Derleme
BibTex RIS Kaynak Göster

APPLICATIONS OF MINIATURIZED AND PORTABLE NEAR INFRARED (NIR), FOURIER TRANSFORM INFRARED (FT-IR) AND RAMAN SPECTROMETERS FOR THE INSPECTION AND CONTROL OF PHARMACEUTICAL PRODUCTS

Yıl 2020, , 188 - 203, 31.01.2020
https://doi.org/10.33483/jfpau.599077

Öz

Objective: In
this review, the wide range of different applications of portable and
miniaturized Fourier transform infrared (FT-IR), near-infrared (NIR), and Raman
spectrometers for quality control, assessment and inspection of pharmaceutical
products are discussed. In regard to counterfeiting, these portable
spectrometers are utilized for vibrational and scattering spectroscopies in the
identification of counterfeits, adulterated, fraudulent, falsified and
substandard pharmaceutical products which are becoming significant problems and
a danger to general well-being, particularly in the developing nations.

Meterial and Method: Totally
74 different scientific articles and books were researched and reviewed to
explain the applications of miniaturized and portable near infrared (NIR), Fourier
transform Infrared (FT-IR) and Raman spectrometers for the inspection and
control of pharmaceutical products from past to nowadays.





Result and Discussion: Adulterated
pharmaceutical products have become the greatest threat for developing
countries. This problem can reduce the confidence for pharmaceutical products. The
application of mentioned portable devices for determinations the quality
control of pharmaceutical product, enables the techniques to be more
accessible, quick, accurate, simple, precise, robust and more importantly,
efficient.

