Araştırma Makalesi
BibTex RIS Kaynak Göster

PHENOLIC AND ANTIOXIDANT PROFILE: FTIR AND LC-MS ANALYSES OF SERAPIAS ORIENTALIS

Yıl 2024, , 853 - 866, 10.09.2024
https://doi.org/10.33483/jfpau.1448197

Öz

Objective: The objective of this study is to characterize the aerial parts of S. orientalis using Fourier Transform Infrared (FTIR) spectroscopy, evaluate the phenolic content and antioxidant activity of seeds, stems, and flowers, and conduct quantitative analysis of phenolic compounds using LC-MS/MS.
Material and Method: Fourier Transform Infrared (FTIR) spectroscopy was employed to characterize the aerial parts of S. orientalis. The analysis focused on identifying various functional groups such as -OH vibrations associated with polysaccharides, C-H vibrations from lipids and lignin compounds, and C=O vibrations related to cellulose derivatives. The total phenolic, flavonoid, flavanol, tannin, and proanthocyanidin contents of S. orientalis seeds, stems, and flowers were evaluated using standard analytical methods. DPPH radical scavenging activity was determined to assess antioxidant potential, with IC50 values calculated for each plant part. Quantitative analysis of phenolic compounds in the plant extract was conducted using LC-MS/MS. The abundance of various phenolic acids including P-coumaric acid, trans-ferulic acid, caffeic acid, and vanillic acid was determined. Additionally, other phenolic compounds such as gallic acid, chlorogenic acid, salicylic acid, (+) taxifolin, rutin hydrate, ellagic acid, quercetin dihydrate, and apigenin were also detected and quantified.
Result and Discussion: The evaluation of phenolic content showed differences among different plant parts, with flowers exhibiting the highest total phenolic and proanthocyanidin content. Seeds demonstrated superior DPPH radical scavenging activity. Quantitative analysis of phenolic compounds using LC-MS/MS highlighted the abundance of various phenolic acids and other phenolic compounds in S. orientalis. These findings underscore the potential of S. orientalis as a valuable source of natural antioxidants. Overall, the results suggest that S. orientalis possesses significant phenolic diversity and antioxidant activity, which could contribute to its potential applications in various industries, including pharmaceuticals and nutraceuticals.

