivery Science and Technology, 36, 120-129. [CrossRef]
  • 11. Kwon, G.S., Kataoka, K. (1995). Block copolymer micelles as long-circulating drug vehicles. Advanced Drug Delivery Reviews, 16, 295-309. [CrossRef]
  • 12. Torchilin, V.P. (2007). Micellar nanocarriers: Pharmaceutical perspectives. Pharmaceutical Research, 24, 1-16. [CrossRef]
  • 13. Bae, Y., Kataoka, K. (2009). Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Advanced Drug Delivery Reviews, 61, 768-784. [CrossRef]
  • 14. Sezgin, Z., Yuksel, N., Baykara, T. (2007). Investigation of pluronic and PEG-PE micelles as carriers of meso-tetraphenyl porphine for oral administration. International Journal of Pharmaceutics, 332, 161-167. [CrossRef]
  • 15. Sahu, A., Kasoju, N., Goswami, P., Bora, U. (2010). Encapsulation of curcumin in pluronic block copolymer micelles for drug delivery applications. Journal of Biomaterials Applications, 25(6), 619-639. [CrossRef]
  • 16. Uner, B., Dwivedi, P., Ergin, A.D. (2023). Effects of arginine on coenzyme-Q10 micelle uptake for mitochondria-targeted nanotherapy in phenylketonuria. Drug Delivery and Translational Research. [CrossRef]
  • 17. Maulvi, F.A., Soni, P.D., Patel, P.J., Desai, A.R., Desai, D.T., Shukla, M.R., Shah, S.A., Shah, D.O., Willcox, M.D.P. (2021). Controlled bimatoprost release from graphene oxide laden contact lenses: In vitro and in vivo studies. Colloids and Surfaces B: Biointerfaces, 208, 112096. [CrossRef]
  • 18. Ergin, A.D. (2023). Solubilization effect of anionic, cationic and nonionic surfactants on coenzyme Q10 solid dispersion. Journal of Research in Pharmacy, 23, 1120-1133. [CrossRef]
  • 19. Hewitt, M.G., Morrison, P.W.J., Boostrom, H.M., Morgan, S.R., Fallon, M., Lewis, P.N., Whitaker, D., Brancale, A., Varricchio, C., Quantock, A.J., Burton, M.J., Heard, C.M. (2020). In vitro topical delivery of chlorhexidine to the cornea: Enhancement using drug-loaded contact lenses and β-cyclodextrin complexation, and the importance of simulating tear irrigation. Molecular Pharmaceutics, 17, 1428-1441. [CrossRef]
  • 20. Escobar-Chávez, J.J., López-Cervantes, M., Naïk, A., Kalia, Y.N., Quintanar-Guerrero, D., Ganem-Quintanar, A. (2006). Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. Journal of Pharmacy & Pharmaceutical Sciences: A Publication of the Canadian Society for Pharmaceutical Sciences, Societe Canadienne des Sciences Pharmaceutiques, 9, 339-358.
  • 21. Li, M., Rouaud, O., Poncelet, D. (2008). Microencapsulation by solvent evaporation: State of the art for process engineering approaches. International Journal of Pharmaceutics, 363, 26-39. [CrossRef]
  • 22. Kabanov, A.V., Vinogradov, S.V. (2009). Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities. Angewandte Chemie (International ed. in English), 48, 5418-5429. [CrossRef]
  • 23. Malvern Instruments, (2005). Tech Note: Zeta potential-An introduction in 30 minutes, 1-15.