Kaynakça

  • 1. World Health Organization. (2018). Substandard and falsified medical products, (143 rd session of the executive board).
  • 2. Pérez-Alonso, M., Castro, K., Madariaga, J. M. (2006). Vibrational spectroscopic techniques for the analysis of artefacts with historical, artistic and archaeological value. Current Analytical Chemistry, 2(1), 89–100.
  • 3. Duran, A., Jimenez De Haro, M., Perez‐Rodriguez, J., Franquelo, M., Herrera, L., Justo, A. (2010). Determination of pigments and binders in Pompeian wall paintings using synchrotron radiation–high‐resolution X‐ray powder diffraction and conventional spectroscopy–chromatography. Archaeometry, 52(2), 286–307.
  • 4. Nastova, I., Grupče, O., Minčeva-Šukarova, B., Kostadinovska, M., Ozcatal, M. (2015). Spectroscopic analysis of pigments and inks in manuscripts. III. Old-Slavonic manuscripts with multicolored rubication. Vibrational Spectroscopy, 78, 39–48.
  • 5. Crupi, V., Allodi, V., Bottari, C., D’Amico, F., Galli, G., Gessini, A., Mariotto, G. (2016). Spectroscopic investigation of Roman decorated plasters by combining FT-IR, micro-Raman and UV-Raman analyses. Vibrational Spectroscopy, 83, 78–84.
  • 6. Bitossi, G., Giorgi, R., Mauro, M., Salvadori, B., Dei, L. (2005). Spectroscopic techniques in cultural heritage conservation: a survey. Applied Spectroscopy Reviews, 40(3), 187–228.
  • 7. Clark, R. J. (2006). Applications of Raman Spectroscopy to the Identification and Conservation of Pigments on Art Objects. Handbook of vibrational spectroscopy.
  • 8. Miliani, C., Rosi, F., Daveri, A., Brunetti, B. G. (2012). Reflection infrared spectroscopy for the non-invasive in situ study of artists’ pigments. Applied Physics A, 106(2), 295–307.
  • 9. Lauwers, D., Hutado, A. G., Tanevska, V., Moens, L., Bersani, D., Vandenabeele, P. (2014). Characterisation of a portable Raman spectrometer for in situ analysis of art objects. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118, 294–301.
  • 10. Colomban, P. (2012). The on‐site/remote Raman analysis with mobile instruments: a review of drawbacks and success in cultural heritage studies and other associated fields. Journal of Raman spectroscopy, 43(11), 1529–1535.
  • 11. Vandenabeele, P., Edwards, H. G. M., Jehlička, J. (2014). The role of mobile instrumentation in novel applications of Raman spectroscopy: archaeometry, geosciences, and forensics. Chemical Society Reviews, 43(8), 2628–2649.
  • 12. Barone, G., Bersani, D., Jehlička, J., Lottici, P. P., Mazzoleni, P., Raneri, S., Larinà, G. (2015). Nondestructive investigation on the 17‐18th centuries Sicilian jewelry collection at the Messina regional museum using mobile Raman equipment. Journal of Raman Spectroscopy, 46(10), 989–995.
  • 13. Conti, C., Botteon, A., Bertasa, M., Colombo, C., Realini, M., Sali, D. (2016). Portable Sequentially Shifted Excitation Raman spectroscopy as an innovative tool for in situ chemical interrogation of painted surfaces. Analyst, 141(15), 4599–4607.
  • 14. Terao, W., Mori, T., Fujii, Y., Koreeda, A., Kabeya, M., Kojima, S. (2018). Boson peak dynamics of natural polymer starch investigated by terahertz time-domain spectroscopy and low-frequency Raman scattering. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 192, 446–450.
  • 15. Vagnini, M., Gabrieli, F., Daveri, A., Sali, D. (2017). Handheld new technology Raman and portable FT-IR spectrometers as complementary tools for the in situ identification of organic materials in modern art. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 176, 174–182.
  • 16. Guidance document on the use of detection technologies and overview of detection technologies for drug safety, (2015).
  • 17. Zou, W.-B., Yin, L.-H., Jin, S.-H. (2017). Advances in rapid drug detection technology. Journal of Pharmaceutical and Biomedical Analysis, 147, 81-88.
  • 18. Herschel, W. (1800). Experiments on the refrangibility of invisible rays of the sun. Philosophical Transactions Of The Royal Society A: Mathematical, Physical And Engineering Sciences, 90, 255–326.
  • 19. Jamrógiewicz, M. (2012). Application of the near-infrared spectroscopy in the pharmaceutical technology. Journal of Pharmaceutical and Biomedical Analysis, 66, 1–10.
  • 20. Anderson, C. A., Drennen, J. K., Ciurczak, E. W. (2008). Pharmaceutical applications of near-infrared spectroscopy. Practical Spectroscopy Series, 35, 585.
  • 21. Siesler, H. W., Ozaki, Y., Kawata, S., Heise, H. M. (2008). Near-infrared spectroscopy: principles, instruments, applications. John Wiley & Sons.
  • 22. Agelet, L. E., Hurburgh Jr, C. R. (2010). A tutorial on near infrared spectroscopy and its calibration. Critical Reviews in Analytical Chemistry, 40(4), 246–260.
  • 23. Workman, J. (1993). A review of process near infrared spectroscopy: 1980–1994. Journal of Near Infrared Spectroscopy, 1(4), 221–245.
  • 24. Noda, I. (2006). Progress in two-dimensional (2D) correlation spectroscopy. Journal of Molecular Structure, 799(1–3), 2–15.
  • 25. Bista, R. K., Bruch, R. F., Covington, A. M. (2010). Vibrational spectroscopic studies of newly developed synthetic biopolymers. Biopolymers, 93(5), 403–417.
  • 26. FDA Guidance for industry, (2004). PAT- a frame work for innovative pharmaceutical development. Manufacturing and quality assurance, pharmaceutical, in: CGMPs.
  • 27. McClure, W. F. (2003). 204 years of near infrared technology: 1800–2003. Journal of Near Infrared Spectroscopy, 11(6), 487–518.
  • 28. Bei M., Linbo W. (2015). An Application of Rapid Detection Technologies in a National Regulatory Laboratory Setting: Differentiating Imported and Domestic Drug Products of Oxcarbazepine Using Handheld Raman, Near Infrared, and Portable FTIR Analyzers. American Pharmaceutical Review , Featured-Articles/173075
  • 29. Plugge, W., Van Der Vlies, C. (1996). Near-infrared spectroscopy as a tool to improve quality. Journal of Pharmaceutical and Biomedical Analysis, 14(8–10), 891–898.
  • 30. Vakili, H., Wickström, H., Desai, D., Preis, M., Sandler, N. (2017). Application of a handheld NIR spectrometer in prediction of drug content in inkjet printed orodispersible formulations containing prednisolone and levothyroxine. International Journal of Pharmaceutics, 524(1–2), 414–423.
  • 31. Moffat, A. C., Trafford, A. D., Jee, R. D., Graham, P. (2000). Meeting the International Conference on Harmonisation’s Guidelines on Validation of Analytical Procedures: Quantification as exemplified by a near-infrared reflectance assay of paracetamol in intact tabletsThe opinions expressed in the following article are entirely those of the authors and do not necessarily represent the views of either The Royal Society of Chemistry or the Editor of The Analyst. Analyst, 125(7), 1341–1351.
  • 32. Dreassi, E., Ceramelli, G., Savini, L., Corti, P., Perruccio. P.L., Lonardi, S. (1995). Application of near-infrared reflectance analysis to the integrated control of antibiotic tablet production. Analyst, 120(2), 319–323.
  • 33. Rock Ville. (1990). Pharmaceutical convention. In United States pharmacopoeia 22nd ed.
  • 34. Bunaciu, A. A., Udristioiu, G. E., Ruţă, L. L., Fleschin, Ş., & Aboul-Enein, H. Y. (2009). Determination of diosmin in pharmaceutical formulations using Fourier transform infrared spectrophotometry. Saudi Pharmaceutical Journal, 17(4), 303–306.
  • 35. Stuart, B. (2005). Infrared spectroscopy. Kirk‐Othmer Encyclopedia of Chemical Technology.
