Derleme
BibTex RIS Kaynak Göster

IN VITRO SKIN MODELS

Yıl 2021, , 699 - 721, 27.09.2021
https://doi.org/10.33483/jfpau.930099

Öz

Objective: The use of skin models is of great importance in the design and optimization of formulations applied to the skin for topical or systemic effects. Although rat or pig skin is often used in skin penetration/permeation studies of active substances, the compatibility of results obtained from animal skin and human skin is questioned. On the other hand, the use of human skin is limited since it is difficult to attain and due to the ethical concerns. This situation increases the importance of in vitro skin permeation tests. In this review, the advantages and disadvantages of the most commonly used in vitro skin models were emphasized, and current studies performed with these models were reviewed.
Result and Discussion: Artificial membranes are preferred over human and animal skin due to many advantages such as reproducibility, low cost, ease of use and able to modify. Reconstructed human skin equivalents have advantages such as high data repeatability, nonnecessity of ethics committee approval and availability for the evaluation of skin metabolism, corrosion and phototoxicity. Despite all these advantages of reconstructed human skin equivalents and important steps in their development, it is not yet entirely possible replacing human or animal skin completely for in vivo estimation of absorption of active ingredients through the skin. The most important factors limiting the use of reconstructed skin models are their high cost and low barrier functions.

Kaynakça

  • 1. Lam, P.L., Gambari, R., (2014). Advanced progress of microencapsulation technologies: in vivo and in vitro models for studying oral and transdermal drug deliveries. Journal of Controlled Release 178, 25–45. https://doi.org/10.1016/j.jconrel.2013.12.028
  • 2. Flaten, G. E., Palac, Z., Engesland, A., Filipović-Grčić, J., Vanić, Ž., Škalko-Basnet, N. (2015). In vitro skin models as a tool in optimization of drug formulation. Eur. J. Pharm. Sci., 75, 10-24. https://doi.org/10.1016/j.ejps.2015.02.018
  • 3. Franz, T. J. (1975). Percutaneous absorption. On the relevance of in vitro data. Journal of Investigative Dermatology, 64(3), 190-195. https://doi.org/10.1111/1523-1747.ep12533356
  • 4. Barbero, A. M., Frasch, H. F. (2009). Pig and guinea pig skin as surrogates for human in vitro penetration studies: a quantitative review. Toxicol. İn Vitro, 23(1), 1-13. https://doi.org/10.1016/j.tiv.2008.10.008
  • 5. Semlin, L., Schäfer-Korting, M., Borelli, C., Korting, H. C. (2011). In vitro models for human skin disease. Drug Discovery Today, 16(3-4), 132-139. https://doi.org/10.1016/j.drudis.2010.12.001
  • 6. Schmook, F.P., Meingassner, J.G., Billich, A., (2001). Comparison of human skin or epidermis models with human and animal skin in in-vitro percutaneous absorption. Int. J. Pharm., 215, 51–56. https://doi.org/10.1016/S0378-5173(00)00665-7
  • 7. Vallet, V., Cruz, C., Josse, D., Bazire, A., Lallement, G., Boudry, I., (2007). In vitro percutaneous penetration of organophosphorus compounds using full-thickness and splitthickness pig and human skin. Toxicol. In Vitro, 21, 1182–1190. https://doi.org/10.1016/j.tiv.2007.03.007
  • 8. Luo, L., Patel, A., Sinko, B., Bell, M., Wibawa, J., Hadgraft, J., Lane, M.E., (2016). A comparative study of the in vitro permeation of ibuprofen in mammalian skin, the PAMPA model and silicone membrane. Int. J. Pharm. 505, 14–19. https://doi.org/10.1016/j.ijpharm.2016.03.043
  • 9. Yoshimatsu, H., Ishii, K., Konno, Y., Satsukawa, M., Yamashita, S., (2017). Prediction of human percutaneous absorption from in vitro and in vivo animal experiments. Int. J. Pharm., 534, 348–355. https://doi.org/10.1016/j.ijpharm.2017.10.048
  • 10. MacNeil, S. (2007). Progress and opportunities for tissue-engineered skin. Nature, 445(7130), 874-880. https://doi.org/10.1038/nature05664
  • 11. European Commission. 2003. Draft of technical guidance document. 2nd ed. European Chemicals Bureau
  • 12. EMA-CHMP. Draft Guideline on Quality and Equivalence of Topical Products. European Medicines Agency; Amsterdam, The Netherlands: 2018. s. 1–36. Erişim: https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-quality-equivalence-topical-products_en.pdf. Erişim Tarihi: 12.03.2021
  • 13. Hadgraft, J. (2001). Skin, the final frontier. Int. J. Pharm., 224, 1–18. https://doi.org/10.1016/S0378-5173(01)00731-1
  • 14. Montagna W, Parakkal PF. The Structure and Function of Skin. 3rd ed. New York: Academic Press; 2012.