Kaynakça

  • 1. Christodoulou, M.C., Orellana Palacios, J.C., Hesami, G., Jafarzadeh, S., Lorenzo, J.M., Domínguez, R., Moreno, A., Hadidi, M. (2022). Spectrophotometric methods for measurement of antioxidant activity in food and pharmaceuticals. Antioxidants, 11(11), 2213. [CrossRef]
  • 2. Awan, S.S., Khan, R.T., Mehmood, A., Hafeez, M., Abass, S.R., Nazir, M., Raffi, M. (2023). Ailanthus altissima leaf extract mediated green production of zinc oxide (ZnO) nanoparticles for antibacterial and antioxidant activity. Saudi Journal of Biological Sciences, 30(1), 103487. [CrossRef]
  • 3. Jakupović, L., Bačić, I., Jablan, J., Marguí, E., Marijan, M., Inić, S., Nodilo, L.N., Hafner, A., Zovko Končić, M. (2023). Hydroxypropyl-β-cyclodextrin-based Helichrysum italicum extracts: Antioxidant and cosmeceutical activity and biocompatibility. Antioxidants, 12(4), 855. [CrossRef]
  • 4. Apak, R., Özyürek, M., Güçlü, K., Çapanoğlu, E. (2016). Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. Journal of Agricultural and Food Chemistry, 64(5), 997-1027. [CrossRef]
  • 5. Pisoschi, A.M., Pop, A., Iordache, F., Stanca, L., Predoi, G., Serban, A.I. (2021). Oxidative stress mitigation by antioxidants-an overview on their chemistry and influences on health status. European Journal of Medicinal Chemistry, 209, 112891. [CrossRef]
  • 6. Mukherjee, K., Chio, T.I., Sackett, D.L., Bane, S.L. (2015). Detection of oxidative stress-induced carbonylation in live mammalian cells. Free Radical Biology and Medicine, 84, 11-21. [CrossRef]
  • 7. Ebrahimabadi, A.H., Ebrahimabadi, E.H., Djafari-Bidgoli, Z., Kashi, F.J., Mazoochi, A., Batooli, H. (2010). Composition and antioxidant and antimicrobial activity of the essential oil and extracts of Stachys inflata Benth from Iran. Food Chemistry, 119(2), 452-458. [CrossRef]
  • 8. Lorenzo, J.M., Pateiro, M., Domínguez, R., Barba, F.J., Putnik, P., Kovačević, D.B., Shpigelman, A., Granato, D., Franco, D. (2018). Berries extracts as natural antioxidants in meat products: A review. Food Research International, 106, 1095-1104. [CrossRef]
  • 9. Gulcin, İ. (2020). Antioxidants and antioxidant methods: An updated overview. Archives of Toxicology, 94(3), 651-715. [CrossRef]
  • 10. Luna-Guevara, M.L., Luna-Guevara, J.J., Hernández-Carranza, P., Ruíz-Espinosa, H., Ochoa-Velasco, C. E. (2018). Phenolic compounds: A good choice against chronic degenerative diseases. Studies in Natural Products Chemistry, 59, 79-108. [CrossRef]
  • 11. Heim, K.E., Tagliaferro, A.R., Bobilya, D.J. (2002). Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. The Journal of Nutritional Biochemistry, 13(10), 572-584. [CrossRef]
  • 12. Shi, L., Zhao, W., Yang, Z., Subbiah, V., Suleria, H.A.R. (2022). Extraction and characterization of phenolic compounds and their potential antioxidant activities. Environmental Science and Pollution Research, 29(54), 81112-81129. [CrossRef]
  • 13. Zhang, Q.W., Lin, L.G., Ye, W.C. (2018). Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Medicine, 13, 1-26. [CrossRef]
  • 14. Chebaro, Z., Abdallah, R., Badran, A., Hamade, K., Hijazi, A., Maresca, M., Mesmar, J.E., Baydoun, E. (2023). Study of the antioxidant and anti-pancreatic cancer activities of Anchusa strigosa aqueous extracts obtained by maceration and ultrasonic extraction techniques. Frontiers in Pharmacology, 14, 1201969. [CrossRef]
  • 15. Cai, Y., Luo, Q., Sun, M., Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, 74(17), 2157-2184. [CrossRef]
  • 16. Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158. [CrossRef]
  • 17. Osuna-Ruiz, I., López-Saiz, C.M., Burgos-Hernández, A., Velázquez, C., Nieves-Soto, M., Hurtado-Oliva, M.A. (2016). Antioxidant, antimutagenic and antiproliferative activities in selected seaweed species from Sinaloa, Mexico. Pharmaceutical Biology, 54(10), 2196-2210. [CrossRef]
  • 18. Mahmoudi, M., Boughalleb, F., Maaloul, S., Mabrouk, M., Abdellaoui, R. (2023). Phytochemical screening, antioxidant potential, and lc–esi–ms profiling of ephedra alata and Ephedra altissima seeds naturally growing in tunisia. Applied Biochemistry and Biotechnology, 1-13. [CrossRef]
  • 19. Lou, S.N., Lin, Y.S., Hsu, Y.S., Chiu, E.M., Ho, C.T. (2014). Soluble and insoluble phenolic compounds and antioxidant activity of immature calamondin affected by solvents and heat treatment. Food chemistry, 161, 246-253. [CrossRef]
  • 20. Porter, L.J., Hrstich, L.N., Chan, B.G. (1985). The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry, 25(1), 223-230. [CrossRef]
  • 21. Braca, A., De Tommasi, N., Di Bari, L., Pizza, C., Politi, M., Morelli, I. (2001). Antioxidant principles from bauhinia t arapotensis. Journal of Natural Products, 64(7), 892-895. [CrossRef]
  • 22. George, T.S., Muhammadaly, S.A., Parambath Kanoth, B., Joseph, T., Chemmarickal Dominic, M.D., George, N., Balachandrakurupp, V., John, H. (2022). Isolation of high crystalline nanocellulose from Mimosa pudica plant fibres with potential in packaging applications. Packaging Technology and Science, 35(2), 163-174. [CrossRef]
  • 23. Xin Lee, K., Shameli, K., Miyake, M., Kuwano, N., Bt Ahmad Khairudin, N.B., Bt Mohamad, S.E., Yew, Y.P. (2016). Green synthesis of gold nanoparticles using aqueous extract of garcinia mangostanafruit peels. Journal of Nanomaterials, 2016, 1-7. [CrossRef]
  • 24. Martin, J.A., Solla, A., Woodward, S., Gil, L. (2007). Detection of differential changes in lignin composition of elm xylem tissues inoculated with Ophiostoma novo‐ulmi using Fourier transform‐infrared spectroscopy. Forest Pathology, 37(3), 187-191. [CrossRef]
  • 25. Akhter, G., Khan, A., Ali, S.G., Khan, T.A., Siddiqi, K.S., Khan, H.M. (2020). Antibacterial and nematicidal properties of biosynthesized Cu nanoparticles using extract of holoparasitic plant. SN Applied Sciences, 2, 1-6. [CrossRef]
  • 26. He, J., Wang, J., Qi, G., Yao, L., Li, X., Paek, K.Y., Park, S.Y., Gao, W. (2022). Comparison of polysaccharides in ginseng root cultures and cultivated ginseng and establishment of high-content uronic acid plant synthesis system. Industrial Crops and Products, 186, 115155. [CrossRef]
  • 27. Park, J., Park, Y. (2022). Hydrolyzed protein treatment to natural cellulosic lightweight and scattering fibers for improving the hydrophilicity. Sustainable Chemistry and Pharmacy, 29, 100814. [CrossRef]
