Araştırma Makalesi
BibTex RIS Kaynak Göster

IN VITRO EVALUATION OF THE ANTIBACTERIAL EFFECT OF CHITOSAN COATED TEICOPLANIN-LOADED LIPID NANOPARTICLES AGAINST STAPHYLOCOCCUS AUREUS

Yıl 2024, , 1050 - 1057, 10.09.2024
https://doi.org/10.33483/jfpau.1512913

Öz

Objective: The aim of this research is to formulate teicoplanin-loaded solid lipid nanoparticles (SLN) coated with chitosan to sustain teicoplanin release for effective antibacterial therapy.
Material and Method: “Double emulsion-solvent evaporation technique was used for the production of SLNs. The nanoparticles were characterised in terms of morphology, size, encapsulation efficacy, in-vitro drug release and antibacterial activity studies after optimization of process and formulation parameters.
Result and Discussion: Transmission electron microscopy images confirmed the formation of spherical SLNs. With chitosan coating, the size increased (from 80 nm to 106 nm) and the negative value of zeta potential (- 11.29) changed to positive (+34.41). The in-vitro release data showed prolonged release of teicoplanin from optimized SLN and chitosan-coated SLN (c-SLN) formulations over 1 week. The antibacterial activity study (S. aureus and Methicillin-resistant S. aureus) showed the activity of the teicoplanin loaded SLN formulations. In conclusion, this study demonstrated the potential of c-SLN for effective delivery of teicoplanin.