  • 15. Roberts MS, Cross SE, Pellett MA, Walters KA. Skin transport. In: Walters KA, Editor. Dermatological and Transdermal Formulations. New York: Marcel Dekker; 2002. s. 89–196.
  • 16. Baroni, A., Buommino, E., De Gregorio, V., Ruocco, E., Ruocco, V., Wolf, R. (2012). Structure and function of the epidermis related to varrier properties. Clin. Dermatol., 30, 257–262. https://doi.org/10.1016/j.clindermatol.2011.08.007
  • 17. Menon, G.K., Cleary, G.W., Lane, M.E. (2012). The structure and function of thestratum corneum. Int. J. Pharm. 435, 3–9. https://doi.org/10.1016/j.ijpharm.2012.06.005
  • 18. Andrews, S.N., Jeong, E., Prausnitz, M.R. (2013). Transdermal delivery of molecules is limited by full epidermis, not just stratum corneum. Pharm. Res. 30, 1099– 1109. https://doi.org/10.1007/s11095-012-0946-7
  • 19. Bolzinger, M.-A., Briançon, S., Pelletier, J., Chevalier, Y. (2012). Penetration of drugs through skin, a complex-rate controlling membrane. Curr. Opin. Colloid Interface Sci., 17, 156–165. https://doi.org/10.1016/j.cocis.2012.02.001
  • 20. Schaefer, U.F., Hansen, S., Schneider, M., Luengo Contreras, J., Lehr, C.M. (2008). Models for skin absorption and skin toxicity testing. In: Kim, K., Ehrhardt, K.-J. (Eds.), Drug Absorption Studies. Springer, New York, s. 3–33.
  • 21. Chittenden, J.T., Brooksm, J.D., Riviere, J.E. (2014). Development of a mixed-effect pharmacokinetic model for vehicle modulated in vitro transdermal flux of topically applied penetrants. J. Pharm. Sci., 103, 1002–1012. https://doi.org/10.1002/jps.23862
  • 22. Souto, E.B. (2005). SLN and NLC for Topical Delivery of Antifungals. Institut of Pharmacy, Freie Universität, Berlin, s. 21.
  • 23. Van Gele, M., Geusens, B., Brochez, L., Speeckaert, R., Lambert, J. (2011). Three-dimensional skin models as tools for transdermal drug delivery: challenges and limitations. Expert Opinion on Drug Delivery, 8(6), 705-720. https://doi.org/10.1517/17425247.2011.568937
  • 24. Oliveira, G., Beezer, A.E., Hadgraft, J., Lane, M.E. (2011). Alcohol enhanced permeation in model membranes. Part II. Thermodynamic analysis of membrane partitioning. Int. J. Pharm. 420, 216–222. https://doi.org/10.1016/j.ijpharm.2011.08.037
  • 25. Oliveira, G., Hadgraft, J., Lane, M. E. (2012). The influence of volatile solvents on transport across model membranes and human skin. Int. J. Pharm. 435(1), 38-49. https://doi.org/10.1016/j.ijpharm.2012.05.037
  • 26. de Jager, M., Groenink, W., Bielsa, I., Guivernau, R., Andersson, E., Angelova, N., Ponec, M., Bouwstra, J. (2006). A novel in vitro percutaneous penetration model: evaluation of barrier properties with p-aminobenzoic acid and two of its derivatives. Pharm. Res., 23, 951–960. https://doi.org/10.1007/s11095-006-9909-1
  • 27. Albery, W.J., Burke, J.F., Leffler, E.B., Hadgraft, J. (1976). Interfacial transfer studied with a rotating diffusion cell. J. Chem. Soc. Faraday Trans. 1 72, 1618–1626.
