A TALE OF CAPTOPRIL DETECTION BASED ON AN ELECTROCHEMICAL MIP SENSOR
Yıl 2024,
, 568 - 575, 20.05.2024
Aysu Yarman
,
Sevinç Kurbanoğlu
Öz
Objective: In this study, it was aimed to develop a voltammetric method using sensors prepared with the molecular imprinting technique for the detection of Captopril, an antihypertensive drug.
Material and Method: With the molecular imprinting method, molecularly imprinted polymers were formed on the surfaces of glassy carbon electrodes. The analysis of Captopril was carried out using the differential pulse voltammetry method, and the performance of the sensor was examined.
Result and Discussion: A linear analysis was performed up to 50 pM Captopril with a limit of detection value of 2.62 pM. Selectivity studies have shown that Captopril has a higher electrochemical response than other interfering substances, such as paracetamol, ascorbic acid, and L-proline.
Etik Beyan
The authors declare that this study does not require the ethics committee's approval.
Teşekkür
As women in science, we express our gratitude to our great leader M. Kemal ATATÜRK, on the 100th anniversary of the Republic of Türkiye.
Kaynakça
- 1. World Health Organization Web site. Retrieved January 15, 2024, from https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
- 2. World Health Organization Web site. Retrieved January 15, 2024, https://www.who.int/srilanka/news/detail/16-05-2022-high-blood-pressure---measure-accurately--control-it-and-live-longer.
- 3. Kurbanoglu, S., Rivas, L., Ozkan, S.A., Merkoçi, A. (2017). Electrochemically reduced graphene and iridium oxide nanoparticles for inhibition-based angiotensin-converting enzyme inhibitor detection. Biosensors and Bioelectronics, 88, 122-129. [CrossRef]
- 4. Rastkari, N., Khoobi, M., Shafiee, A., Khoshayand, M.R., Ahmadkhaniha, R. (2013). Development and validation of a simple and sensitive HPLC-UV method for the determination of captopril in human plasma using a new derivatizing reagent 2-naphthyl propiolate. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 932, 144-151. [CrossRef]
- 5. Gatti, R., Morigi, R. (2017). 1,4-Anthraquinone: A new useful pre-column reagent for the determination of N-acetylcysteine and captopril in pharmaceuticals by high performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 143, 299-304. [CrossRef]
- 6. Aflyona Darma, N., Rasyid, R., Rivai, H. (2021). Overview of the determination of captopril levels in pharmaceutical preparations and biological matrices. International Journal of Pharmaceutical Sciences and Medicine (IJPSM), 6, 1-11. [CrossRef]
- 7. Huang, T., He, Z., Yang, B., Shao, L., Zheng, X., Duan, G. (2006). Simultaneous determination of captopril and hydrochlorothiazide in human plasma by reverse-phase HPLC from linear gradient elution. Journal of Pharmaceutical and Biomedical Analysis, 41(2), 644-648. [CrossRef]
- 8. Ivanovic, D., Medenica, M., Malenovic, A., Jancic, B. (2004). Validation of the RP-HPLC method for analysis of hydrochlorothiazide and captopril in tablets. Accreditation and Quality Assurance, 9(1-2), 76-81. [CrossRef]
- 9. Khamanga, S.M., Walker, R.B. (2011). The use of experimental design in the development of an HPLC-ECD method for the analysis of captopril. Talanta, 83, 1037-1049. [CrossRef]
- 10. Wulff, G., Sarhan, A. (1972). Über die Anwendung von enzymanalog gebauten Polymeren zur Racemattrennung. Angewandte Chemie, 84(8), 364-364. [CrossRef]
- 11. Yarman, A., Scheller, F. W. (2020). How reliable is the electrochemical readout of mip sensors? Sensors, 20(9), 2677. [CrossRef]