  • 28. Bouafia, A., Laouini, S.E. (2020). Green synthesis of iron oxide nanoparticles by aqueous leaves extract of Mentha Pulegium L.: Effect of ferric chloride concentration on the type of product. Materials Letters, 265, 127364. [CrossRef]
  • 29. Jeyaram, S. (2022). Spectral, third-order nonlinear optical and optical switching behavior of β-carotenoid extracted from phyllanthus niruri. Indian Journal of Physics, 96(6), 1655-1661. [CrossRef]
  • 30. Abdullah, H.M., Latif, M.H.A., Attiya, H.G. (2013). Characterization and determination of lignin in different types of Iraqi phoenix date palm pruning woods. International journal of biological macromolecules, 61, 340-346. [CrossRef]
  • 31. Le, V., Sukhikh, A., Larichev, T., Ivanova, S., Prosekov, A., Dmitrieva, A. (2023). Isolation of the main biologically active substances and phytochemical analysis of ginkgo biloba callus culture extracts. Molecules, 28(4), 1560. [CrossRef]
  • 32. Foyer, C.H., Noctor, G. (2016). Stress‐triggered redox signalling: What's in pROSpect?. Plant, Cell & Environment, 39(5), 951-964. [CrossRef]
  • 33. Dumanović, J., Nepovimova, E., Natić, M., Kuča, K., Jaćević, V. (2021). The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Frontiers in Plant Science, 11, 552969. [CrossRef]
  • 34. Allen, J.F. (2015). Why chloroplasts and mitochondria retain their own genomes and genetic systems: colocation for redox regulation of gene expression. Proceedings of the National Academy of Sciences, 112(33), 10231-10238. [CrossRef]
  • 35. Krishnaiah, D., Sarbatly, R., Nithyanandam, R. (2011). A review of the antioxidant potential of medicinal plant species. Food and Bioproducts Processing, 89(3), 217-233. [CrossRef]
  • 36. Hossain, M.M. (2011). Therapeutic orchids: traditional uses and recent advances-an overview. Fitoterapia, 82(2), 102-140. [CrossRef]
  • 37. Debnath, S., Kumaria, S. (2023). Insights into the phytochemical accumulation, antioxidant potential and genetic stability in the in vitro regenerants of Pholidota articulata Lindl., an endangered orchid of medicinal importance. South African Journal of Botany, 152, 313-320. [CrossRef]
  • 38. Hasnu, S., Deka, K., Saikia, D., Lahkar, L., Tanti, B. (2022). Morpho-taxonomical and phytochemical analysis of Vanilla borneensis Rolfe-a rare, endemic and threatened orchid of Assam, India. Vegetos,35, 1-11. [CrossRef]
  • 39. Calva-Estrada, S.J., Mendoza, M.R., García, O., Jiménez-Fernández, V.M., Jiménez, M. (2018). Microencapsulation of vanilla (Vanilla planifolia Andrews) and powder characterization. Powder Technology, 323, 416-423. [CrossRef]
  • 40. Chinsamy, M., Finnie, J.F., Van Staden, J. (2014). Anti-inflammatory, antioxidant, anti-cholinesterase activity and mutagenicity of South African medicinal orchids. South African Journal of Botany, 91, 88-98. [CrossRef]
  • 41. Gutiérrez-Sánchez, A., Monribot-Villanueva, J.L., Cocotle-Ronzón, Y., Martínez-Cruz, N.S., Guerrero-Analco, J.A. (2020). Phenolic profile and antioxidant activity from wild and in vitro cultivated Rhynchostele rossii (Orchidaceae). Acta Botánica Mexicana, (127). [CrossRef]
  • 42. Ertürk, Ö., Ayvaz, M. Ç., Çil, E., Bağdatlı, E. (2023). Gas chromatography-Mass spectrometry analysis and antimicrobial and antioxidant activities of some orchid (orchidaceae) species growing in Turkey. Brazilian Archives of Biology and Technology, 66, e23210265.
  • 43. Canteri, M.H., Renard, C.M., Le Bourvellec, C., Bureau, S. (2019). ATR-FTIR spectroscopy to determine cell wall composition: Application on a large diversity of fruits and vegetables. Carbohydrate Polymers, 212, 186-196. [CrossRef]
  • 44. Robic, A., Bertrand, D., Sassi, J.F., Lerat, Y., Lahaye, M. (2009). Determination of the chemical composition of ulvan, a cell wall polysaccharide from Ulva spp. (Ulvales, Chlorophyta) by FT-IR and chemometrics. Journal of Applied Phycology, 21(4), 451-456. [CrossRef]
  • 45. Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M.I., Kumar, R., Sastry, M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces, 28(4), 313-318. [CrossRef]
  • 46. Shankar, S.S., Rai, A., Ahmad, A., Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275(2), 496-502. [CrossRef]
  • 47. Mude, N., Ingle, A., Gade, A., Rai, M. (2009). Synthesis of silver nanoparticles using callus extract of Carica papaya-A first report. Journal of Plant Biochemistry and Biotechnology, 18, 83-86. [CrossRef]
  • 48. Lu, X., Wang, J., Al-Qadiri, H.M., Ross, C.F., Powers, J.R., Tang, J., Rasco, B.A. (2011). Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food Chemistry, 129(2), 637-644. [CrossRef]
  • 49. Hamedi, S., Shojaosadati, S.A. (2019). Rapid and green synthesis of silver nanoparticles using Diospyros lotus extract: Evaluation of their biological and catalytic activities. Polyhedron, 171, 172-180. [CrossRef]
  • 50. Pyeon, D.B., Lee, S. E., Yoon, J.W., Park, H.J., Oh, S.H., Lee, D.G., Park, S.P. (2022). Comparison of the improving embryo development effects of Sasa quelpaertensis Nakai extract, p-coumaric acid, and myricetin on porcine oocytes according to their antioxidant capacities. Theriogenology, 185, 97-108. [CrossRef]
  • 51. Abd Latiff, N., Alam, S. A.Z., Hanapi, S.Z., Sarmidi, M.R. (2019). Quantification of polyphenol content, antioxidant properties and LC-MS/MS analysis in Malaysian indigenous rice cultivars (Oryza sativa L.). Agriculture and Natural Resources, 53(4), 402-409. [CrossRef]
  • 52. Kotiloğlu, D., Acet, T., Özcan, K. (2020). Phytochemical profile and biological activity of a therapeutic orchid from Anatolia: Dactylorhiza romana subsp. georgica. Journal of Food Measurement and Characterization, 14(6), 3310-3318. [CrossRef]
  • 53. Bhattacharyya, P., Lalthafamkimi, L., Sharma, T., Kumar, D., Kumar, A., Kumar, D., Kumar, S. (2022). Metabolic and tissue-specific expression profiling in micropropagated plants of Malaxis acuminata: An endangered medicinal orchid. Plant Cell, Tissue, and Organ Culture, 151(3), 535-549. [CrossRef]
  • 54. Minh, T.N., Khang, D.T., Tuyen, P.T., Minh, L.T., Anh, L.H., Quan, N.V., Ha, P.T., Quan, N.T., Toan, N.P., Elzaawely, A.A., Xuan, T.D. (2016). Phenolic compounds and antioxidant activity of Phalaenopsis orchid hybrids. Antioxidants, 5(3), 31. [CrossRef]