  • 28. Guy, R.H., Fleming, R. (1979). The estimation of diffusion coefficients using the rotating diffusion cell. Int. J. Pharm., 3, 143–149. https://doi.org/10.1016/0378-5173(79)90076-0
  • 29. Dias, M., Hadgraft, J., Lane, M.E. (2007). Influence of membrane-solvent-solute interactions on solute permeation in model membranes. Int. J. Pharm., 336 (1), 108–114. https://doi.org/10.1016/j.ijpharm.2006.11.054
  • 30. Santos, P., Machado, M., Watkinson, A.C., Hadgraft, J., Lane, M.E. (2009). The effect of drug concentration on solvent activity in silicone membranes. Int. J. Pharm., 377(1–2), 70–75. https://doi.org/10.1016/j.ijpharm.2009.05.002
  • 31. Oliveira, G., Hadgraft, J., Lane, M.E. (2012). The role of vehicle interactions on permeation of an active through model membranes and human skin. Int. J. Cosmet. Sci. 34, 536–545. https://doi.org/10.1111/j.1468-2494.2012.00753.x
  • 32. Loftsson, T., Konradsdottir, F., Masson, M. (2006). Development and evaluation of an artificial membrane for determination of drug availability. Int. J. Pharm. 326, 60–68. https://doi.org/10.1016/j.ijpharm.2006.07.009
  • 33. Oliveira, G., Beezer, A.E., Hadgraft, J., Lane, M.E. (2010). Alcohol enhanced permeation in model membranes. Part I. Thermodynamic and kinetic analyses of membrane permeation. Int. J. Pharm., 393, 61–67. https://doi.org/10.1016/j.ijpharm.2010.03.062
  • 34. Ottaviani, G., Martel, S., Carrupt, P.A. (2006). Parallel artificial membrane permeability assay: a new membrane for the fast prediction of passive human skin permeability. J. Med. Chem. 49, 3948–3954. https://doi.org/10.1021/jm060230
  • 35. Nakano, M., Patel, N. K. (1970). Release, uptake, and permeation behavior of salicylic acid in ointment bases. J. Pharm. Sci., 59(7), 985-988. https://doi.org/10.1002/jps.2600590714
  • 36. Watkinson, R.M., Guy, R.H., Hadgraft, J., Lane, M.E. (2009). Optimisation of cosolvent concentration for topical drug delivery II: influence of propylene glycol on ibuprofen permeation. Skin Pharmacol. Physiol., 22, 225–230. https://doi.org/10.1159/000231528
  • 37. Watkinson, R.M., Herkenne, C., Guy, R.H., Hadgraft, J., Oliveira, G., Lane, M.E. (2009). Influence of ethanol on the solubility, ionization and permeation characteristics of ibuprofen in silicone and human skin. Skin Pharmacol. Physiol., 22, 15–21. https://doi.org/10.1159/000183922
  • 38. Watkinson, R.M., Guy, R.H., Oliveira, G., Hadgraft, J., Lane, M.E., (2011). Optimisation of cosolvent concentration for topical drug delivery III – influence of lipophilic vehicles on ibuprofen permeation. Skin Pharmacol. Physiol., 24, 22–26. https://doi.org/10.1159/000315139
  • 39. Miki, R., Ichitsuka, Y., Yamada, T., Kimura, S., Egawa, Y., Seki, T., Juni, K., Ueda, H., Morimoto, Y., (2015). Development of a membrane impregnated with a poly(dimethylsiloxane)/poly(ethylene glycol) copolymer for a highthroughput screening of the permeability of drugs, cosmetics, and other chemicals across the human skin. Eur. J. Pharm. Sci. 66, 41–49. https://doi.org/10.1016/j.ejps.2014.09.024
  • 40. Joshi, V., Brewster, D., Colonero, P., (2012). Transdermal diffusion. In vitro diffusion studies in transdermal research: a synthetic membrane model in place of human skin. Drug Dev. Delivery, 12, 40–42.
  • 41. Merck. (2012). Millipore. Strat-MTM Membrane: A Synthetic Transdermal Diffusion Test Model. Millipore Corporation, Darmstadt, German. Erişim: http:// www.in-cosmetics.com/__novadocuments/61173?v=635459653141970000. Erişim Tarihi: 12.03.2021
  • 42. Haq, A., Goodyear, B., Ameen, D., Joshi, V., Michniak-Kohn, B. (2018). Strat-M® synthetic membrane: Permeability comparison to human cadaver skin. Int. J. Pharm., 547(1-2), 432-437. https://doi.org/10.1016/j.ijpharm.2018.06.012