  • 36. Skoog, D. A., Holler, F. J., Crouch, S. R. (2007). Instrumental analysis. Brooks/Cole, Cengage Learning Belmont.
  • 37. Ahuja, S., Jespersen, N. (2006). Principles of spectroscopy and spectroscopic analysis in Wilson and Wilson’s comprehensive analytical chemistry, in: Modern Instrumental Analysis, (pp. 111–137). Elsevier
  • 38. G.Brittain, H., David E.Bugay. (2006). In Infrared Absorption spectroscopy in spectroscopy of pharmaceutical solids. (pp. 235–265). Taylor and Francis.
  • 39. James R. Durig. (1980). Analytical Applications of FT-IR to Molecular and Biological Systems. University of South Carolina, Columbia, United States: NATO ASI Series.
  • 40. Wartewig, S., Neubert, R. H. (2005). Pharmaceutical applications of Mid-IR and Raman spectroscopy. Advanced Drug Delivery Reviews, 57(8), 1144–1170.
  • 41. Chan, K. L. A., Kazarian, S. G., Vassou, D., Gionis, V., Chryssikos, G. D. (2007). In situ high-throughput study of drug polymorphism under controlled temperature and humidity using FT-IR spectroscopic imaging. Vibrational Spectroscopy, 43(1), 221–226.
  • 42. Bunaciu, A. A., Aboul-Enein, H. Y., Fleschin, S. (2010). Application of Fourier Transform Infrared Spectrophotometry in Pharmaceutical Drugs Analysis. Applied Spectroscopy Reviews, 45(3), 206–219. doi:10.1080/00387011003601044
  • 43. Sorak, D., Herberholz, L., Iwascek, S., Altinpinar, S., Pfeifer, F., Siesler, H. W. (2012). New developments and applications of handheld Raman, mid-infrared, and near-infrared spectrometers. Applied Spectroscopy Reviews, 47(2), 83–115.
  • 44. Bunaciu, A. A., Aboul-Enein, H. Y., Fleschin, Ş. (2006). FT-IR Spectrophotometric analysis of acetylsalicylic acid and its pharmaceutical formulations. Canadian Journal of Analytical Sciences and Spectroscopy, 51, 253–259.
  • 45. Bunaciu, A. A., Bacalum, E., Aboul-Enein, H. Y., Elena Udristioiu, G., Fleschin, Ş. (2009). FT-IR spectrophotometric analysis of ascorbic acid and Biotin and their pharmaceutical formulations. Analytical Letters, 42(10), 1321–1327.
  • 46. McCluskey, E. S. (1985). Which vertebrates make vitamin C. Origins, 12(2), 96–100.
  • 47. Deisingh, A. K. (2005). Pharmaceutical counterfeiting. Analyst, 130(3), 271–279.
  • 48. Yang, P., Song, P., Sun, S.-Q., Zhou, Q., Feng, S., Tao, J.-X. (2009). Differentiation and quality estimation of Cordyceps with infrared spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 74(4), 983–990.
  • 49. Ricci, C., Eliasson, C., Macleod, N. A., Newton, P. N., Matousek, P., Kazarian, S. G. (2007). Characterization of genuine and fake artesunate anti-malarial tablets using Fourier transform infrared imaging and spatially offset Raman spectroscopy through blister packs. Analytical and Bioanalytical Chemistry, 389(5), 1525.
  • 50. Yap, K. Y.-L., Chan, S. Y., Lim, C. S. (2007). Authentication of traditional Chinese medicine using infrared spectroscopy: distinguishing between ginseng and its morphological fakes. Journal of Biomedical Science, 14(2), 265–273.
  • 51. Aaltonen, J., Gordon, K. C., Strachan, C. J., Rades, T. (2008). Perspectives in the use of spectroscopy to characterise pharmaceutical solids. International Journal of Pharmaceutics, 364(2), 159–169.
  • 52. Schmidt, A. C., Schwarz, I. (2005). Solid state characterization of hydroxyprocaine hydrochloride. Crystal polymorphism of local anaesthetic drugs, part VIII. Journal of Molecular Structure, 748(1–3), 153–160.
  • 53. Clarke, F. (2004). Extracting process-related information from pharmaceutical dosage forms using near infrared microscopy. Vibrational Spectroscopy, 34(1), 25–35.
  • 54. Bunaciu, A. A., Udristioiu, G. E., Ruţă, L. L., Fleschin, Ş., Aboul-Enein, H. Y. (2009). Determination of diosmin in pharmaceutical formulations using Fourier transform infrared spectrophotometry. Saudi Pharmaceutical Journal, 17(4), 303–306.
  • 55. Bunaciu, A. A., Aboul-Enein, H. Y., Fleschin, S. (2011). Recent applications of fourier transform infrared spectrophotometry in herbal medicine analysis. Applied Spectroscopy Reviews, 46(4), 251–260.
  • 56. Li, Y.-S., Church, J. S. (2014). Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials. Journal of Food and Drug Analysis, 22(1), 29–48.
  • 57. Mahadevan-Jansen, A. (2003). Raman spectroscopy: from benchtop to bedside. Biomedical Photonics Handbook.
  • 58. Garrigues, S., de la Guardia, M. (2013). Non-invasive analysis of solid samples. TrAC Trends in Analytical Chemistry, 43, 161–173.
  • 59. Cialla, D., März, A., Böhme, R., Theil, F., Weber, K., Schmitt, M., Popp, J. (2012). Surface-enhanced Raman spectroscopy (SERS): progress and trends. Analytical and bioanalytical chemistry, 403(1), 27-54.
  • 60. Dent, G., Smith, G. (2005). Modern Raman spectroscopy: a practical approach. Wiley.
  • 61. Paudel, A., Raijada, D., Rantanen, J. (2015). Raman spectroscopy in pharmaceutical product design. Advanced Drug Delivery Reviews, 89, 3–20.
  • 62. Smith, E., Dent, G. (2013). Modern Raman spectroscopy: a practical approach. John Wiley & Sons.
  • 63. Roggo, Y., Degardin, K., Margot, P. (2010). Identification of pharmaceutical tablets by Raman spectroscopy and chemometrics. Talanta, 81(3), 988–995.
  • 64. Hajjou, M., Qin, Y., Bradby, S., Bempong, D., Lukulay, P. (2013). Assessment of the performance of a handheld Raman device for potential use as a screening tool in evaluating medicines quality. Journal of Pharmaceutical and Biomedical Analysis, 74, 47–55.
  • 65. Noonan, K. Y., Tonge, L. A., Fenton, O. S., Damiano, D. B., Frederick, K. A. (2009). Rapid classification of simulated street drug mixtures using Raman spectroscopy and principal component analysis. Applied Spectroscopy, 63(7), 742–747.
  • 66. Loethen, Y. L., Kauffman, J. F., Buhse, L. F., Rodriguez, J. D. (2015). Rapid screening of anti-infective drug products for counterfeits using Raman spectral library-based correlation methods. Analyst, 140(21), 7225–7233.
  • 67. Rohleder, D. R., Kocherscheidt, G., Gerber, K., Kiefer, W., Köhler, W., Möcks, J., Petrich, W. H. (2005). Comparison of mid-infrared and Raman spectroscopy in the quantitative analysis of serum. Journal of Biomedical Optics, 10(3), 031108.
  • 68. Darvin, M. E., Sterry, W., Lademann, J. (2010). Resonance Raman spectroscopy as an effective tool for the determination of antioxidative stability of cosmetic formulations. Journal of Biophotonics, 3(1‐2), 82–88.
  • 69. Witkowski, M. R. (2005). The use of Raman spectroscopy in the detection of counterfeit and adulterated pharmaceutical products. American Pharmaceutical Review, 8, 56–62.
  • 70. Gala, U., Chauhan, H. (2015). Principles and applications of Raman spectroscopy in pharmaceutical drug discovery and development. Expert opinion on drug discovery, 10(2), 187–206.
  • 71. Tfayli, A., Piot, O., Pitre, F., Manfait, M. (2007). Follow-up of drug permeation through excised human skin with confocal Raman microspectroscopy. European Biophysics Journal, 36(8), 1049–1058.
  • 72. Franzen, L., Selzer, D., Fluhr, J. W., Schaefer, U. F., Windbergs, M. (2013). Towards drug quantification in human skin with confocal Raman microscopy. European journal of pharmaceutics and biopharmaceutics, 84(2), 437–444.
  • 73. Downes, A., Elfick, A. (2010). Raman spectroscopy and related techniques in biomedicine. Sensors, 10(3), 1871–1889.
  • 74. Puviarasan, N., Arjunan, V., Mohan, S. (2002). FT-IR and FT-Raman studies on 3-aminophthalhydrazide and N-aminophthalimide. Turkish Journal of Chemistry, 26(3), 323–334.