FENOLİK VE ANTİOKSİDAN PROFİLİ: SERAPIAS ORIENTALIS'İN FTIR VE LC-MS ANALİZLERİ

Yıl 2024, , 853 - 866, 10.09.2024
https://doi.org/10.33483/jfpau.1448197

Öz

Amaç: Bu çalışmanın amacı, S. orientalis'in topraküstü kısımlarını Fourier Dönüşümü Kızılötesi (FTIR) spektroskopisi kullanarak karakterize etmek, tohumların, sapların ve çiçeklerin fenolik içeriğini ve antioksidan aktivitesini değerlendirmek ve LC-MS/MS kullanarak fenolik bileşiklerin nicel analizini yapmaktır.
Gereç ve Yöntem: S. orientalis'in topraküstü kısımlarını karakterize etmek için Fourier Dönüşümü Kızılötesi (FTIR) spektroskopisi kullanıldı. Analiz, polisakkaritlerle ilişkilendirilen -OH titreşimleri, lipitlerden ve lignin bileşiklerinden kaynaklı C-H titreşimleri ve selüloz türevleriyle ilişkilendirilen C=O titreşimleri gibi çeşitli fonksiyonel grupları tanımlamaya odaklandı.S. orientalis tohumlarının, saplarının ve çiçeklerinin toplam fenolik, flavonoid, flavanol, tanin ve proantosiyanidin içeriği standart analitik yöntemler kullanılarak değerlendirildi. Antioksidan potansiyeli değerlendirmek için DPPH radikal temizleme aktivitesi belirlendi ve her bitki kısmı için IC50 değerleri hesaplandı. Bitki ekstraktındaki fenolik bileşiklerin nicel analizi LC-MS/MS kullanılarak gerçekleştirildi. P-kumarik asit, trans-ferulik asit, kafeik asit ve vanilinik asit gibi çeşitli fenolik asitlerin bol miktarda bulunduğu belirlendi. Ayrıca, galik asit, klorojenik asit, salisilik asit, (+) taksifolin, rutin hidrat, ellajik asit, kuersetin dihidrat ve apigenin gibi diğer fenolik bileşikler de tespit edildi ve nicel olarak belirlendi.
Sonuç ve Tartışma: Fenolik içeriğin değerlendirilmesi, farklı bitki parçaları arasında farklılıklar gösterdi, çiçekler en yüksek toplam fenolik ve proantosiyanidin içeriğini sergiledi. Tohumlar üstün DPPH radikal temizleme aktivitesi gösterdi.LC-MS/MS kullanarak fenolik bileşiklerin nicel analizi, S. orientalis'te çeşitli fenolik asitlerin ve diğer fenolik bileşiklerin bol miktarda bulunduğunu vurgulanmaktadır. Genel olarak, sonuçlar S. orientalis'in önemli bir fenolik çeşitliliğe ve antioksidan aktiviteye sahip olduğunu göstermektedir, bu da onun farmasötik ve nutrasötikler dahil çeşitli endüstrilerde potansiyel uygulamalarına katkıda bulunabileceğini düşündürmektedir.