  • 43. Kaur, L., Singh, K., Paul, S., Singh, S., Singh, S., Jain, S. K. (2018). A mechanistic study to determine the structural similarities between artificial membrane Strat-M™ and biological membranes and its application to carry out skin permeation study of amphotericin B nanoformulations. AAPS Pharmscitech, 19(4), 1606-1624. https://doi.org/10.1208/s12249-018-0959-6
  • 44. Simon, A., Amaro, M. I., Healy, A. M., Cabral, L. M., de Sousa, V. P. (2016). Comparative evaluation of rivastigmine permeation from a transdermal system in the Franz cell using synthetic membranes and pig ear skin with in vivo-in vitro correlation. Int. J. Pharm., 512(1), 234-241. https://doi.org/10.1016/j.ijpharm.2016.08.052
  • 45. Uchida, T., Kadhum, W. R., Kanai, S., Todo, H., Oshizaka, T., Sugibayashi, K. (2015). Prediction of skin permeation by chemical compounds using the artificial membrane, Strat-M™. Eur. J. Pharm. Sci., 67, 113-118. https://doi.org/10.1016/j.ejps.2014.11.002
  • 46. Kansy, M., Senner, F., Gubernator, K. (1998). Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. Journal of Medicinal Chemistry, 41(7), 1007-1010. https://doi.org/10.1021/jm970530e
  • 47. Faller, B. (2008). Artificial membrane assays to assess permeability. Current Drug Metabolism, 9(9), 886-892. https://doi.org/10.2174/138920008786485227
  • 48. Bujard, A., Sol, M., Carrupt, P.-A., Martel, S. (2014). Predicting both passive intestinal absorption and the dissociation constant toward albumin using the PAMPA technique. Eur. J. Pharm. Sci., 63, 36–44. https://doi.org/10.1016/j.ejps.2014.06.025
  • 49. Di, L., Kerns, E.H., Bezar, I.F., Petusky, S.L., Huang, Y. (2009). Comparison of blood–brain barrier permeability assays: in situ brain perfusion, MDR1-MDCKII and PAMPA-BBB. J. Pharm. Sci., 98, 1980–1991. https://doi.org/10.1002/jps.21580
  • 50. Sinko, B., Kokosi, J., Avdeef, A., Takacs-Novak, K. (2009). A PAMPA study of the permeability-enhancing effect of new ceramide analogues. Chem. Biodivers., 6, 1867–1874. https://doi.org/10.1002/cbdv.200900149
  • 51. Sinko, B., Garrigues, T.M., Balogh, G.T., Nagy, Z.K., Tsinman, O., Avdeef, A., Takacs- Novak, K. (2012). Skin-PAMPA: a new method for fast prediction of skin penetration. Eur. J. Pharm. Sci., 45, 698–707. https://doi.org/10.1016/j.ejps.2012.01.011
  • 52. Tsinman, K., Sinko, B. (2013). A high throughput method to predict skin penetration and screen topical formulations. Cosmet. Toiletries, 128, 192–199.
  • 53. Vizserálek, G., Berkó, S., Tóth, G., Balogh, R., Budai-Szűcs, M., Csányi, E., Sinkó, B., Takács-Novák, K. (2015). Permeability test for transdermal and local therapeutic patches using Skin PAMPA method. Eur. J. Pharm. Sci., 76, 165–172. https://doi.org/10.1016/j.ejps.2015.05.004
  • 54. Balazs, B., Vizserálek, G., Berkó, S., Budai-Szűcs, M., Kelemen, A., Sinkó, B., Takács- Novák, K., Szabó-Révész, P., Csányi, E. (2016). Investigation of the efficacy of transdermal penetration enhancers through the use of human skin and a skin mimic artificial membrane. J. Pharm. Sci., 105, 1134–1140. https://doi.org/10.1016/S0022-3549(15)00172-0
  • 55. Karadzovska, D., Riviere, J.E. (2013). Assessing vehicle effects on skin absorption using artificial membrane assays. Eur. J. Pharm. Sci., 50, 569–576. https://doi.org/10.1016/j.ijpharm.2018.06.012
  • 56. Zhang, Y., Lane, M. E., Hadgraft, J., Heinrich, M., Chen, T., Lian, G., & Sinko, B. (2019). A comparison of the in vitro permeation of niacinamide in mammalian skin and in the Parallel Artificial Membrane Permeation Assay (PAMPA) model. Int. J. Pharm., 556, 142-149. https://doi.org/10.1016/j.ijpharm.2018.11.065
  • 57. Kerns, E. H., Di, L., Petusky, S., Farris, M., Ley, R., Jupp, P. (2004). Combined application of parallel artificial membrane permeability assay and Caco-2 permeability assays in drug discovery. J. Pharm. Sci., 93(6), 1440-1453. https://doi.org/10.1002/jps.20075