MİNYATÜRE EDİLMİŞ VE PORTATİF YAKIN KIZIL ÖTESİ (NIR), FOURIER DÖNÜŞÜMLÜ KIZILÖTESİ (FTIR) ve RAMAN SPEKTROMETRELERİNİN FARMASÖTİKLERİN DENETİMİ VE KONTROLÜNDEKİ UYGULAMALARI

Yıl 2020, , 188 - 203, 31.01.2020
https://doi.org/10.33483/jfpau.599077

Öz

Amaç: Bu derlemede, farmasötik ürünlerin
kalite kontrollerinin değerlendirilmesi ve belirlenmesi için portatif ve
minyatür Fourier transform infrared (FT-IR), yakın kızıl ötesi (NIR) ve Raman
spektrometrelerin geniş uygulama alanları tartışılmıştır. Farmasötik ürünlerde
yapılan sahtecilikler sonucunda, genel refah için bir tehlike haline gelen
taklit, hileli, tahrif edilmiş ve standart altı farmasötik ürünlerin
belirlenmesinde kullanılan bu portatif spektrometreler, titreşimsel ve saçılma
spektroskopileri için kullanılmaktadır.

Gereç ve Yöntem: Çeşitli
bilimsel makaleler ve kitaplar incelenmiş olup, geçmişten günümüze kadar olan
süreçte,
Fourier
transform infrared (FT-IR), yakın kızıl ötesi (NIR) ve Raman spektrometrelerin
farmasötik ürünlerin kalite kontrolü ve denetimi ile ilgili
uygulamaları derlenmiştir.










Sonuç ve Tartışma: Hileli
farmasötik ürünler özellikle gelişmekte olan ülkeler için önemli bir tehdit
haline gelmiştir. Bu problem, farmasötik ürünlere olan güveni
azaltabilmektedir.
Bu
makalede bahsi geçen  portatif cihazların
uygulanması, fitöfarmasötiklerin kalite kontrolünde tekniklerin daha
erişilebilir, hızlı, doğru, basit, hassas, sağlam ve daha da önemlisi, verimli
olmasını sağlamaktadır.