Kaynakça

  • 1. Li, B., Wang, W., Zhao, L., Yan, D., Li, X., Gao, Q., Zheng, J., Zhou, S., Lai, S., Feng, Y., Zhang J., Jiang, H., Long, C., Gan, W., Chen, X., Wang, D., Tang, B.Z., Liao, Y. (2023). Multifunctional AIE nanosphere-based “nanobomb” for trimodal imaging-guided photothermal/photodynamic/pharmacological therapy of drug-resistant bacterial infections. ACS Nano, 17(5), 4601-4618. [CrossRef]
  • 2. Gonzalez Gomez, A., Xu, C., Hosseinidoust, Z. (2019). Preserving the efficacy of glycopeptide antibiotics during nanoencapsulation in liposomes. ACS Infectious Diseases, 5(10), 1794-1801. [CrossRef]
  • 3. Radaic, A., Malone, E., Kamarajan, P., Kapila, Y.L. (2022). Solid lipid nanoparticles loaded with nisin (sln-nisin) are more effective than free nisin as antimicrobial, antibiofilm, and anticancer agents. Journal of Biomedical Nanotechnology, 18(4), 1227-1235. [CrossRef]
  • 4. Mohammed, M., Ibrahim, U.H., Aljoundi, A., Omolo, C.A., Devnarain, N., Gafar, M.A., Mocktar, C., Govender, T. (2023). Enzyme-responsive biomimetic solid lipid nanoparticles for antibiotic delivery against hyaluronidase-secreting bacteria. International Journal of Pharmaceutics, 640, 122967. [CrossRef]
  • 5. Singh, M., Schiavone, N., Papucci, L., Maan, P., Kaur, J., Singh, G., Nandi, U., Nosi, D., Tani, A., Khuller, G.K., Priya, M., Singh, R., Kaur, I.P. (2021). Streptomycin sulphate loaded solid lipid nanoparticles show enhanced uptake in macrophage, lower MIC in Mycobacterium and improved oral bioavailability. European Journal of Pharmaceutics and Biopharmaceutics, 160, 100-124. [CrossRef]
  • 6. Moez, N.M., Hosseini, S.M., Kalhori, F., Shokoohizadeh, L., Arabestani, M.R. (2023). Co-delivery of streptomycin and hydroxychloroquine by labeled solid lipid nanoparticles to treat brucellosis: an animal study. Scientific Reports, 13(1), 14012. [CrossRef]
  • 7. Qi, C., Chen, Y., Jing, Q.Z., Wang, X.G. (2011). Preparation and characterization of catalase-loaded solid lipid nanoparticles protecting enzyme against proteolysis. International Journal of Molecular Sciences, 12(7), 4282-4293. [CrossRef]
  • 8. Fonte, P., Andrade, F., Araújo, F., Andrade, C., Neves, J.D., Sarmento, B. (2012). Chitosan-coated solid lipid nanoparticles for insulin delivery. Methods in Enzymology, 508, 295-314. [CrossRef]
  • 9. Britton, S., Lee, K., Azizova, L., Shaw, G., Ayre, W.N., Mansell, J.P. (2022). Immobilised teicoplanin does not demonstrate antimicrobial activity against Staphylococcus aureus. Scientific Reports, 12(1), 16661. [CrossRef]
  • 10. Yousry, C., Fahmy, R.H., Essam, T., El-Laithy, H.M., Elkheshen, S.A. (2016) Nanoparticles as tool for enhanced ophthalmic delivery of vancomycin: a multidistrict-based microbiological study, solid lipid nanoparticles formulation and evaluation. Drug Development and Industrial Pharmacy, 42(11), 1752-62. [CrossRef]
  • 11. Küçüktürkmen, B., Devrim, B., Saka, O.M., Yilmaz, Ş., Arsoy, T., Bozkir, A. (2016). Co-delivery of pemetrexed and miR-21 antisense oligonucleotide by lipid-polymer hybrid nanoparticles and effects on glioblastoma cells. Drug Development and Industrial Pharmacy, 43(1), 12–21. [CrossRef]
  • 12. Woo, J.O., Misran, M., Lee, P.F., Tan, L.P. (2014). Development of a controlled release of salicylic acid loaded stearic acid-oleic acid nanoparticles in cream for topical delivery. The Scientific World Journal, 205703. [CrossRef]
  • 13. Küçüktürkmen, B., Öz, U.C., Er, E., Gómez, I.J., Tekneci, S.İ., Eşim, Ö., Özköse U.U., Gülyüz, S., Üstündağ, A., Yılmaz, Ö., Zajíčková, L., Bozkır, A. (2024). Design of polymeric nanoparticles for theranostic delivery of capsaicin as anti-cancer drug and fluorescent nitrogen-doped graphene quantum dots. Macromolecular Bioscience, 2400149. [CrossRef]
  • 14. Bielec, F., Brauncajs, M., Pastuszak-Lewandoska, D. (2023). Comparison of substance sources in experimental antimicrobial susceptibility testing. Scientia Pharmaceutica, 91(1), 10. [CrossRef]
  • 15. Ucak, S., Sudagidan, M., Borsa, B.A., Mansuroglu, B., Ozalp, V.C. (2020). Inhibitory effects of aptamer targeted teicoplanin encapsulated PLGA nanoparticles for Staphylococcus aureus strains. World Journal of Microbiology and Biotechnology, 36(5), 69. [CrossRef]
  • 16. Luo, Y., Teng, Z., Li, Y., Wang, Q. (2015). Solid lipid nanoparticles for oral drug delivery: Chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydrate Polymers, 122, 221-229. [CrossRef]
  • 17. Fang, J.Y., Fang, C.L., Liu, C.H., Su, Y.H. (2008). Lipid nanoparticles as vehicles for topical psoralen delivery: Solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). European Journal of Pharmaceutics and Biopharmaceutics, 70(2), 633-640. [CrossRef]
  • 18. Asli, A., Brouillette, E., Ster, C., Ghinet, M.G., Brzezinski, R., Lacasse, P., Jackues, M., Malouin, F. (2017). Antibiofilm and antibacterial effects of specific chitosan molecules on Staphylococcus aureus isolates associated with bovine mastitis. PLoS One, 12(5), e0176988. [CrossRef]

KİTOSAN KAPLI TEİKOPLANİN YÜKLÜ LİPİD NANOPARTİKÜLLERİN STAPHYLOCOCCUS AUREUS'A KARŞI ANTİBAKTERİYEL ETKİSİNİN İN VİTRO DEĞERLENDİRİLMESİ