- 12. Haupt, K., Medina Rangel, P.X., Bui, B.T.S. (2020). Molecularly imprinted polymers: Antibody mimics for bioimaging and therapy. Chemical Reviews, 120(17), 9554-9582. [CrossRef]
- 13. Cowen, T., Stefanucci, E., Piletska, E., Marrazza, G., Canfarotta, F., Piletsky, S.A. (2020). Synthetic mechanism of molecular ımprinting at the solid phase. Macromolecules, 53(4), 1435-1442. [CrossRef]
- 14. Ozcelikay, G., Kurbanoglu, S., Yarman, A., Scheller, F.W., Ozkan, S.A. (2020). Au-Pt nanoparticles based molecularly imprinted nanosensor for electrochemical detection of the lipopeptide antibiotic drug Daptomycin. Sensors and Actuators, B: Chemical, 320(January), 128285. [CrossRef]
- 15. Ratautaite, V., Brazys, E., Ramanaviciene, A., Ramanavicius, A. (2022). Electrochemical sensors based on l-tryptophan molecularly imprinted polypyrrole and polyaniline. Journal of Electroanalytical Chemistry, 917, 116389. [CrossRef]
- 16. Mazzotta, E., Di Giulio, T., Malitesta, C. (2022). Electrochemical sensing of macromolecules based on molecularly imprinted polymers: challenges, successful strategies, and opportunities. Analytical and Bioanalytical Chemistry, 414(18), 5165-5200. [CrossRef]
- 17. Erol, K., Hasabnis, G., Altintas, Z. (2023). A novel nanomip-spr sensor for the point-of-care diagnosis of breast cancer. Micromachines, 14(5), 1086. [CrossRef]
- 18. D’Aurelio, R., Chianella, I., Goode, J.A., Tothill, I.E. (2020). Molecularly imprinted nanoparticles based sensor for cocaine detection. Biosensors, 10(3), 22. [CrossRef]
- 19. Ramanavicius, S., Samukaite-Bubniene, U., Ratautaite, V., Bechelany, M., Ramanavicius, A. (2022). Electrochemical molecularly imprinted polymer based sensors for pharmaceutical and biomedical applications (review). Journal of Pharmaceutical and Biomedical Analysis, 215, 114739. [CrossRef]
- 20. Karimi-Maleh, H., Yola, M.L., Atar, N., Orooji, Y., Karimi, F., Senthil Kumar, P., Rouhi, J., Baghayeri, M. (2021). A novel detection method for organophosphorus insecticide fenamiphos: Molecularly imprinted electrochemical sensor based on core-shell Co3O4@MOF-74 nanocomposite. Journal of Colloid and Interface Science, 592, 174-185. [CrossRef]
- 21. Saylan, Y., Akgönüllü, S., Çimen, D., Derazshamshir, A., Bereli, N., Yılmaz, F., Denizli, A. (2017). Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides. Sensors and Actuators B: Chemical, 241, 446-454. [CrossRef]
- 22. Waffo, A.F.T., Yesildag, C., Caserta, G., Katz, S., Zebger, I., Lensen, M.C., Wollenberger, U., Scheller, F. W., Altintas, Z. (2018). Fully electrochemical MIP sensor for artemisinin. Sensors and Actuators, B: Chemical, 275, 163-173. [CrossRef]
- 23. Yarman, A., Scheller, F.W. (2013). Coupling biocatalysis with molecular imprinting in a biomimetic sensor. Angewandte Chemie-International Edition, 52(44), 11521-11525. [CrossRef]
- 24. Yarman, A., Scheller, F.W. (2014). The first electrochemical MIP sensor for tamoxifen. Sensors, 14(5), 7647-7654. [CrossRef]
- 25. Yarman, A., Kurbanoglu, S., Zebger, I., Scheller, F.W. (2021). Simple and robust: The claims of protein sensing by molecularly imprinted polymers. Sensors and Actuators B: Chemical, 330, 129369. [CrossRef]
- 26. Bozal-Palabiyik, B., Erkmen, C., Uslu, B. (2020). Molecularly imprinted electrochemical sensors: Analytical and pharmaceutical applications based on ortho-phenylenediamine polymerization. Current Pharmaceutical Analysis, 16(4), 350-366. [CrossRef]
- 27. Singh, D., Roy, S., Mahindroo, N., Mathur, A. (2024). Design and development of an electroanalytical sensor based on molecularly imprinted polyaniline for the detection of thyroxine. Journal of Applied Electrochemistry, 54(1), 147-161. [CrossRef]