Kaynakça

  • 1. World Health Organization. (2018). Substandard and falsified medical products, (143 rd session of the executive board).
  • 2. Pérez-Alonso, M., Castro, K., Madariaga, J. M. (2006). Vibrational spectroscopic techniques for the analysis of artefacts with historical, artistic and archaeological value. Current Analytical Chemistry, 2(1), 89–100.
  • 3. Duran, A., Jimenez De Haro, M., Perez‐Rodriguez, J., Franquelo, M., Herrera, L., Justo, A. (2010). Determination of pigments and binders in Pompeian wall paintings using synchrotron radiation–high‐resolution X‐ray powder diffraction and conventional spectroscopy–chromatography. Archaeometry, 52(2), 286–307.
  • 4. Nastova, I., Grupče, O., Minčeva-Šukarova, B., Kostadinovska, M., Ozcatal, M. (2015). Spectroscopic analysis of pigments and inks in manuscripts. III. Old-Slavonic manuscripts with multicolored rubication. Vibrational Spectroscopy, 78, 39–48.
  • 5. Crupi, V., Allodi, V., Bottari, C., D’Amico, F., Galli, G., Gessini, A., Mariotto, G. (2016). Spectroscopic investigation of Roman decorated plasters by combining FT-IR, micro-Raman and UV-Raman analyses. Vibrational Spectroscopy, 83, 78–84.
  • 6. Bitossi, G., Giorgi, R., Mauro, M., Salvadori, B., Dei, L. (2005). Spectroscopic techniques in cultural heritage conservation: a survey. Applied Spectroscopy Reviews, 40(3), 187–228.
  • 7. Clark, R. J. (2006). Applications of Raman Spectroscopy to the Identification and Conservation of Pigments on Art Objects. Handbook of vibrational spectroscopy.
  • 8. Miliani, C., Rosi, F., Daveri, A., Brunetti, B. G. (2012). Reflection infrared spectroscopy for the non-invasive in situ study of artists’ pigments. Applied Physics A, 106(2), 295–307.
  • 9. Lauwers, D., Hutado, A. G., Tanevska, V., Moens, L., Bersani, D., Vandenabeele, P. (2014). Characterisation of a portable Raman spectrometer for in situ analysis of art objects. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118, 294–301.
  • 10. Colomban, P. (2012). The on‐site/remote Raman analysis with mobile instruments: a review of drawbacks and success in cultural heritage studies and other associated fields. Journal of Raman spectroscopy, 43(11), 1529–1535.
  • 11. Vandenabeele, P., Edwards, H. G. M., Jehlička, J. (2014). The role of mobile instrumentation in novel applications of Raman spectroscopy: archaeometry, geosciences, and forensics. Chemical Society Reviews, 43(8), 2628–2649.
  • 12. Barone, G., Bersani, D., Jehlička, J., Lottici, P. P., Mazzoleni, P., Raneri, S., Larinà, G. (2015). Nondestructive investigation on the 17‐18th centuries Sicilian jewelry collection at the Messina regional museum using mobile Raman equipment. Journal of Raman Spectroscopy, 46(10), 989–995.
  • 13. Conti, C., Botteon, A., Bertasa, M., Colombo, C., Realini, M., Sali, D. (2016). Portable Sequentially Shifted Excitation Raman spectroscopy as an innovative tool for in situ chemical interrogation of painted surfaces. Analyst, 141(15), 4599–4607.
  • 14. Terao, W., Mori, T., Fujii, Y., Koreeda, A., Kabeya, M., Kojima, S. (2018). Boson peak dynamics of natural polymer starch investigated by terahertz time-domain spectroscopy and low-frequency Raman scattering. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 192, 446–450.
  • 15. Vagnini, M., Gabrieli, F., Daveri, A., Sali, D. (2017). Handheld new technology Raman and portable FT-IR spectrometers as complementary tools for the in situ identification of organic materials in modern art. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 176, 174–182.
  • 16. Guidance document on the use of detection technologies and overview of detection technologies for drug safety, (2015).
  • 17. Zou, W.-B., Yin, L.-H., Jin, S.-H. (2017). Advances in rapid drug detection technology. Journal of Pharmaceutical and Biomedical Analysis, 147, 81-88.
  • 18. Herschel, W. (1800). Experiments on the refrangibility of invisible rays of the sun. Philosophical Transactions Of The Royal Society A: Mathematical, Physical And Engineering Sciences, 90, 255–326.
  • 19. Jamrógiewicz, M. (2012). Application of the near-infrared spectroscopy in the pharmaceutical technology. Journal of Pharmaceutical and Biomedical Analysis, 66, 1–10.
  • 20. Anderson, C. A., Drennen, J. K., Ciurczak, E. W. (2008). Pharmaceutical applications of near-infrared spectroscopy. Practical Spectroscopy Series, 35, 585.
  • 21. Siesler, H. W., Ozaki, Y., Kawata, S., Heise, H. M. (2008). Near-infrared spectroscopy: principles, instruments, applications. John Wiley & Sons.
  • 22. Agelet, L. E., Hurburgh Jr, C. R. (2010). A tutorial on near infrared spectroscopy and its calibration. Critical Reviews in Analytical Chemistry, 40(4), 246–260.
  • 23. Workman, J. (1993). A review of process near infrared spectroscopy: 1980–1994. Journal of Near Infrared Spectroscopy, 1(4), 221–245.
  • 24. Noda, I. (2006). Progress in two-dimensional (2D) correlation spectroscopy. Journal of Molecular Structure, 799(1–3), 2–15.