Yıl 2024, , 1050 - 1057, 10.09.2024
https://doi.org/10.33483/jfpau.1512913

Öz

Amaç: Bu araştırmanın amacı, etkili antibakteriyel tedavi için teikoplanin salımını uzatmak üzere kitosanla kaplanmış teikoplanin yüklü katı lipit nanopartiküllerinin (SLN) formüle edilmesidir.
Gereç ve Yöntem: SLN'ler çift emülsifikasyon-solvent buharlaştırma tekniği ile hazırlanmıştır. Proses ve formülasyon parametrelerinin optimizasyonu sonrasında nanopartiküller morfoloji, boyut, enkapsülasyon etkinliği, in vitro etken madde salımı ve antibakteriyel aktivite çalışmaları açısından karakterize edilmiştir.
Sonuç ve Tartışma: Geçirimli elektron mikroskobu görüntüleri küresel SLN'lerin oluşumunu doğrulamıştır. Kitosan kaplama ile boyut artmış (80 nm'den 106 nm'ye) ve zeta potansiyelinin negatif değeri (-11.29) pozitife (+34.41) dönüşmüştür. İn vitro salım verileri, optimize edilmiş SLN ve kitosan kaplı SLN (c-SLN) formülasyonlarından teikoplaninin 1 hafta boyunca uzun süreli salınımını göstermiştir. Antibakteriyel aktivite çalışması (S. aureus ve Metisiline dirençli S. aureus), teikoplanin yüklü SLN formülasyonlarının aktivitesini göstermiştir. Sonuç olarak, bu çalışma c-SLN'nin teikoplaninin etkin verilişi için potansiyelini ortaya koymuştur.