  • 58. Avdeef, A. (2005). The rise of PAMPA. Expert Opinion on Drug Metabolism & Toxicology, 1(2), 325-342. https://doi.org/10.1517/17425255.1.2.325
  • 59. Flaten, G.E., Bunjes, H., Luthman, K., Brandl, M. (2006). Drug permeability across a phospholipid vesicle based barrier 2. Characterization of barrier structure, storage stability and stability towards pH changes. Eur. J. Pharm. Sci. 28, 336– 343. https://doi.org/10.1016/j.ejps.2006.03.008
  • 60. Flaten, G.E., Awoyemi, O., Luthman, K., Brandl, M., Massing, U. (2009). The Phospholipid Vesicle-based Permeability Assay: 5. Development Towards an Automated Procedure for High Throughput Permeability Screening. JALA, s. 12–21. https://doi.org/10.1016/j.jala.2008.04.002
  • 61. Engesland, A., Skar, M., Hansen, T., Škalko-Basnet, N., Flaten, G.E. (2013). New applications of phospholipid vesicle-based permeation assay: permeation model mimicking skin barrier. J. Pharm. Sci., 102, 1588–1600. https://doi.org/10.1002/jps.23509
  • 62. Palac, Z., Engesland, A., Flaten, G.E., Škalko-Basnet, N., Filipovic´- Grčić, J., Vanic´, Zˇ. (2014). Liposomes for (trans)dermal drug delivery: the skin-PVPA as a novel in vitro stratum corneum model in formulation development. J. Liposome Res., 24, 313–322. https://doi.org/10.3109/08982104.2014.899368
  • 63. Shakel, Z., Nunes, C., Lima, S. A. C., Reis, S. (2019). Development of a novel human stratum corneum model, as a tool in the optimization of drug formulations. Int. J. Pharm., 569, 118571. https://doi.org/10.1016/j.ijpharm.2019.118571
  • 64. Moniz, T., Lima, S. A. C., Reis, S. (2020). Application of the Human stratum corneum lipid-based mimetic model in assessment of drug-loaded nanoparticles for skin administration. Int. J. Pharm., 591, 119960. https://doi.org/10.1016/j.ijpharm.2020.119960
  • 65. Ma, M., Di, H. J., Zhang, H., Yao, J. H., Dong, J., Yan, G. J., Chen, J. (2017). Development of phospholipid vesicle-based permeation assay models capable of evaluating percutaneous penetration enhancing effect. Drug Dev. Ind. Pharm. 43 (12), 2055-2063. https://doi.org/10.1080/03639045.2017.1371730
  • 66. Engesland, A., Škalko-Basnet, N., Flaten, G.E. (2015). PVPA and EpiSkin® in assessment of drug therapies destined for skin administration. J. Pharm. Sci., 104 (3), 1119–1127. https://doi.org/10.1002/jps.24315
  • 67. Ponec, M. (1992). In vitro cultured human skin cells as alternatives to animals for skin irritancy screening. International Journal of Cosmetic Science, 14(6), 245-264. https://doi.org/10.1111/j.1467-2494.1992.tb00058.x
  • 68. Godin, B., Touitou, E. (2007). Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv. Drug Deliv. Rev. 59, 1152–1161. https://doi.org/10.1016/j.addr.2007.07.004
  • 69. Netzlaff, F., Lehr, C.-M., Wertz, P.W., Schaefer, U.F., (2005). The human epidermis models EpiSkin, SkinEthic and EpiDerm: an evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport. Eur. J. Pharm. Biopharm. 60, 167–178. https://doi.org/10.1016/j.ejpb.2005.03.004
  • 70. Ponec, M., Boelsma, E., Gibbs, S., Mommaas, M. (2002). Characterization of reconstructed skin models. Skin Pharmacology and Physiology, 15 (Suppl. 1), 4-17. https://doi.org/10.1159/000066682
  • 71. Episkin Laboratories. Erişim: https://www.episkin.com/SkinEthic-RHE Erişim Tarihi: 10.03.2021.
  • 72. MatTek Laboratories Erişim: https://www.mattek.com/products/epidermft/ Erişim Tarihi: 10.03.2021.
  • 73. Netzlaff, F., Schaefer, U.F., Lehr, C.-M., Meiers, P., Stahl, J., Kietzmann, M., Niedorf, F., (2006). Comparison of bovine udder skin with human and porcine skin in percutaneous permeation experiments. Altern. Lab. Anim. 34, 499–513.