- 28. Yence, M., Cetinkaya, A., Çorman, M.E., Uzun, L., Caglayan, M.G., Ozkan, S.A. (2023). Fabrication of molecularly imprinted electrochemical sensors for sensitive codeine detection. Microchemical Journal, 193, 109060. [CrossRef]
- 29. Zhang, X., Yarman, A., Bagheri, M., El-Sherbiny, I.M., Hassan, R.Y.A., Kurbanoglu, S., Waffo, A.F.T., Zebger, I., Karabulut, T.C., Bier, F.F., Lieberzeit, P., Scheller, F.W. (2023). Imprinted polymers on the route to plastibodies for biomacromolecules (MIPs), viruses (VIPs), and cells (CIPs), Springer, Berlin, Heidelberg, pp:1-42. [CrossRef]
- 30. Sharma, P.S., Garcia-Cruz, A., Cieplak, M., Noworyta, K.R., Kutner, W. (2019). ‘Gate effect’ in molecularly imprinted polymers: The current state of understanding. Current Opinion in Electrochemistry, 16, 50-56. [CrossRef]
- 31. Yoshimi, Y., Ohdaira, R., Iiyama, C., Sakai, K. (2001). `Gate effect’ of thin layer of molecularly-imprinted poly(methacrylic acid-co-ethyleneglycol dimethacrylate). Sensors and Actuators, B: Chemical, 73(1), 49-53. [CrossRef]
- 32. Lamaoui, A., Mani, V., Durmus, C., Salama, K.N., Amine, A. (2024). Molecularly imprinted polymers: A closer look at the template removal and analyte binding. Biosensors and Bioelectronics, 243, 115774. [CrossRef]
- 33. Feroz, M., Vadgama, P. (2020). Molecular imprinted polymer modified electrochemical sensors for small drug analysis: progress to practical application. Electroanalysis, 32(11), 2361-2386. [CrossRef]
- 34. Areias, M.C.C., Toh, H.S., Lee, P.T., Compton, R.G. (2016). Voltammetric detection of captopril on graphite screen printed electrodes. Electroanalysis, 28(4), 742-748. [CrossRef]
- 35. W. Silva Vasconcelos, G.G. da Silva, S. Alves Junior, J.V. dos Anjos, M.C. da Cunha Areias. (2017). Voltammetric determination of captopril on a glassy carbon electrode modified with copper metal-organic framework. Electroanalysis 29, 2572-2578. [CrossRef]
- 36. Soomro, R.A., Tunesi, M.M., Karakus, S., Kalwar, N. (2017). Highly sensitive electrochemical determination of captopril using CuO modified ITO electrode: The effect of in situ grown nanostructures over signal sensitivity. RSC Advances, 7(31), 19353-19362. [CrossRef]
- 37. da Silva, D.M., Carneiro da Cunha Areias, M. (2021). Voltammetric detection of captopril in a commercial drug using a gold-copper metal-organic framework nanocomposite modified electrode. Electroanalysis, 33(5), 1255-1263. [CrossRef]
- 38. Buledi, J.A., Solangi, A.R., Malah, A., Memon, S.Q., Mahar, N., Ali, S., Ghumro, T., Palabiyik, I.M. (2023). Electrochemical characterization of SnO2/rGO nanostructure for selective quantification of captopril in real matrix. Journal of Materials Research, 38(10), 2764-2774. [CrossRef]
- 39. Zarezadeh, A., Rajabi, H.R., Sheydaei, O., Khajehsharifi, H. (2019). Application of a nano-structured molecularly imprinted polymer as an efficient modifier for the design of captopril drug selective sensor: Mechanism study and quantitative determination. Materials Science and Engineering: C, 94, 879-885. [CrossRef]
- 40. Erdossy, J., Horváth, V., Yarman, A., Scheller, F.W., Gyurcsányi, R.E. (2016). Electrosynthesized molecularly imprinted polymers for protein recognition. TrAC - Trends in Analytical Chemistry, 79, 179-190. [CrossRef]
KAPTOPRİL TESPİTİ İÇİN ELEKTROKİMYASAL BİR MIP SENSÖRÜNÜN HİKAYESİ
Yıl 2024,
, 568 - 575, 20.05.2024
Aysu Yarman
,
Sevinç Kurbanoğlu
Öz
Amaç: Bu çalışmada antihipertansif bir ilaç olan Kaptoprilin tespitine yönelik moleküler baskılama yöntemi ile hazırlanmış sensörler kullanılarak voltametrik bir yöntem geliştirilmesi amaçlanmıştır.