  • 25. Bista, R. K., Bruch, R. F., Covington, A. M. (2010). Vibrational spectroscopic studies of newly developed synthetic biopolymers. Biopolymers, 93(5), 403–417.
  • 26. FDA Guidance for industry, (2004). PAT- a frame work for innovative pharmaceutical development. Manufacturing and quality assurance, pharmaceutical, in: CGMPs.
  • 27. McClure, W. F. (2003). 204 years of near infrared technology: 1800–2003. Journal of Near Infrared Spectroscopy, 11(6), 487–518.
  • 28. Bei M., Linbo W. (2015). An Application of Rapid Detection Technologies in a National Regulatory Laboratory Setting: Differentiating Imported and Domestic Drug Products of Oxcarbazepine Using Handheld Raman, Near Infrared, and Portable FTIR Analyzers. American Pharmaceutical Review , Featured-Articles/173075
  • 29. Plugge, W., Van Der Vlies, C. (1996). Near-infrared spectroscopy as a tool to improve quality. Journal of Pharmaceutical and Biomedical Analysis, 14(8–10), 891–898.
  • 30. Vakili, H., Wickström, H., Desai, D., Preis, M., Sandler, N. (2017). Application of a handheld NIR spectrometer in prediction of drug content in inkjet printed orodispersible formulations containing prednisolone and levothyroxine. International Journal of Pharmaceutics, 524(1–2), 414–423.
  • 31. Moffat, A. C., Trafford, A. D., Jee, R. D., Graham, P. (2000). Meeting the International Conference on Harmonisation’s Guidelines on Validation of Analytical Procedures: Quantification as exemplified by a near-infrared reflectance assay of paracetamol in intact tabletsThe opinions expressed in the following article are entirely those of the authors and do not necessarily represent the views of either The Royal Society of Chemistry or the Editor of The Analyst. Analyst, 125(7), 1341–1351.
  • 32. Dreassi, E., Ceramelli, G., Savini, L., Corti, P., Perruccio. P.L., Lonardi, S. (1995). Application of near-infrared reflectance analysis to the integrated control of antibiotic tablet production. Analyst, 120(2), 319–323.
  • 33. Rock Ville. (1990). Pharmaceutical convention. In United States pharmacopoeia 22nd ed.
  • 34. Bunaciu, A. A., Udristioiu, G. E., Ruţă, L. L., Fleschin, Ş., & Aboul-Enein, H. Y. (2009). Determination of diosmin in pharmaceutical formulations using Fourier transform infrared spectrophotometry. Saudi Pharmaceutical Journal, 17(4), 303–306.
  • 35. Stuart, B. (2005). Infrared spectroscopy. Kirk‐Othmer Encyclopedia of Chemical Technology.
  • 36. Skoog, D. A., Holler, F. J., Crouch, S. R. (2007). Instrumental analysis. Brooks/Cole, Cengage Learning Belmont.
  • 37. Ahuja, S., Jespersen, N. (2006). Principles of spectroscopy and spectroscopic analysis in Wilson and Wilson’s comprehensive analytical chemistry, in: Modern Instrumental Analysis, (pp. 111–137). Elsevier
  • 38. G.Brittain, H., David E.Bugay. (2006). In Infrared Absorption spectroscopy in spectroscopy of pharmaceutical solids. (pp. 235–265). Taylor and Francis.
  • 39. James R. Durig. (1980). Analytical Applications of FT-IR to Molecular and Biological Systems. University of South Carolina, Columbia, United States: NATO ASI Series.
  • 40. Wartewig, S., Neubert, R. H. (2005). Pharmaceutical applications of Mid-IR and Raman spectroscopy. Advanced Drug Delivery Reviews, 57(8), 1144–1170.
  • 41. Chan, K. L. A., Kazarian, S. G., Vassou, D., Gionis, V., Chryssikos, G. D. (2007). In situ high-throughput study of drug polymorphism under controlled temperature and humidity using FT-IR spectroscopic imaging. Vibrational Spectroscopy, 43(1), 221–226.
  • 42. Bunaciu, A. A., Aboul-Enein, H. Y., Fleschin, S. (2010). Application of Fourier Transform Infrared Spectrophotometry in Pharmaceutical Drugs Analysis. Applied Spectroscopy Reviews, 45(3), 206–219. doi:10.1080/00387011003601044
  • 43. Sorak, D., Herberholz, L., Iwascek, S., Altinpinar, S., Pfeifer, F., Siesler, H. W. (2012). New developments and applications of handheld Raman, mid-infrared, and near-infrared spectrometers. Applied Spectroscopy Reviews, 47(2), 83–115.
  • 44. Bunaciu, A. A., Aboul-Enein, H. Y., Fleschin, Ş. (2006). FT-IR Spectrophotometric analysis of acetylsalicylic acid and its pharmaceutical formulations. Canadian Journal of Analytical Sciences and Spectroscopy, 51, 253–259.
  • 45. Bunaciu, A. A., Bacalum, E., Aboul-Enein, H. Y., Elena Udristioiu, G., Fleschin, Ş. (2009). FT-IR spectrophotometric analysis of ascorbic acid and Biotin and their pharmaceutical formulations. Analytical Letters, 42(10), 1321–1327.
  • 46. McCluskey, E. S. (1985). Which vertebrates make vitamin C. Origins, 12(2), 96–100.
  • 47. Deisingh, A. K. (2005). Pharmaceutical counterfeiting. Analyst, 130(3), 271–279.
  • 48. Yang, P., Song, P., Sun, S.-Q., Zhou, Q., Feng, S., Tao, J.-X. (2009). Differentiation and quality estimation of Cordyceps with infrared spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 74(4), 983–990.