  • 74. Schäfer-Korting M, Bock U, Diembeck W. (2008). The use of reconstructed human epidermis for skin absorption testing: results of the validation study. Altern Lab Anim., 36(2):161–187. https://doi.org/10.1177/026119290803600207
  • 75. Schäfer-Korting M, Bock U, Gamer A. (2006). Reconstructed human epidermis for skin absorption testing: results of the German prevalidation study. Altern. Lab. Anim., 34:283-94. https://doi.org/10.1177/026119290603400312
  • 76. Dreher, F., Fouchard, F., Patouillet, C., Andrian, M., Simonnet, J. T., & Benech-Kieffer, F. (2002). Comparison of cutaneous bioavailability of cosmetic preparations containing caffeine or α-tocopherol applied on human skin models or human skin ex vivo at finite doses. Skin Pharmacol. Physiol,, 15(Suppl. 1), 40-58. https://doi.org/10.1159/000066680
  • 77. Labouta, H.I., Thude, S., Schneider, M. (2013). Setup for investigating gold nanoparticle penetration through reconstructed skin and comparison to published human skin data. J. Biomed. Opt. 18, 061218. https://doi.org/10.1117/1.JBO.18.6.061218
  • 78. Lotte, C., Patouillet, C., Zanini, M., Messager, A., & Roguet, R. (2002). Permeation and skin absorption: reproducibility of various industrial reconstructed human skin models. Skin Pharmacology and Physiology, 15(Suppl. 1), 18-30. https://doi.org/10.1159/00006667
  • 79. Bando, H., Mohri, S., Yamashita, F., Takakura, Y., Hashida, M. (1997). Effects of skin metabolism on percutaneous penetration of lipophilic drugs. J. Pharm. Sci., 86(6), 759-761. https://doi.org/10.1021/js960408n
  • 80. Gysler, A., Kleuser, B., Sippl, W., Lange, K., Korting, H. C., Höltje, H. D., Schäfer-Korting, M. (1999). Skin penetration and metabolism of topical glucocorticoids in reconstructed epidermis and in excised human skin. Pharm. Res., 16(9), 1386-1391. https://doi.org/10.1023/a:1018946924585
  • 81. Mahmoud, A., Haberland, A., Dürrfeld, M., Heydeck, D., Wagner, S., Schäfer-Korting, M. (2005). Cutaneous estradiol permeation, penetration and metabolism in pig and man. Skin Pharmacology and Physiology, 18(1), 27-35. https://doi.org/10.1159/000081683
  • 82. Slivka, S. R. (1992). Testosterone metabolism in an in vitro skin model. Cell Biology and Toxicology, 8(4), 267-276. https://doi.org/10.1007/BF00156735.
  • 83. Planz, V., Lehr, C. M., & Windbergs, M. (2016). In vitro models for evaluating safety and efficacy of novel technologies for skin drug delivery. Journal of Controlled Release, 242, 89-104. https://doi.org/10.1016/j.jconrel.2016.09.002
  • 84. Ackermann, K., Borgia, S. L., Korting, H. C., Mewes, K. R., & Schäfer-Korting, M. (2010). The Phenion® full-thickness skin model for percutaneous absorption testing. Skin Pharmacol. Physiol,, 23(2), 105-112. https://doi.org/10.1159/000265681
  • 85. Henkel Laboratories Erişim: https://www.phenion.com/products/reconstructed-tissues Erişim Tarihi: 11.03.2021.
  • 86. De Wecer, B., Petersohn, D., Mewes, K. R. (2013). Overview of human three-dimensional (3D) skin models used for dermal toxicity assessment. HPC Today, 8, 18-22.
  • 87. Neupane, R., Boddu, S. H., Renukuntla, J., Babu, R. J., & Tiwari, A. K. (2020). Alternatives to biological skin in permeation studies. Current Trends and Possibilities. Pharmaceutics, 12(2), 152. https://doi.org/10.3390/pharmaceutics12020152
  • 88. Abd, E., Yousef, S. A., Pastore, M. N., Telaprolu, K., Mohammed, Y. H., Namjoshi, S., Roberts, M. S. (2016). Skin models for the testing of transdermal drugs. Clinical Pharmacology: Advances and Applications, 8, 163. https://doi.org/10.2147/CPAA.S64788

İN VİTRO DERİ MODELLERİ

Yıl 2021, , 699 - 721, 27.09.2021
https://doi.org/10.33483/jfpau.930099

Öz

Amaç: Topikal veya sistemik etki sağlamak için deriye uygulanan formülasyonların tasarımında ve optimizasyonunda deri modellerinin kullanımı büyük önem taşımaktadır. Etken maddelerin deriden penetrasyon / permeasyon çalışmalarında sıçan veya domuz derisi sıklıkla kullanılmakta ancak hayvan derisinden elde edilen sonuçların insan derisi ile uygunluğu sorgulanmaktadır. Diğer taraftan insan derisinin kullanımı ise, temininin genellikle zor olması ve etik kaygılar nedeniyle sınırlıdır. Bu durum, in vitro deriden permeasyon testlerinin önemini artırmaktadır. Bu derlemede, en sık kullanılan in vitro deri modellerinin avantajları ve dezavantajları vurgulanarak, bu modeller ile gerçekleştirilen güncel çalışmalar incelenmiştir.
Sonuç ve Tartışma: Yapay membranlar; tekrar üretilebilirlik, düşük maliyet, kullanım kolaylığı ve modifiye edilebilir olması gibi birçok avantajı sebebiyle insan ve hayvan derisi yerine tercih edilmektedir. Yeniden yapılandırılmış insan derisi eşdeğerlerinin ise, veri tekrarlanabilirliğinin yüksek olması, etik kurul izni gerekmemesi, deri metabolizmasının, deri korozyonunun ve fototoksisitenin değerlendirilebilmesi gibi avantajları bulunmaktadır. Yeniden yapılandırılmış insan derisi eşdeğerlerinin bütün bu avantajlarına ve geliştirilmesindeki önemli adımlara rağmen, etken maddelerin deriden absorpsiyonunun in vivo tahmini için insan veya hayvan derisinin yerini tamamen almaları henüz tam anlamıyla mümkün değildir. Yeniden yapılandırılmış deri modellerin kullanımını sınırlayan en önemli faktörlerin başında, yüksek maliyet ve düşük bariyer fonksiyonları gelmektedir.