Kaynakça

  • 1. Christodoulou, M.C., Orellana Palacios, J.C., Hesami, G., Jafarzadeh, S., Lorenzo, J.M., Domínguez, R., Moreno, A., Hadidi, M. (2022). Spectrophotometric methods for measurement of antioxidant activity in food and pharmaceuticals. Antioxidants, 11(11), 2213. [CrossRef]
  • 2. Awan, S.S., Khan, R.T., Mehmood, A., Hafeez, M., Abass, S.R., Nazir, M., Raffi, M. (2023). Ailanthus altissima leaf extract mediated green production of zinc oxide (ZnO) nanoparticles for antibacterial and antioxidant activity. Saudi Journal of Biological Sciences, 30(1), 103487. [CrossRef]
  • 3. Jakupović, L., Bačić, I., Jablan, J., Marguí, E., Marijan, M., Inić, S., Nodilo, L.N., Hafner, A., Zovko Končić, M. (2023). Hydroxypropyl-β-cyclodextrin-based Helichrysum italicum extracts: Antioxidant and cosmeceutical activity and biocompatibility. Antioxidants, 12(4), 855. [CrossRef]
  • 4. Apak, R., Özyürek, M., Güçlü, K., Çapanoğlu, E. (2016). Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. Journal of Agricultural and Food Chemistry, 64(5), 997-1027. [CrossRef]
  • 5. Pisoschi, A.M., Pop, A., Iordache, F., Stanca, L., Predoi, G., Serban, A.I. (2021). Oxidative stress mitigation by antioxidants-an overview on their chemistry and influences on health status. European Journal of Medicinal Chemistry, 209, 112891. [CrossRef]
  • 6. Mukherjee, K., Chio, T.I., Sackett, D.L., Bane, S.L. (2015). Detection of oxidative stress-induced carbonylation in live mammalian cells. Free Radical Biology and Medicine, 84, 11-21. [CrossRef]
  • 7. Ebrahimabadi, A.H., Ebrahimabadi, E.H., Djafari-Bidgoli, Z., Kashi, F.J., Mazoochi, A., Batooli, H. (2010). Composition and antioxidant and antimicrobial activity of the essential oil and extracts of Stachys inflata Benth from Iran. Food Chemistry, 119(2), 452-458. [CrossRef]
  • 8. Lorenzo, J.M., Pateiro, M., Domínguez, R., Barba, F.J., Putnik, P., Kovačević, D.B., Shpigelman, A., Granato, D., Franco, D. (2018). Berries extracts as natural antioxidants in meat products: A review. Food Research International, 106, 1095-1104. [CrossRef]
  • 9. Gulcin, İ. (2020). Antioxidants and antioxidant methods: An updated overview. Archives of Toxicology, 94(3), 651-715. [CrossRef]
  • 10. Luna-Guevara, M.L., Luna-Guevara, J.J., Hernández-Carranza, P., Ruíz-Espinosa, H., Ochoa-Velasco, C. E. (2018). Phenolic compounds: A good choice against chronic degenerative diseases. Studies in Natural Products Chemistry, 59, 79-108. [CrossRef]
  • 11. Heim, K.E., Tagliaferro, A.R., Bobilya, D.J. (2002). Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. The Journal of Nutritional Biochemistry, 13(10), 572-584. [CrossRef]
  • 12. Shi, L., Zhao, W., Yang, Z., Subbiah, V., Suleria, H.A.R. (2022). Extraction and characterization of phenolic compounds and their potential antioxidant activities. Environmental Science and Pollution Research, 29(54), 81112-81129. [CrossRef]
  • 13. Zhang, Q.W., Lin, L.G., Ye, W.C. (2018). Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Medicine, 13, 1-26. [CrossRef]
  • 14. Chebaro, Z., Abdallah, R., Badran, A., Hamade, K., Hijazi, A., Maresca, M., Mesmar, J.E., Baydoun, E. (2023). Study of the antioxidant and anti-pancreatic cancer activities of Anchusa strigosa aqueous extracts obtained by maceration and ultrasonic extraction techniques. Frontiers in Pharmacology, 14, 1201969. [CrossRef]
  • 15. Cai, Y., Luo, Q., Sun, M., Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, 74(17), 2157-2184. [CrossRef]
  • 16. Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158. [CrossRef]
  • 17. Osuna-Ruiz, I., López-Saiz, C.M., Burgos-Hernández, A., Velázquez, C., Nieves-Soto, M., Hurtado-Oliva, M.A. (2016). Antioxidant, antimutagenic and antiproliferative activities in selected seaweed species from Sinaloa, Mexico. Pharmaceutical Biology, 54(10), 2196-2210. [CrossRef]
  • 18. Mahmoudi, M., Boughalleb, F., Maaloul, S., Mabrouk, M., Abdellaoui, R. (2023). Phytochemical screening, antioxidant potential, and lc–esi–ms profiling of ephedra alata and Ephedra altissima seeds naturally growing in tunisia. Applied Biochemistry and Biotechnology, 1-13. [CrossRef]