Kaynakça

  • 1. Li, B., Wang, W., Zhao, L., Yan, D., Li, X., Gao, Q., Zheng, J., Zhou, S., Lai, S., Feng, Y., Zhang J., Jiang, H., Long, C., Gan, W., Chen, X., Wang, D., Tang, B.Z., Liao, Y. (2023). Multifunctional AIE nanosphere-based “nanobomb” for trimodal imaging-guided photothermal/photodynamic/pharmacological therapy of drug-resistant bacterial infections. ACS Nano, 17(5), 4601-4618. [CrossRef]
  • 2. Gonzalez Gomez, A., Xu, C., Hosseinidoust, Z. (2019). Preserving the efficacy of glycopeptide antibiotics during nanoencapsulation in liposomes. ACS Infectious Diseases, 5(10), 1794-1801. [CrossRef]
  • 3. Radaic, A., Malone, E., Kamarajan, P., Kapila, Y.L. (2022). Solid lipid nanoparticles loaded with nisin (sln-nisin) are more effective than free nisin as antimicrobial, antibiofilm, and anticancer agents. Journal of Biomedical Nanotechnology, 18(4), 1227-1235. [CrossRef]
  • 4. Mohammed, M., Ibrahim, U.H., Aljoundi, A., Omolo, C.A., Devnarain, N., Gafar, M.A., Mocktar, C., Govender, T. (2023). Enzyme-responsive biomimetic solid lipid nanoparticles for antibiotic delivery against hyaluronidase-secreting bacteria. International Journal of Pharmaceutics, 640, 122967. [CrossRef]
  • 5. Singh, M., Schiavone, N., Papucci, L., Maan, P., Kaur, J., Singh, G., Nandi, U., Nosi, D., Tani, A., Khuller, G.K., Priya, M., Singh, R., Kaur, I.P. (2021). Streptomycin sulphate loaded solid lipid nanoparticles show enhanced uptake in macrophage, lower MIC in Mycobacterium and improved oral bioavailability. European Journal of Pharmaceutics and Biopharmaceutics, 160, 100-124. [CrossRef]
  • 6. Moez, N.M., Hosseini, S.M., Kalhori, F., Shokoohizadeh, L., Arabestani, M.R. (2023). Co-delivery of streptomycin and hydroxychloroquine by labeled solid lipid nanoparticles to treat brucellosis: an animal study. Scientific Reports, 13(1), 14012. [CrossRef]
  • 7. Qi, C., Chen, Y., Jing, Q.Z., Wang, X.G. (2011). Preparation and characterization of catalase-loaded solid lipid nanoparticles protecting enzyme against proteolysis. International Journal of Molecular Sciences, 12(7), 4282-4293. [CrossRef]
  • 8. Fonte, P., Andrade, F., Araújo, F., Andrade, C., Neves, J.D., Sarmento, B. (2012). Chitosan-coated solid lipid nanoparticles for insulin delivery. Methods in Enzymology, 508, 295-314. [CrossRef]
  • 9. Britton, S., Lee, K., Azizova, L., Shaw, G., Ayre, W.N., Mansell, J.P. (2022). Immobilised teicoplanin does not demonstrate antimicrobial activity against Staphylococcus aureus. Scientific Reports, 12(1), 16661. [CrossRef]
  • 10. Yousry, C., Fahmy, R.H., Essam, T., El-Laithy, H.M., Elkheshen, S.A. (2016) Nanoparticles as tool for enhanced ophthalmic delivery of vancomycin: a multidistrict-based microbiological study, solid lipid nanoparticles formulation and evaluation. Drug Development and Industrial Pharmacy, 42(11), 1752-62. [CrossRef]
  • 11. Küçüktürkmen, B., Devrim, B., Saka, O.M., Yilmaz, Ş., Arsoy, T., Bozkir, A. (2016). Co-delivery of pemetrexed and miR-21 antisense oligonucleotide by lipid-polymer hybrid nanoparticles and effects on glioblastoma cells. Drug Development and Industrial Pharmacy, 43(1), 12–21. [CrossRef]
  • 12. Woo, J.O., Misran, M., Lee, P.F., Tan, L.P. (2014). Development of a controlled release of salicylic acid loaded stearic acid-oleic acid nanoparticles in cream for topical delivery. The Scientific World Journal, 205703. [CrossRef]
  • 13. Küçüktürkmen, B., Öz, U.C., Er, E., Gómez, I.J., Tekneci, S.İ., Eşim, Ö., Özköse U.U., Gülyüz, S., Üstündağ, A., Yılmaz, Ö., Zajíčková, L., Bozkır, A. (2024). Design of polymeric nanoparticles for theranostic delivery of capsaicin as anti-cancer drug and fluorescent nitrogen-doped graphene quantum dots. Macromolecular Bioscience, 2400149. [CrossRef]
  • 14. Bielec, F., Brauncajs, M., Pastuszak-Lewandoska, D. (2023). Comparison of substance sources in experimental antimicrobial susceptibility testing. Scientia Pharmaceutica, 91(1), 10. [CrossRef]
  • 15. Ucak, S., Sudagidan, M., Borsa, B.A., Mansuroglu, B., Ozalp, V.C. (2020). Inhibitory effects of aptamer targeted teicoplanin encapsulated PLGA nanoparticles for Staphylococcus aureus strains. World Journal of Microbiology and Biotechnology, 36(5), 69. [CrossRef]
  • 16. Luo, Y., Teng, Z., Li, Y., Wang, Q. (2015). Solid lipid nanoparticles for oral drug delivery: Chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydrate Polymers, 122, 221-229. [CrossRef]
  • 17. Fang, J.Y., Fang, C.L., Liu, C.H., Su, Y.H. (2008). Lipid nanoparticles as vehicles for topical psoralen delivery: Solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). European Journal of Pharmaceutics and Biopharmaceutics, 70(2), 633-640. [CrossRef]
  • 18. Asli, A., Brouillette, E., Ster, C., Ghinet, M.G., Brzezinski, R., Lacasse, P., Jackues, M., Malouin, F. (2017). Antibiofilm and antibacterial effects of specific chitosan molecules on Staphylococcus aureus isolates associated with bovine mastitis. PLoS One, 12(5), e0176988. [CrossRef]
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İlaç Dağıtım Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Berrin Küçüktürkmen 0000-0001-7026-8932