Kaynakça

  • 1. Lam, P.L., Gambari, R., (2014). Advanced progress of microencapsulation technologies: in vivo and in vitro models for studying oral and transdermal drug deliveries. Journal of Controlled Release 178, 25–45. https://doi.org/10.1016/j.jconrel.2013.12.028
  • 2. Flaten, G. E., Palac, Z., Engesland, A., Filipović-Grčić, J., Vanić, Ž., Škalko-Basnet, N. (2015). In vitro skin models as a tool in optimization of drug formulation. Eur. J. Pharm. Sci., 75, 10-24. https://doi.org/10.1016/j.ejps.2015.02.018
  • 3. Franz, T. J. (1975). Percutaneous absorption. On the relevance of in vitro data. Journal of Investigative Dermatology, 64(3), 190-195. https://doi.org/10.1111/1523-1747.ep12533356
  • 4. Barbero, A. M., Frasch, H. F. (2009). Pig and guinea pig skin as surrogates for human in vitro penetration studies: a quantitative review. Toxicol. İn Vitro, 23(1), 1-13. https://doi.org/10.1016/j.tiv.2008.10.008
  • 5. Semlin, L., Schäfer-Korting, M., Borelli, C., Korting, H. C. (2011). In vitro models for human skin disease. Drug Discovery Today, 16(3-4), 132-139. https://doi.org/10.1016/j.drudis.2010.12.001
  • 6. Schmook, F.P., Meingassner, J.G., Billich, A., (2001). Comparison of human skin or epidermis models with human and animal skin in in-vitro percutaneous absorption. Int. J. Pharm., 215, 51–56. https://doi.org/10.1016/S0378-5173(00)00665-7
  • 7. Vallet, V., Cruz, C., Josse, D., Bazire, A., Lallement, G., Boudry, I., (2007). In vitro percutaneous penetration of organophosphorus compounds using full-thickness and splitthickness pig and human skin. Toxicol. In Vitro, 21, 1182–1190. https://doi.org/10.1016/j.tiv.2007.03.007
  • 8. Luo, L., Patel, A., Sinko, B., Bell, M., Wibawa, J., Hadgraft, J., Lane, M.E., (2016). A comparative study of the in vitro permeation of ibuprofen in mammalian skin, the PAMPA model and silicone membrane. Int. J. Pharm. 505, 14–19. https://doi.org/10.1016/j.ijpharm.2016.03.043
  • 9. Yoshimatsu, H., Ishii, K., Konno, Y., Satsukawa, M., Yamashita, S., (2017). Prediction of human percutaneous absorption from in vitro and in vivo animal experiments. Int. J. Pharm., 534, 348–355. https://doi.org/10.1016/j.ijpharm.2017.10.048
  • 10. MacNeil, S. (2007). Progress and opportunities for tissue-engineered skin. Nature, 445(7130), 874-880. https://doi.org/10.1038/nature05664
  • 11. European Commission. 2003. Draft of technical guidance document. 2nd ed. European Chemicals Bureau
  • 12. EMA-CHMP. Draft Guideline on Quality and Equivalence of Topical Products. European Medicines Agency; Amsterdam, The Netherlands: 2018. s. 1–36. Erişim: https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-quality-equivalence-topical-products_en.pdf. Erişim Tarihi: 12.03.2021
  • 13. Hadgraft, J. (2001). Skin, the final frontier. Int. J. Pharm., 224, 1–18. https://doi.org/10.1016/S0378-5173(01)00731-1
  • 14. Montagna W, Parakkal PF. The Structure and Function of Skin. 3rd ed. New York: Academic Press; 2012.
  • 15. Roberts MS, Cross SE, Pellett MA, Walters KA. Skin transport. In: Walters KA, Editor. Dermatological and Transdermal Formulations. New York: Marcel Dekker; 2002. s. 89–196.