Gereç ve Yöntem: Moleküler baskılama yöntemi ile camsı karbon elektroların yüzeylerinde moleküler baskınlanmış polimerler oluşturulmuş ve differansiyel puls voltammetri yöntemi ile Kaptoprilin analizi gerçekleştirilmiş, sensörün performansı incelenmiştir.
Sonuç ve Tartışma: 2,62 pM teşhis sınırı değeri ile 50 pM Kaptopril seviyesine kadar doğrusal bir analiz gerçekleştirilmiştir. Seçicilik çalışmaları, Kaptoprilin, diğer girişim yapabilecek, parasetamol, askorbik asit ve L-prolin gibi maddelere göre daha yüksek elektrokimyasal cevaba sahip olduğunu göstermiştir.
Kaynakça
- 1. World Health Organization Web site. Retrieved January 15, 2024, from https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
- 2. World Health Organization Web site. Retrieved January 15, 2024, https://www.who.int/srilanka/news/detail/16-05-2022-high-blood-pressure---measure-accurately--control-it-and-live-longer.
- 3. Kurbanoglu, S., Rivas, L., Ozkan, S.A., Merkoçi, A. (2017). Electrochemically reduced graphene and iridium oxide nanoparticles for inhibition-based angiotensin-converting enzyme inhibitor detection. Biosensors and Bioelectronics, 88, 122-129. [CrossRef]
- 4. Rastkari, N., Khoobi, M., Shafiee, A., Khoshayand, M.R., Ahmadkhaniha, R. (2013). Development and validation of a simple and sensitive HPLC-UV method for the determination of captopril in human plasma using a new derivatizing reagent 2-naphthyl propiolate. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 932, 144-151. [CrossRef]
- 5. Gatti, R., Morigi, R. (2017). 1,4-Anthraquinone: A new useful pre-column reagent for the determination of N-acetylcysteine and captopril in pharmaceuticals by high performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 143, 299-304. [CrossRef]
- 6. Aflyona Darma, N., Rasyid, R., Rivai, H. (2021). Overview of the determination of captopril levels in pharmaceutical preparations and biological matrices. International Journal of Pharmaceutical Sciences and Medicine (IJPSM), 6, 1-11. [CrossRef]
- 7. Huang, T., He, Z., Yang, B., Shao, L., Zheng, X., Duan, G. (2006). Simultaneous determination of captopril and hydrochlorothiazide in human plasma by reverse-phase HPLC from linear gradient elution. Journal of Pharmaceutical and Biomedical Analysis, 41(2), 644-648. [CrossRef]
- 8. Ivanovic, D., Medenica, M., Malenovic, A., Jancic, B. (2004). Validation of the RP-HPLC method for analysis of hydrochlorothiazide and captopril in tablets. Accreditation and Quality Assurance, 9(1-2), 76-81. [CrossRef]
- 9. Khamanga, S.M., Walker, R.B. (2011). The use of experimental design in the development of an HPLC-ECD method for the analysis of captopril. Talanta, 83, 1037-1049. [CrossRef]
- 10. Wulff, G., Sarhan, A. (1972). Über die Anwendung von enzymanalog gebauten Polymeren zur Racemattrennung. Angewandte Chemie, 84(8), 364-364. [CrossRef]
- 11. Yarman, A., Scheller, F. W. (2020). How reliable is the electrochemical readout of mip sensors? Sensors, 20(9), 2677. [CrossRef]
- 12. Haupt, K., Medina Rangel, P.X., Bui, B.T.S. (2020). Molecularly imprinted polymers: Antibody mimics for bioimaging and therapy. Chemical Reviews, 120(17), 9554-9582. [CrossRef]
- 13. Cowen, T., Stefanucci, E., Piletska, E., Marrazza, G., Canfarotta, F., Piletsky, S.A. (2020). Synthetic mechanism of molecular ımprinting at the solid phase. Macromolecules, 53(4), 1435-1442. [CrossRef]