  • 19. Lou, S.N., Lin, Y.S., Hsu, Y.S., Chiu, E.M., Ho, C.T. (2014). Soluble and insoluble phenolic compounds and antioxidant activity of immature calamondin affected by solvents and heat treatment. Food chemistry, 161, 246-253. [CrossRef]
  • 20. Porter, L.J., Hrstich, L.N., Chan, B.G. (1985). The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry, 25(1), 223-230. [CrossRef]
  • 21. Braca, A., De Tommasi, N., Di Bari, L., Pizza, C., Politi, M., Morelli, I. (2001). Antioxidant principles from bauhinia t arapotensis. Journal of Natural Products, 64(7), 892-895. [CrossRef]
  • 22. George, T.S., Muhammadaly, S.A., Parambath Kanoth, B., Joseph, T., Chemmarickal Dominic, M.D., George, N., Balachandrakurupp, V., John, H. (2022). Isolation of high crystalline nanocellulose from Mimosa pudica plant fibres with potential in packaging applications. Packaging Technology and Science, 35(2), 163-174. [CrossRef]
  • 23. Xin Lee, K., Shameli, K., Miyake, M., Kuwano, N., Bt Ahmad Khairudin, N.B., Bt Mohamad, S.E., Yew, Y.P. (2016). Green synthesis of gold nanoparticles using aqueous extract of garcinia mangostanafruit peels. Journal of Nanomaterials, 2016, 1-7. [CrossRef]
  • 24. Martin, J.A., Solla, A., Woodward, S., Gil, L. (2007). Detection of differential changes in lignin composition of elm xylem tissues inoculated with Ophiostoma novo‐ulmi using Fourier transform‐infrared spectroscopy. Forest Pathology, 37(3), 187-191. [CrossRef]
  • 25. Akhter, G., Khan, A., Ali, S.G., Khan, T.A., Siddiqi, K.S., Khan, H.M. (2020). Antibacterial and nematicidal properties of biosynthesized Cu nanoparticles using extract of holoparasitic plant. SN Applied Sciences, 2, 1-6. [CrossRef]
  • 26. He, J., Wang, J., Qi, G., Yao, L., Li, X., Paek, K.Y., Park, S.Y., Gao, W. (2022). Comparison of polysaccharides in ginseng root cultures and cultivated ginseng and establishment of high-content uronic acid plant synthesis system. Industrial Crops and Products, 186, 115155. [CrossRef]
  • 27. Park, J., Park, Y. (2022). Hydrolyzed protein treatment to natural cellulosic lightweight and scattering fibers for improving the hydrophilicity. Sustainable Chemistry and Pharmacy, 29, 100814. [CrossRef]
  • 28. Bouafia, A., Laouini, S.E. (2020). Green synthesis of iron oxide nanoparticles by aqueous leaves extract of Mentha Pulegium L.: Effect of ferric chloride concentration on the type of product. Materials Letters, 265, 127364. [CrossRef]
  • 29. Jeyaram, S. (2022). Spectral, third-order nonlinear optical and optical switching behavior of β-carotenoid extracted from phyllanthus niruri. Indian Journal of Physics, 96(6), 1655-1661. [CrossRef]
  • 30. Abdullah, H.M., Latif, M.H.A., Attiya, H.G. (2013). Characterization and determination of lignin in different types of Iraqi phoenix date palm pruning woods. International journal of biological macromolecules, 61, 340-346. [CrossRef]
  • 31. Le, V., Sukhikh, A., Larichev, T., Ivanova, S., Prosekov, A., Dmitrieva, A. (2023). Isolation of the main biologically active substances and phytochemical analysis of ginkgo biloba callus culture extracts. Molecules, 28(4), 1560. [CrossRef]
  • 32. Foyer, C.H., Noctor, G. (2016). Stress‐triggered redox signalling: What's in pROSpect?. Plant, Cell & Environment, 39(5), 951-964. [CrossRef]
  • 33. Dumanović, J., Nepovimova, E., Natić, M., Kuča, K., Jaćević, V. (2021). The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Frontiers in Plant Science, 11, 552969. [CrossRef]
  • 34. Allen, J.F. (2015). Why chloroplasts and mitochondria retain their own genomes and genetic systems: colocation for redox regulation of gene expression. Proceedings of the National Academy of Sciences, 112(33), 10231-10238. [CrossRef]
  • 35. Krishnaiah, D., Sarbatly, R., Nithyanandam, R. (2011). A review of the antioxidant potential of medicinal plant species. Food and Bioproducts Processing, 89(3), 217-233. [CrossRef]
  • 36. Hossain, M.M. (2011). Therapeutic orchids: traditional uses and recent advances-an overview. Fitoterapia, 82(2), 102-140. [CrossRef]
  • 37. Debnath, S., Kumaria, S. (2023). Insights into the phytochemical accumulation, antioxidant potential and genetic stability in the in vitro regenerants of Pholidota articulata Lindl., an endangered orchid of medicinal importance. South African Journal of Botany, 152, 313-320. [CrossRef]