  • 24. Guzman-Aranguez, A., Colligris, B., Pintor, J. (2013). Contact lenses: Promising devices for ocular drug delivery. Journal of Ocular Pharmacology And Therapeutics, 29. [CrossRef]
  • 25. Chatterjee, S., Upadhyay, P., Mishra, M., Srividya, M., Akshara, M.R., Kamali, N., Zaidi, Z.S., Iqbal, S.F., Misra, S.K. (2020). Advances in chemistry and composition of soft materials for drug releasing contact lenses. RSC Advances, 10, 36751-36777. [CrossRef]
  • 26. Topete, A., Oliveira, A.S., Fernandes, A., Nunes, T.G., Serro, A.P., Saramago, B. (2018). Improving sustained drug delivery from ophthalmic lens materials through the control of temperature and time of loading. European Journal of Pharmaceutical Sciences, 117, 107-117. [CrossRef]
  • 27. Pereira-da-Mota, A.F., Vivero-Lopez, M., Serramito, M., Diaz-Gomez, L., Serro, A.P., Carracedo, G., Huete-Toral, F., Concheiro, A., Alvarez-Lorenzo, C. (2022). Contact lenses for pravastatin delivery to eye segments: Design and in vitro-in vivo correlations. Journal of Controlled Release, 348, 431-443. [CrossRef]
  • 28. Maulvi, F.A., Mangukiya, M.A., Patel, P.A., Vaidya, R.J., Koli, A.R., Ranch, K.M., Shah, D.O. (2016). Extended release of ketotifen from silica shell nanoparticle-laden hydrogel contact lenses: In vitro and in vivo evaluation. Journal of Materials Science: Materials in Medicine, 27, 113. [CrossRef]
  • 29. Dhand, C., Ong, C.Y., Dwivedi, N., Varadarajan, J., Periayah, M.H., Lim, E.J., Mayandi, V., Goh, E.T.L., Najjar, R.P., Chan, L.W., Beuerman, R.W., Foo, L.L., Loh, X.J., Lakshminarayanan, R. (2020). Mussel-inspired durable antimicrobial contact lenses: The role of covalent and noncovalent attachment of antimicrobials. ACS Biomaterials Science & Engineering, 6, 3162-3173. [CrossRef]
  • 30. Maulvi, F.A., Desai, A.R., Choksi, H.H., Patil, R.J., Ranch, K.M., Vyas, B.A., Shah, D.O. (2017). Effect of surfactant chain length on drug release kinetics from microemulsion-laden contact lenses. International Journal of Pharmaceutics, 524, 193-204. [CrossRef]
  • 31. Rad, M.S., Mohajeri, S.A. (2016). Simultaneously load and extended release of betamethasone and ciprofloxacin from vitamin E-loaded silicone-based soft contact lenses. Current Eye Research, 41, 1185-1191. [CrossRef]
  • 32. Mun, J., Mok, J.W., Jeong, S., Cho, S., Joo, C.K., Hahn, S.K. (2019). Drug-eluting contact lens containing cyclosporine-loaded cholesterol-hyaluronate micelles for dry eye syndrome. RSC Advances, 9, 16578-16585. [CrossRef]
  • 33. Xu, J., Ge, Y., Bu, R., Zhang, A., Feng, S., Wang, J., Gou, J., Yin, T., He, H., Zhang, Y., Tang, X. (2019). Co-delivery of latanoprost and timolol from micelles-laden contact lenses for the treatment of glaucoma. Journal of Controlled Release, 305, 18-28. [CrossRef]
  • 34. Vo, A., Feng, X., Patel, D., Mohammad, A., Patel, M., Zheng, J., Kozak, D., Choi, S., Ashraf, M., Xu, X. (2020). In vitro physicochemical characterization and dissolution of brinzolamide ophthalmic suspensions with similar composition. International Journal of Pharmaceutics, 588, 119761. [CrossRef]

KOENZİM Q10 YÜKLÜ MİSEL İÇEREN KONTAKT LENSLERİN HAZIRLANMASI VE İN-VİTRO KARAKTERİZASYONU

Yıl 2024, , 179 - 188, 20.01.2024
https://doi.org/10.33483/jfpau.1400373

Öz

Amaç: Koenzim Q10 (CoQ10), göz sağlığı için potansiyel terapötik faydalar sunmakta, ancak göze uygulandığında düşük çözünürlük ve biyoyararlanım sorunlarıyla karşı karşıya kalmaktadır. Bu çalışma, CoQ10 taşıyan polimerik miselleri Pluronic F127 ve çözücü buharlaştırma tekniği kullanarak kontakt lenslere yükleyerek CoQ10 teslimatını artırmayı amaçlamaktadır
Gereç ve Yöntem: Pluronic F127 ile çözücü buharlaştırma yöntemi kullanılarak CoQ10 kapsüllenmiş polimerik miseller üretildi. Ticari kontakt lensler daha sonra bu misellerle yüklendi. Yüklenmiş lenslerin karakterizasyonu, ışık geçirgenliği, şişme davranışı ve göz yüzeyinin kısıtlamalarını taklit eden olmayan emilim koşulları altında ilaç salım profili değerlendirmelerini içermektedir.