- 14. Ozcelikay, G., Kurbanoglu, S., Yarman, A., Scheller, F.W., Ozkan, S.A. (2020). Au-Pt nanoparticles based molecularly imprinted nanosensor for electrochemical detection of the lipopeptide antibiotic drug Daptomycin. Sensors and Actuators, B: Chemical, 320(January), 128285. [CrossRef]
- 15. Ratautaite, V., Brazys, E., Ramanaviciene, A., Ramanavicius, A. (2022). Electrochemical sensors based on l-tryptophan molecularly imprinted polypyrrole and polyaniline. Journal of Electroanalytical Chemistry, 917, 116389. [CrossRef]
- 16. Mazzotta, E., Di Giulio, T., Malitesta, C. (2022). Electrochemical sensing of macromolecules based on molecularly imprinted polymers: challenges, successful strategies, and opportunities. Analytical and Bioanalytical Chemistry, 414(18), 5165-5200. [CrossRef]
- 17. Erol, K., Hasabnis, G., Altintas, Z. (2023). A novel nanomip-spr sensor for the point-of-care diagnosis of breast cancer. Micromachines, 14(5), 1086. [CrossRef]
- 18. D’Aurelio, R., Chianella, I., Goode, J.A., Tothill, I.E. (2020). Molecularly imprinted nanoparticles based sensor for cocaine detection. Biosensors, 10(3), 22. [CrossRef]
- 19. Ramanavicius, S., Samukaite-Bubniene, U., Ratautaite, V., Bechelany, M., Ramanavicius, A. (2022). Electrochemical molecularly imprinted polymer based sensors for pharmaceutical and biomedical applications (review). Journal of Pharmaceutical and Biomedical Analysis, 215, 114739. [CrossRef]
- 20. Karimi-Maleh, H., Yola, M.L., Atar, N., Orooji, Y., Karimi, F., Senthil Kumar, P., Rouhi, J., Baghayeri, M. (2021). A novel detection method for organophosphorus insecticide fenamiphos: Molecularly imprinted electrochemical sensor based on core-shell Co3O4@MOF-74 nanocomposite. Journal of Colloid and Interface Science, 592, 174-185. [CrossRef]
- 21. Saylan, Y., Akgönüllü, S., Çimen, D., Derazshamshir, A., Bereli, N., Yılmaz, F., Denizli, A. (2017). Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides. Sensors and Actuators B: Chemical, 241, 446-454. [CrossRef]
- 22. Waffo, A.F.T., Yesildag, C., Caserta, G., Katz, S., Zebger, I., Lensen, M.C., Wollenberger, U., Scheller, F. W., Altintas, Z. (2018). Fully electrochemical MIP sensor for artemisinin. Sensors and Actuators, B: Chemical, 275, 163-173. [CrossRef]
- 23. Yarman, A., Scheller, F.W. (2013). Coupling biocatalysis with molecular imprinting in a biomimetic sensor. Angewandte Chemie-International Edition, 52(44), 11521-11525. [CrossRef]
- 24. Yarman, A., Scheller, F.W. (2014). The first electrochemical MIP sensor for tamoxifen. Sensors, 14(5), 7647-7654. [CrossRef]
- 25. Yarman, A., Kurbanoglu, S., Zebger, I., Scheller, F.W. (2021). Simple and robust: The claims of protein sensing by molecularly imprinted polymers. Sensors and Actuators B: Chemical, 330, 129369. [CrossRef]
- 26. Bozal-Palabiyik, B., Erkmen, C., Uslu, B. (2020). Molecularly imprinted electrochemical sensors: Analytical and pharmaceutical applications based on ortho-phenylenediamine polymerization. Current Pharmaceutical Analysis, 16(4), 350-366. [CrossRef]
- 27. Singh, D., Roy, S., Mahindroo, N., Mathur, A. (2024). Design and development of an electroanalytical sensor based on molecularly imprinted polyaniline for the detection of thyroxine. Journal of Applied Electrochemistry, 54(1), 147-161. [CrossRef]