  • 38. Hasnu, S., Deka, K., Saikia, D., Lahkar, L., Tanti, B. (2022). Morpho-taxonomical and phytochemical analysis of Vanilla borneensis Rolfe-a rare, endemic and threatened orchid of Assam, India. Vegetos,35, 1-11. [CrossRef]
  • 39. Calva-Estrada, S.J., Mendoza, M.R., García, O., Jiménez-Fernández, V.M., Jiménez, M. (2018). Microencapsulation of vanilla (Vanilla planifolia Andrews) and powder characterization. Powder Technology, 323, 416-423. [CrossRef]
  • 40. Chinsamy, M., Finnie, J.F., Van Staden, J. (2014). Anti-inflammatory, antioxidant, anti-cholinesterase activity and mutagenicity of South African medicinal orchids. South African Journal of Botany, 91, 88-98. [CrossRef]
  • 41. Gutiérrez-Sánchez, A., Monribot-Villanueva, J.L., Cocotle-Ronzón, Y., Martínez-Cruz, N.S., Guerrero-Analco, J.A. (2020). Phenolic profile and antioxidant activity from wild and in vitro cultivated Rhynchostele rossii (Orchidaceae). Acta Botánica Mexicana, (127). [CrossRef]
  • 42. Ertürk, Ö., Ayvaz, M. Ç., Çil, E., Bağdatlı, E. (2023). Gas chromatography-Mass spectrometry analysis and antimicrobial and antioxidant activities of some orchid (orchidaceae) species growing in Turkey. Brazilian Archives of Biology and Technology, 66, e23210265.
  • 43. Canteri, M.H., Renard, C.M., Le Bourvellec, C., Bureau, S. (2019). ATR-FTIR spectroscopy to determine cell wall composition: Application on a large diversity of fruits and vegetables. Carbohydrate Polymers, 212, 186-196. [CrossRef]
  • 44. Robic, A., Bertrand, D., Sassi, J.F., Lerat, Y., Lahaye, M. (2009). Determination of the chemical composition of ulvan, a cell wall polysaccharide from Ulva spp. (Ulvales, Chlorophyta) by FT-IR and chemometrics. Journal of Applied Phycology, 21(4), 451-456. [CrossRef]
  • 45. Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M.I., Kumar, R., Sastry, M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces, 28(4), 313-318. [CrossRef]
  • 46. Shankar, S.S., Rai, A., Ahmad, A., Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275(2), 496-502. [CrossRef]
  • 47. Mude, N., Ingle, A., Gade, A., Rai, M. (2009). Synthesis of silver nanoparticles using callus extract of Carica papaya-A first report. Journal of Plant Biochemistry and Biotechnology, 18, 83-86. [CrossRef]
  • 48. Lu, X., Wang, J., Al-Qadiri, H.M., Ross, C.F., Powers, J.R., Tang, J., Rasco, B.A. (2011). Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food Chemistry, 129(2), 637-644. [CrossRef]
  • 49. Hamedi, S., Shojaosadati, S.A. (2019). Rapid and green synthesis of silver nanoparticles using Diospyros lotus extract: Evaluation of their biological and catalytic activities. Polyhedron, 171, 172-180. [CrossRef]
  • 50. Pyeon, D.B., Lee, S. E., Yoon, J.W., Park, H.J., Oh, S.H., Lee, D.G., Park, S.P. (2022). Comparison of the improving embryo development effects of Sasa quelpaertensis Nakai extract, p-coumaric acid, and myricetin on porcine oocytes according to their antioxidant capacities. Theriogenology, 185, 97-108. [CrossRef]
  • 51. Abd Latiff, N., Alam, S. A.Z., Hanapi, S.Z., Sarmidi, M.R. (2019). Quantification of polyphenol content, antioxidant properties and LC-MS/MS analysis in Malaysian indigenous rice cultivars (Oryza sativa L.). Agriculture and Natural Resources, 53(4), 402-409. [CrossRef]
  • 52. Kotiloğlu, D., Acet, T., Özcan, K. (2020). Phytochemical profile and biological activity of a therapeutic orchid from Anatolia: Dactylorhiza romana subsp. georgica. Journal of Food Measurement and Characterization, 14(6), 3310-3318. [CrossRef]
  • 53. Bhattacharyya, P., Lalthafamkimi, L., Sharma, T., Kumar, D., Kumar, A., Kumar, D., Kumar, S. (2022). Metabolic and tissue-specific expression profiling in micropropagated plants of Malaxis acuminata: An endangered medicinal orchid. Plant Cell, Tissue, and Organ Culture, 151(3), 535-549. [CrossRef]
  • 54. Minh, T.N., Khang, D.T., Tuyen, P.T., Minh, L.T., Anh, L.H., Quan, N.V., Ha, P.T., Quan, N.T., Toan, N.P., Elzaawely, A.A., Xuan, T.D. (2016). Phenolic compounds and antioxidant activity of Phalaenopsis orchid hybrids. Antioxidants, 5(3), 31. [CrossRef]
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Farmasotik Botanik
Bölüm Araştırma Makalesi
Yazarlar