Sonuç ve Tartışma: Yüklenmemiş lensler %91.78±3.29 ışık geçirgenliği ve %47.51±4.45 şişme oranı sergilerken, misel yüklü lensler yüksek ışık geçirgenliği seviyeleri (%95.31±0.80) göstererek optik berraklığı sağlamıştır. Şişme çalışmaları boyutta hafif bir artışa (%48.1±4.4) işaret etmektedir. Lenslere, etkili bir şekilde 403.6±21.8 µg CoQ10 yüklenmiştir. İn vitro salım profili altı saat boyunca kontrollü salım göstermiş, sürekli ilaç salımı için potansiyel olduğu belirtilmiştir. Bu sonuçlar, etkin oküler ilaç taşıma için misel yüklü kontakt lenslerin uygulanabilirliğini vurgulamakta ve uzun vadeli etkinlik ve güvenliklerinin daha fazla araştırılmasını gerektirmektedir.

Proje Numarası

2022/70

Kaynakça

  • 1. Ciolino, J.B., Stefanescu, C.F., Ross, A.E., Salvador-Culla, B., Cortez, P., Ford, E.M., Wymbs, K.A., Sprague, S.L., Mascoop, D.R., Rudina, S.S., Trauger, S.A., Cade, F., Kohane, D.S. (2014). In vivo performance of a drug-eluting contact lens to treat glaucoma for a month. Biomaterials, 35, 432-439. [CrossRef]
  • 2. Pelusi, L., Mandatori, D., Mastropasqua, L., Agnifili, L., Allegretti, M., Nubile, M., Pandolfi, A. (2023). Innovation in the development of synthetic and natural ocular drug delivery systems for eye diseases treatment: Focusing on drug-loaded ocular inserts, contacts, and intraocular lenses. Pharmaceutics, 15, 625. [CrossRef]
  • 3. Zhao, L., Song, J., Du, Y., Ren, C., Guo, B., Bi, H. (2023). Therapeutic applications of contact lens-based drug delivery systems in ophthalmic diseases. Drug Delivery, 30, 2219419. [CrossRef]
  • 4. Zhang, X., Tohari, M.A., Marcheggiani, F., Zhou, X., Reilly, J., Tiano, L., Shu, X. (2017). Therapeutic potential of co-enzyme Q10 in retinal diseases. Current Medicinal Chemistry, 24, 4329-4339. [CrossRef]
  • 5. Lulli, M., Witort, E., Papucci, L., Torre, E., Schipani, C., Bergamini, C., Dal Monte, M., Capaccioli, S. (2012). Coenzyme Q10 instilled as eye drops on the cornea reaches the retina and protects retinal layers from apoptosis in a mouse model of kainate-induced retinal damage. Investigative Ophthalmology & Visual Science, 53, 8295-8302. [CrossRef]
  • 6. Ergin, A.D., Üner, B., Balcı, Ş., Demirbağ, Ç., Benetti, C., Oltulu, Ç. (2023). Improving the bioavailability and efficacy of coenzyme Q10 on Alzheimer's disease through the arginine based proniosomes. Journal of Pharmaceutical Sciences, 112, 2921-2932. [CrossRef]
  • 7. Zaki, N.M. (2016). Strategies for oral delivery and mitochondrial targeting of CoQ10. Drug Delivery, 23, 1868-1881. [CrossRef]
  • 8. Zhang, J., Wang, S. (2009). Topical use of Coenzyme Q10-loaded liposomes coated with trimethyl chitosan: Tolerance, precorneal retention and anti-cataract effect. International Journal of Pharmaceutics, 372, 66-75. [CrossRef]