  • 49. Ricci, C., Eliasson, C., Macleod, N. A., Newton, P. N., Matousek, P., Kazarian, S. G. (2007). Characterization of genuine and fake artesunate anti-malarial tablets using Fourier transform infrared imaging and spatially offset Raman spectroscopy through blister packs. Analytical and Bioanalytical Chemistry, 389(5), 1525.
  • 50. Yap, K. Y.-L., Chan, S. Y., Lim, C. S. (2007). Authentication of traditional Chinese medicine using infrared spectroscopy: distinguishing between ginseng and its morphological fakes. Journal of Biomedical Science, 14(2), 265–273.
  • 51. Aaltonen, J., Gordon, K. C., Strachan, C. J., Rades, T. (2008). Perspectives in the use of spectroscopy to characterise pharmaceutical solids. International Journal of Pharmaceutics, 364(2), 159–169.
  • 52. Schmidt, A. C., Schwarz, I. (2005). Solid state characterization of hydroxyprocaine hydrochloride. Crystal polymorphism of local anaesthetic drugs, part VIII. Journal of Molecular Structure, 748(1–3), 153–160.
  • 53. Clarke, F. (2004). Extracting process-related information from pharmaceutical dosage forms using near infrared microscopy. Vibrational Spectroscopy, 34(1), 25–35.
  • 54. Bunaciu, A. A., Udristioiu, G. E., Ruţă, L. L., Fleschin, Ş., Aboul-Enein, H. Y. (2009). Determination of diosmin in pharmaceutical formulations using Fourier transform infrared spectrophotometry. Saudi Pharmaceutical Journal, 17(4), 303–306.
  • 55. Bunaciu, A. A., Aboul-Enein, H. Y., Fleschin, S. (2011). Recent applications of fourier transform infrared spectrophotometry in herbal medicine analysis. Applied Spectroscopy Reviews, 46(4), 251–260.
  • 56. Li, Y.-S., Church, J. S. (2014). Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials. Journal of Food and Drug Analysis, 22(1), 29–48.
  • 57. Mahadevan-Jansen, A. (2003). Raman spectroscopy: from benchtop to bedside. Biomedical Photonics Handbook.
  • 58. Garrigues, S., de la Guardia, M. (2013). Non-invasive analysis of solid samples. TrAC Trends in Analytical Chemistry, 43, 161–173.
  • 59. Cialla, D., März, A., Böhme, R., Theil, F., Weber, K., Schmitt, M., Popp, J. (2012). Surface-enhanced Raman spectroscopy (SERS): progress and trends. Analytical and bioanalytical chemistry, 403(1), 27-54.
  • 60. Dent, G., Smith, G. (2005). Modern Raman spectroscopy: a practical approach. Wiley.
  • 61. Paudel, A., Raijada, D., Rantanen, J. (2015). Raman spectroscopy in pharmaceutical product design. Advanced Drug Delivery Reviews, 89, 3–20.
  • 62. Smith, E., Dent, G. (2013). Modern Raman spectroscopy: a practical approach. John Wiley & Sons.
  • 63. Roggo, Y., Degardin, K., Margot, P. (2010). Identification of pharmaceutical tablets by Raman spectroscopy and chemometrics. Talanta, 81(3), 988–995.
  • 64. Hajjou, M., Qin, Y., Bradby, S., Bempong, D., Lukulay, P. (2013). Assessment of the performance of a handheld Raman device for potential use as a screening tool in evaluating medicines quality. Journal of Pharmaceutical and Biomedical Analysis, 74, 47–55.
  • 65. Noonan, K. Y., Tonge, L. A., Fenton, O. S., Damiano, D. B., Frederick, K. A. (2009). Rapid classification of simulated street drug mixtures using Raman spectroscopy and principal component analysis. Applied Spectroscopy, 63(7), 742–747.
  • 66. Loethen, Y. L., Kauffman, J. F., Buhse, L. F., Rodriguez, J. D. (2015). Rapid screening of anti-infective drug products for counterfeits using Raman spectral library-based correlation methods. Analyst, 140(21), 7225–7233.
  • 67. Rohleder, D. R., Kocherscheidt, G., Gerber, K., Kiefer, W., Köhler, W., Möcks, J., Petrich, W. H. (2005). Comparison of mid-infrared and Raman spectroscopy in the quantitative analysis of serum. Journal of Biomedical Optics, 10(3), 031108.
  • 68. Darvin, M. E., Sterry, W., Lademann, J. (2010). Resonance Raman spectroscopy as an effective tool for the determination of antioxidative stability of cosmetic formulations. Journal of Biophotonics, 3(1‐2), 82–88.
  • 69. Witkowski, M. R. (2005). The use of Raman spectroscopy in the detection of counterfeit and adulterated pharmaceutical products. American Pharmaceutical Review, 8, 56–62.
  • 70. Gala, U., Chauhan, H. (2015). Principles and applications of Raman spectroscopy in pharmaceutical drug discovery and development. Expert opinion on drug discovery, 10(2), 187–206.
  • 71. Tfayli, A., Piot, O., Pitre, F., Manfait, M. (2007). Follow-up of drug permeation through excised human skin with confocal Raman microspectroscopy. European Biophysics Journal, 36(8), 1049–1058.
  • 72. Franzen, L., Selzer, D., Fluhr, J. W., Schaefer, U. F., Windbergs, M. (2013). Towards drug quantification in human skin with confocal Raman microscopy. European journal of pharmaceutics and biopharmaceutics, 84(2), 437–444.
  • 73. Downes, A., Elfick, A. (2010). Raman spectroscopy and related techniques in biomedicine. Sensors, 10(3), 1871–1889.
  • 74. Puviarasan, N., Arjunan, V., Mohan, S. (2002). FT-IR and FT-Raman studies on 3-aminophthalhydrazide and N-aminophthalimide. Turkish Journal of Chemistry, 26(3), 323–334.
Toplam 74 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri
Bölüm Derleme
Yazarlar