- 28. Yence, M., Cetinkaya, A., Çorman, M.E., Uzun, L., Caglayan, M.G., Ozkan, S.A. (2023). Fabrication of molecularly imprinted electrochemical sensors for sensitive codeine detection. Microchemical Journal, 193, 109060. [CrossRef]
- 29. Zhang, X., Yarman, A., Bagheri, M., El-Sherbiny, I.M., Hassan, R.Y.A., Kurbanoglu, S., Waffo, A.F.T., Zebger, I., Karabulut, T.C., Bier, F.F., Lieberzeit, P., Scheller, F.W. (2023). Imprinted polymers on the route to plastibodies for biomacromolecules (MIPs), viruses (VIPs), and cells (CIPs), Springer, Berlin, Heidelberg, pp:1-42. [CrossRef]
- 30. Sharma, P.S., Garcia-Cruz, A., Cieplak, M., Noworyta, K.R., Kutner, W. (2019). ‘Gate effect’ in molecularly imprinted polymers: The current state of understanding. Current Opinion in Electrochemistry, 16, 50-56. [CrossRef]
- 31. Yoshimi, Y., Ohdaira, R., Iiyama, C., Sakai, K. (2001). `Gate effect’ of thin layer of molecularly-imprinted poly(methacrylic acid-co-ethyleneglycol dimethacrylate). Sensors and Actuators, B: Chemical, 73(1), 49-53. [CrossRef]
- 32. Lamaoui, A., Mani, V., Durmus, C., Salama, K.N., Amine, A. (2024). Molecularly imprinted polymers: A closer look at the template removal and analyte binding. Biosensors and Bioelectronics, 243, 115774. [CrossRef]
- 33. Feroz, M., Vadgama, P. (2020). Molecular imprinted polymer modified electrochemical sensors for small drug analysis: progress to practical application. Electroanalysis, 32(11), 2361-2386. [CrossRef]
- 34. Areias, M.C.C., Toh, H.S., Lee, P.T., Compton, R.G. (2016). Voltammetric detection of captopril on graphite screen printed electrodes. Electroanalysis, 28(4), 742-748. [CrossRef]
- 35. W. Silva Vasconcelos, G.G. da Silva, S. Alves Junior, J.V. dos Anjos, M.C. da Cunha Areias. (2017). Voltammetric determination of captopril on a glassy carbon electrode modified with copper metal-organic framework. Electroanalysis 29, 2572-2578. [CrossRef]
- 36. Soomro, R.A., Tunesi, M.M., Karakus, S., Kalwar, N. (2017). Highly sensitive electrochemical determination of captopril using CuO modified ITO electrode: The effect of in situ grown nanostructures over signal sensitivity. RSC Advances, 7(31), 19353-19362. [CrossRef]
- 37. da Silva, D.M., Carneiro da Cunha Areias, M. (2021). Voltammetric detection of captopril in a commercial drug using a gold-copper metal-organic framework nanocomposite modified electrode. Electroanalysis, 33(5), 1255-1263. [CrossRef]
- 38. Buledi, J.A., Solangi, A.R., Malah, A., Memon, S.Q., Mahar, N., Ali, S., Ghumro, T., Palabiyik, I.M. (2023). Electrochemical characterization of SnO2/rGO nanostructure for selective quantification of captopril in real matrix. Journal of Materials Research, 38(10), 2764-2774. [CrossRef]
- 39. Zarezadeh, A., Rajabi, H.R., Sheydaei, O., Khajehsharifi, H. (2019). Application of a nano-structured molecularly imprinted polymer as an efficient modifier for the design of captopril drug selective sensor: Mechanism study and quantitative determination. Materials Science and Engineering: C, 94, 879-885. [CrossRef]
- 40. Erdossy, J., Horváth, V., Yarman, A., Scheller, F.W., Gyurcsányi, R.E. (2016). Electrosynthesized molecularly imprinted polymers for protein recognition. TrAC - Trends in Analytical Chemistry, 79, 179-190. [CrossRef]