  • 9. Sezgin, Z., Yuksel, N., Baykara, T. (2006). Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs. European Journal of Pharmaceutics and Biopharmaceutics, 64, 261-268. [CrossRef]
  • 10. Sezgin-Bayindir, Z., Ergin, A.D., Parmaksiz, M., Elcin, A.E., Elcin, Y.M., Yuksel, N. (2016). Evaluation of various block copolymers for micelle formation and brain drug delivery: In vitro characterization and cellular uptake studies. Journal of Drug Delivery Science and Technology, 36, 120-129. [CrossRef]
  • 11. Kwon, G.S., Kataoka, K. (1995). Block copolymer micelles as long-circulating drug vehicles. Advanced Drug Delivery Reviews, 16, 295-309. [CrossRef]
  • 12. Torchilin, V.P. (2007). Micellar nanocarriers: Pharmaceutical perspectives. Pharmaceutical Research, 24, 1-16. [CrossRef]
  • 13. Bae, Y., Kataoka, K. (2009). Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Advanced Drug Delivery Reviews, 61, 768-784. [CrossRef]
  • 14. Sezgin, Z., Yuksel, N., Baykara, T. (2007). Investigation of pluronic and PEG-PE micelles as carriers of meso-tetraphenyl porphine for oral administration. International Journal of Pharmaceutics, 332, 161-167. [CrossRef]
  • 15. Sahu, A., Kasoju, N., Goswami, P., Bora, U. (2010). Encapsulation of curcumin in pluronic block copolymer micelles for drug delivery applications. Journal of Biomaterials Applications, 25(6), 619-639. [CrossRef]
  • 16. Uner, B., Dwivedi, P., Ergin, A.D. (2023). Effects of arginine on coenzyme-Q10 micelle uptake for mitochondria-targeted nanotherapy in phenylketonuria. Drug Delivery and Translational Research. [CrossRef]
  • 17. Maulvi, F.A., Soni, P.D., Patel, P.J., Desai, A.R., Desai, D.T., Shukla, M.R., Shah, S.A., Shah, D.O., Willcox, M.D.P. (2021). Controlled bimatoprost release from graphene oxide laden contact lenses: In vitro and in vivo studies. Colloids and Surfaces B: Biointerfaces, 208, 112096. [CrossRef]
  • 18. Ergin, A.D. (2023). Solubilization effect of anionic, cationic and nonionic surfactants on coenzyme Q10 solid dispersion. Journal of Research in Pharmacy, 23, 1120-1133. [CrossRef]
  • 19. Hewitt, M.G., Morrison, P.W.J., Boostrom, H.M., Morgan, S.R., Fallon, M., Lewis, P.N., Whitaker, D., Brancale, A., Varricchio, C., Quantock, A.J., Burton, M.J., Heard, C.M. (2020). In vitro topical delivery of chlorhexidine to the cornea: Enhancement using drug-loaded contact lenses and β-cyclodextrin complexation, and the importance of simulating tear irrigation. Molecular Pharmaceutics, 17, 1428-1441. [CrossRef]
  • 20. Escobar-Chávez, J.J., López-Cervantes, M., Naïk, A., Kalia, Y.N., Quintanar-Guerrero, D., Ganem-Quintanar, A. (2006). Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. Journal of Pharmacy & Pharmaceutical Sciences: A Publication of the Canadian Society for Pharmaceutical Sciences, Societe Canadienne des Sciences Pharmaceutiques, 9, 339-358.