Merve Eylül Kıymacı 0000-0001-5343-1064

Erken Görünüm Tarihi 7 Ağustos 2024
Yayımlanma Tarihi 10 Eylül 2024
Gönderilme Tarihi 9 Temmuz 2024
Kabul Tarihi 23 Temmuz 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Küçüktürkmen, B., & Kıymacı, M. E. (2024). IN VITRO EVALUATION OF THE ANTIBACTERIAL EFFECT OF CHITOSAN COATED TEICOPLANIN-LOADED LIPID NANOPARTICLES AGAINST STAPHYLOCOCCUS AUREUS. Journal of Faculty of Pharmacy of Ankara University, 48(3), 1050-1057. https://doi.org/10.33483/jfpau.1512913
AMA Küçüktürkmen B, Kıymacı ME. IN VITRO EVALUATION OF THE ANTIBACTERIAL EFFECT OF CHITOSAN COATED TEICOPLANIN-LOADED LIPID NANOPARTICLES AGAINST STAPHYLOCOCCUS AUREUS. Ankara Ecz. Fak. Derg. Eylül 2024;48(3):1050-1057. doi:10.33483/jfpau.1512913
Chicago Küçüktürkmen, Berrin, ve Merve Eylül Kıymacı. “IN VITRO EVALUATION OF THE ANTIBACTERIAL EFFECT OF CHITOSAN COATED TEICOPLANIN-LOADED LIPID NANOPARTICLES AGAINST STAPHYLOCOCCUS AUREUS”. Journal of Faculty of Pharmacy of Ankara University 48, sy. 3 (Eylül 2024): 1050-57. https://doi.org/10.33483/jfpau.1512913.
EndNote Küçüktürkmen B, Kıymacı ME (01 Eylül 2024) IN VITRO EVALUATION OF THE ANTIBACTERIAL EFFECT OF CHITOSAN COATED TEICOPLANIN-LOADED LIPID NANOPARTICLES AGAINST STAPHYLOCOCCUS AUREUS. Journal of Faculty of Pharmacy of Ankara University 48 3 1050–1057.
IEEE B. Küçüktürkmen ve M. E. Kıymacı, “IN VITRO EVALUATION OF THE ANTIBACTERIAL EFFECT OF CHITOSAN COATED TEICOPLANIN-LOADED LIPID NANOPARTICLES AGAINST STAPHYLOCOCCUS AUREUS”, Ankara Ecz. Fak. Derg., c. 48, sy. 3, ss. 1050–1057, 2024, doi: 10.33483/jfpau.1512913.
ISNAD Küçüktürkmen, Berrin - Kıymacı, Merve Eylül. “IN VITRO EVALUATION OF THE ANTIBACTERIAL EFFECT OF CHITOSAN COATED TEICOPLANIN-LOADED LIPID NANOPARTICLES AGAINST STAPHYLOCOCCUS AUREUS”. Journal of Faculty of Pharmacy of Ankara University 48/3 (Eylül 2024), 1050-1057. https://doi.org/10.33483/jfpau.1512913.
JAMA Küçüktürkmen B, Kıymacı ME. IN VITRO EVALUATION OF THE ANTIBACTERIAL EFFECT OF CHITOSAN COATED TEICOPLANIN-LOADED LIPID NANOPARTICLES AGAINST STAPHYLOCOCCUS AUREUS. Ankara Ecz. Fak. Derg. 2024;48:1050–1057.
MLA Küçüktürkmen, Berrin ve Merve Eylül Kıymacı. “IN VITRO EVALUATION OF THE ANTIBACTERIAL EFFECT OF CHITOSAN COATED TEICOPLANIN-LOADED LIPID NANOPARTICLES AGAINST STAPHYLOCOCCUS AUREUS”. Journal of Faculty of Pharmacy of Ankara University, c. 48, sy. 3, 2024, ss. 1050-7, doi:10.33483/jfpau.1512913.
Vancouver Küçüktürkmen B, Kıymacı ME. IN VITRO EVALUATION OF THE ANTIBACTERIAL EFFECT OF CHITOSAN COATED TEICOPLANIN-LOADED LIPID NANOPARTICLES AGAINST STAPHYLOCOCCUS AUREUS. Ankara Ecz. Fak. Derg. 2024;48(3):1050-7.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.