Abdullahi Garba Usman Bu kişi benim 0000-0001-5660-4581

Umar Muhammad Ghali Bu kişi benim 0000-0002-3500-8075

Selin Işık 0000-0001-7601-3746

Yayımlanma Tarihi 31 Ocak 2020
Gönderilme Tarihi 18 Ağustos 2019
Kabul Tarihi 22 Aralık 2019
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Usman, A. G., Ghali, U. M., & Işık, S. (2020). APPLICATIONS OF MINIATURIZED AND PORTABLE NEAR INFRARED (NIR), FOURIER TRANSFORM INFRARED (FT-IR) AND RAMAN SPECTROMETERS FOR THE INSPECTION AND CONTROL OF PHARMACEUTICAL PRODUCTS. Journal of Faculty of Pharmacy of Ankara University, 44(1), 188-203. https://doi.org/10.33483/jfpau.599077
AMA Usman AG, Ghali UM, Işık S. APPLICATIONS OF MINIATURIZED AND PORTABLE NEAR INFRARED (NIR), FOURIER TRANSFORM INFRARED (FT-IR) AND RAMAN SPECTROMETERS FOR THE INSPECTION AND CONTROL OF PHARMACEUTICAL PRODUCTS. Ankara Ecz. Fak. Derg. Ocak 2020;44(1):188-203. doi:10.33483/jfpau.599077
Chicago Usman, Abdullahi Garba, Umar Muhammad Ghali, ve Selin Işık. “APPLICATIONS OF MINIATURIZED AND PORTABLE NEAR INFRARED (NIR), FOURIER TRANSFORM INFRARED (FT-IR) AND RAMAN SPECTROMETERS FOR THE INSPECTION AND CONTROL OF PHARMACEUTICAL PRODUCTS”. Journal of Faculty of Pharmacy of Ankara University 44, sy. 1 (Ocak 2020): 188-203. https://doi.org/10.33483/jfpau.599077.
EndNote Usman AG, Ghali UM, Işık S (01 Ocak 2020) APPLICATIONS OF MINIATURIZED AND PORTABLE NEAR INFRARED (NIR), FOURIER TRANSFORM INFRARED (FT-IR) AND RAMAN SPECTROMETERS FOR THE INSPECTION AND CONTROL OF PHARMACEUTICAL PRODUCTS. Journal of Faculty of Pharmacy of Ankara University 44 1 188–203.
IEEE A. G. Usman, U. M. Ghali, ve S. Işık, “APPLICATIONS OF MINIATURIZED AND PORTABLE NEAR INFRARED (NIR), FOURIER TRANSFORM INFRARED (FT-IR) AND RAMAN SPECTROMETERS FOR THE INSPECTION AND CONTROL OF PHARMACEUTICAL PRODUCTS”, Ankara Ecz. Fak. Derg., c. 44, sy. 1, ss. 188–203, 2020, doi: 10.33483/jfpau.599077.
ISNAD Usman, Abdullahi Garba vd. “APPLICATIONS OF MINIATURIZED AND PORTABLE NEAR INFRARED (NIR), FOURIER TRANSFORM INFRARED (FT-IR) AND RAMAN SPECTROMETERS FOR THE INSPECTION AND CONTROL OF PHARMACEUTICAL PRODUCTS”. Journal of Faculty of Pharmacy of Ankara University 44/1 (Ocak 2020), 188-203. https://doi.org/10.33483/jfpau.599077.
JAMA Usman AG, Ghali UM, Işık S. APPLICATIONS OF MINIATURIZED AND PORTABLE NEAR INFRARED (NIR), FOURIER TRANSFORM INFRARED (FT-IR) AND RAMAN SPECTROMETERS FOR THE INSPECTION AND CONTROL OF PHARMACEUTICAL PRODUCTS. Ankara Ecz. Fak. Derg. 2020;44:188–203.
MLA Usman, Abdullahi Garba vd. “APPLICATIONS OF MINIATURIZED AND PORTABLE NEAR INFRARED (NIR), FOURIER TRANSFORM INFRARED (FT-IR) AND RAMAN SPECTROMETERS FOR THE INSPECTION AND CONTROL OF PHARMACEUTICAL PRODUCTS”. Journal of Faculty of Pharmacy of Ankara University, c. 44, sy. 1, 2020, ss. 188-03, doi:10.33483/jfpau.599077.
Vancouver Usman AG, Ghali UM, Işık S. APPLICATIONS OF MINIATURIZED AND PORTABLE NEAR INFRARED (NIR), FOURIER TRANSFORM INFRARED (FT-IR) AND RAMAN SPECTROMETERS FOR THE INSPECTION AND CONTROL OF PHARMACEUTICAL PRODUCTS. Ankara Ecz. Fak. Derg. 2020;44(1):188-203.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.