  • 21. Li, M., Rouaud, O., Poncelet, D. (2008). Microencapsulation by solvent evaporation: State of the art for process engineering approaches. International Journal of Pharmaceutics, 363, 26-39. [CrossRef]
  • 22. Kabanov, A.V., Vinogradov, S.V. (2009). Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities. Angewandte Chemie (International ed. in English), 48, 5418-5429. [CrossRef]
  • 23. Malvern Instruments, (2005). Tech Note: Zeta potential-An introduction in 30 minutes, 1-15.
  • 24. Guzman-Aranguez, A., Colligris, B., Pintor, J. (2013). Contact lenses: Promising devices for ocular drug delivery. Journal of Ocular Pharmacology And Therapeutics, 29. [CrossRef]
  • 25. Chatterjee, S., Upadhyay, P., Mishra, M., Srividya, M., Akshara, M.R., Kamali, N., Zaidi, Z.S., Iqbal, S.F., Misra, S.K. (2020). Advances in chemistry and composition of soft materials for drug releasing contact lenses. RSC Advances, 10, 36751-36777. [CrossRef]
  • 26. Topete, A., Oliveira, A.S., Fernandes, A., Nunes, T.G., Serro, A.P., Saramago, B. (2018). Improving sustained drug delivery from ophthalmic lens materials through the control of temperature and time of loading. European Journal of Pharmaceutical Sciences, 117, 107-117. [CrossRef]
  • 27. Pereira-da-Mota, A.F., Vivero-Lopez, M., Serramito, M., Diaz-Gomez, L., Serro, A.P., Carracedo, G., Huete-Toral, F., Concheiro, A., Alvarez-Lorenzo, C. (2022). Contact lenses for pravastatin delivery to eye segments: Design and in vitro-in vivo correlations. Journal of Controlled Release, 348, 431-443. [CrossRef]
  • 28. Maulvi, F.A., Mangukiya, M.A., Patel, P.A., Vaidya, R.J., Koli, A.R., Ranch, K.M., Shah, D.O. (2016). Extended release of ketotifen from silica shell nanoparticle-laden hydrogel contact lenses: In vitro and in vivo evaluation. Journal of Materials Science: Materials in Medicine, 27, 113. [CrossRef]
  • 29. Dhand, C., Ong, C.Y., Dwivedi, N., Varadarajan, J., Periayah, M.H., Lim, E.J., Mayandi, V., Goh, E.T.L., Najjar, R.P., Chan, L.W., Beuerman, R.W., Foo, L.L., Loh, X.J., Lakshminarayanan, R. (2020). Mussel-inspired durable antimicrobial contact lenses: The role of covalent and noncovalent attachment of antimicrobials. ACS Biomaterials Science & Engineering, 6, 3162-3173. [CrossRef]
  • 30. Maulvi, F.A., Desai, A.R., Choksi, H.H., Patil, R.J., Ranch, K.M., Vyas, B.A., Shah, D.O. (2017). Effect of surfactant chain length on drug release kinetics from microemulsion-laden contact lenses. International Journal of Pharmaceutics, 524, 193-204. [CrossRef]
  • 31. Rad, M.S., Mohajeri, S.A. (2016). Simultaneously load and extended release of betamethasone and ciprofloxacin from vitamin E-loaded silicone-based soft contact lenses. Current Eye Research, 41, 1185-1191. [CrossRef]
  • 32. Mun, J., Mok, J.W., Jeong, S., Cho, S., Joo, C.K., Hahn, S.K. (2019). Drug-eluting contact lens containing cyclosporine-loaded cholesterol-hyaluronate micelles for dry eye syndrome. RSC Advances, 9, 16578-16585. [CrossRef]