Erdi Can Aytar 0000-0001-6045-0183

Yasemin Özdener Kömpe 0000-0003-1649-4298

Erken Görünüm Tarihi 8 Temmuz 2024
Yayımlanma Tarihi 10 Eylül 2024
Gönderilme Tarihi 6 Mart 2024
Kabul Tarihi 7 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Aytar, E. C., & Özdener Kömpe, Y. (2024). PHENOLIC AND ANTIOXIDANT PROFILE: FTIR AND LC-MS ANALYSES OF SERAPIAS ORIENTALIS. Journal of Faculty of Pharmacy of Ankara University, 48(3), 853-866. https://doi.org/10.33483/jfpau.1448197
AMA Aytar EC, Özdener Kömpe Y. PHENOLIC AND ANTIOXIDANT PROFILE: FTIR AND LC-MS ANALYSES OF SERAPIAS ORIENTALIS. Ankara Ecz. Fak. Derg. Eylül 2024;48(3):853-866. doi:10.33483/jfpau.1448197
Chicago Aytar, Erdi Can, ve Yasemin Özdener Kömpe. “PHENOLIC AND ANTIOXIDANT PROFILE: FTIR AND LC-MS ANALYSES OF SERAPIAS ORIENTALIS”. Journal of Faculty of Pharmacy of Ankara University 48, sy. 3 (Eylül 2024): 853-66. https://doi.org/10.33483/jfpau.1448197.
EndNote Aytar EC, Özdener Kömpe Y (01 Eylül 2024) PHENOLIC AND ANTIOXIDANT PROFILE: FTIR AND LC-MS ANALYSES OF SERAPIAS ORIENTALIS. Journal of Faculty of Pharmacy of Ankara University 48 3 853–866.
IEEE E. C. Aytar ve Y. Özdener Kömpe, “PHENOLIC AND ANTIOXIDANT PROFILE: FTIR AND LC-MS ANALYSES OF SERAPIAS ORIENTALIS”, Ankara Ecz. Fak. Derg., c. 48, sy. 3, ss. 853–866, 2024, doi: 10.33483/jfpau.1448197.
ISNAD Aytar, Erdi Can - Özdener Kömpe, Yasemin. “PHENOLIC AND ANTIOXIDANT PROFILE: FTIR AND LC-MS ANALYSES OF SERAPIAS ORIENTALIS”. Journal of Faculty of Pharmacy of Ankara University 48/3 (Eylül 2024), 853-866. https://doi.org/10.33483/jfpau.1448197.
JAMA Aytar EC, Özdener Kömpe Y. PHENOLIC AND ANTIOXIDANT PROFILE: FTIR AND LC-MS ANALYSES OF SERAPIAS ORIENTALIS. Ankara Ecz. Fak. Derg. 2024;48:853–866.
MLA Aytar, Erdi Can ve Yasemin Özdener Kömpe. “PHENOLIC AND ANTIOXIDANT PROFILE: FTIR AND LC-MS ANALYSES OF SERAPIAS ORIENTALIS”. Journal of Faculty of Pharmacy of Ankara University, c. 48, sy. 3, 2024, ss. 853-66, doi:10.33483/jfpau.1448197.
Vancouver Aytar EC, Özdener Kömpe Y. PHENOLIC AND ANTIOXIDANT PROFILE: FTIR AND LC-MS ANALYSES OF SERAPIAS ORIENTALIS. Ankara Ecz. Fak. Derg. 2024;48(3):853-66.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.