  • 33. Xu, J., Ge, Y., Bu, R., Zhang, A., Feng, S., Wang, J., Gou, J., Yin, T., He, H., Zhang, Y., Tang, X. (2019). Co-delivery of latanoprost and timolol from micelles-laden contact lenses for the treatment of glaucoma. Journal of Controlled Release, 305, 18-28. [CrossRef]
  • 34. Vo, A., Feng, X., Patel, D., Mohammad, A., Patel, M., Zheng, J., Kozak, D., Choi, S., Ashraf, M., Xu, X. (2020). In vitro physicochemical characterization and dissolution of brinzolamide ophthalmic suspensions with similar composition. International Journal of Pharmaceutics, 588, 119761. [CrossRef]
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İlaç Dağıtım Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Ahmet Doğan Ergin 0000-0002-9387-0085

Proje Numarası 2022/70
Erken Görünüm Tarihi 25 Aralık 2023
Yayımlanma Tarihi 20 Ocak 2024
Gönderilme Tarihi 5 Aralık 2023
Kabul Tarihi 15 Aralık 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Ergin, A. D. (2024). PREPARATION AND IN-VITRO CHARACTERIZATION OF CONTACT LENSES CONTAINING COENZYME Q10 LOADED MICELLES. Journal of Faculty of Pharmacy of Ankara University, 48(1), 179-188. https://doi.org/10.33483/jfpau.1400373
AMA Ergin AD. PREPARATION AND IN-VITRO CHARACTERIZATION OF CONTACT LENSES CONTAINING COENZYME Q10 LOADED MICELLES. Ankara Ecz. Fak. Derg. Ocak 2024;48(1):179-188. doi:10.33483/jfpau.1400373
Chicago Ergin, Ahmet Doğan. “PREPARATION AND IN-VITRO CHARACTERIZATION OF CONTACT LENSES CONTAINING COENZYME Q10 LOADED MICELLES”. Journal of Faculty of Pharmacy of Ankara University 48, sy. 1 (Ocak 2024): 179-88. https://doi.org/10.33483/jfpau.1400373.
EndNote Ergin AD (01 Ocak 2024) PREPARATION AND IN-VITRO CHARACTERIZATION OF CONTACT LENSES CONTAINING COENZYME Q10 LOADED MICELLES. Journal of Faculty of Pharmacy of Ankara University 48 1 179–188.
IEEE A. D. Ergin, “PREPARATION AND IN-VITRO CHARACTERIZATION OF CONTACT LENSES CONTAINING COENZYME Q10 LOADED MICELLES”, Ankara Ecz. Fak. Derg., c. 48, sy. 1, ss. 179–188, 2024, doi: 10.33483/jfpau.1400373.
ISNAD Ergin, Ahmet Doğan. “PREPARATION AND IN-VITRO CHARACTERIZATION OF CONTACT LENSES CONTAINING COENZYME Q10 LOADED MICELLES”. Journal of Faculty of Pharmacy of Ankara University 48/1 (Ocak 2024), 179-188. https://doi.org/10.33483/jfpau.1400373.
JAMA Ergin AD. PREPARATION AND IN-VITRO CHARACTERIZATION OF CONTACT LENSES CONTAINING COENZYME Q10 LOADED MICELLES. Ankara Ecz. Fak. Derg. 2024;48:179–188.
MLA Ergin, Ahmet Doğan. “PREPARATION AND IN-VITRO CHARACTERIZATION OF CONTACT LENSES CONTAINING COENZYME Q10 LOADED MICELLES”. Journal of Faculty of Pharmacy of Ankara University, c. 48, sy. 1, 2024, ss. 179-88, doi:10.33483/jfpau.1400373.
Vancouver Ergin AD. PREPARATION AND IN-VITRO CHARACTERIZATION OF CONTACT LENSES CONTAINING COENZYME Q10 LOADED MICELLES. Ankara Ecz. Fak. Derg. 2024;48(1):179-88.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.