  • 16. Baroni, A., Buommino, E., De Gregorio, V., Ruocco, E., Ruocco, V., Wolf, R. (2012). Structure and function of the epidermis related to varrier properties. Clin. Dermatol., 30, 257–262. https://doi.org/10.1016/j.clindermatol.2011.08.007
  • 17. Menon, G.K., Cleary, G.W., Lane, M.E. (2012). The structure and function of thestratum corneum. Int. J. Pharm. 435, 3–9. https://doi.org/10.1016/j.ijpharm.2012.06.005
  • 18. Andrews, S.N., Jeong, E., Prausnitz, M.R. (2013). Transdermal delivery of molecules is limited by full epidermis, not just stratum corneum. Pharm. Res. 30, 1099– 1109. https://doi.org/10.1007/s11095-012-0946-7
  • 19. Bolzinger, M.-A., Briançon, S., Pelletier, J., Chevalier, Y. (2012). Penetration of drugs through skin, a complex-rate controlling membrane. Curr. Opin. Colloid Interface Sci., 17, 156–165. https://doi.org/10.1016/j.cocis.2012.02.001
  • 20. Schaefer, U.F., Hansen, S., Schneider, M., Luengo Contreras, J., Lehr, C.M. (2008). Models for skin absorption and skin toxicity testing. In: Kim, K., Ehrhardt, K.-J. (Eds.), Drug Absorption Studies. Springer, New York, s. 3–33.
  • 21. Chittenden, J.T., Brooksm, J.D., Riviere, J.E. (2014). Development of a mixed-effect pharmacokinetic model for vehicle modulated in vitro transdermal flux of topically applied penetrants. J. Pharm. Sci., 103, 1002–1012. https://doi.org/10.1002/jps.23862
  • 22. Souto, E.B. (2005). SLN and NLC for Topical Delivery of Antifungals. Institut of Pharmacy, Freie Universität, Berlin, s. 21.
  • 23. Van Gele, M., Geusens, B., Brochez, L., Speeckaert, R., Lambert, J. (2011). Three-dimensional skin models as tools for transdermal drug delivery: challenges and limitations. Expert Opinion on Drug Delivery, 8(6), 705-720. https://doi.org/10.1517/17425247.2011.568937
  • 24. Oliveira, G., Beezer, A.E., Hadgraft, J., Lane, M.E. (2011). Alcohol enhanced permeation in model membranes. Part II. Thermodynamic analysis of membrane partitioning. Int. J. Pharm. 420, 216–222. https://doi.org/10.1016/j.ijpharm.2011.08.037
  • 25. Oliveira, G., Hadgraft, J., Lane, M. E. (2012). The influence of volatile solvents on transport across model membranes and human skin. Int. J. Pharm. 435(1), 38-49. https://doi.org/10.1016/j.ijpharm.2012.05.037
  • 26. de Jager, M., Groenink, W., Bielsa, I., Guivernau, R., Andersson, E., Angelova, N., Ponec, M., Bouwstra, J. (2006). A novel in vitro percutaneous penetration model: evaluation of barrier properties with p-aminobenzoic acid and two of its derivatives. Pharm. Res., 23, 951–960. https://doi.org/10.1007/s11095-006-9909-1
  • 27. Albery, W.J., Burke, J.F., Leffler, E.B., Hadgraft, J. (1976). Interfacial transfer studied with a rotating diffusion cell. J. Chem. Soc. Faraday Trans. 1 72, 1618–1626.
  • 28. Guy, R.H., Fleming, R. (1979). The estimation of diffusion coefficients using the rotating diffusion cell. Int. J. Pharm., 3, 143–149. https://doi.org/10.1016/0378-5173(79)90076-0
  • 29. Dias, M., Hadgraft, J., Lane, M.E. (2007). Influence of membrane-solvent-solute interactions on solute permeation in model membranes. Int. J. Pharm., 336 (1), 108–114. https://doi.org/10.1016/j.ijpharm.2006.11.054
  • 30. Santos, P., Machado, M., Watkinson, A.C., Hadgraft, J., Lane, M.E. (2009). The effect of drug concentration on solvent activity in silicone membranes. Int. J. Pharm., 377(1–2), 70–75. https://doi.org/10.1016/j.ijpharm.2009.05.002
  • 31. Oliveira, G., Hadgraft, J., Lane, M.E. (2012). The role of vehicle interactions on permeation of an active through model membranes and human skin. Int. J. Cosmet. Sci. 34, 536–545. https://doi.org/10.1111/j.1468-2494.2012.00753.x
  • 32. Loftsson, T., Konradsdottir, F., Masson, M. (2006). Development and evaluation of an artificial membrane for determination of drug availability. Int. J. Pharm. 326, 60–68. https://doi.org/10.1016/j.ijpharm.2006.07.009
  • 33. Oliveira, G., Beezer, A.E., Hadgraft, J., Lane, M.E. (2010). Alcohol enhanced permeation in model membranes. Part I. Thermodynamic and kinetic analyses of membrane permeation. Int. J. Pharm., 393, 61–67. https://doi.org/10.1016/j.ijpharm.2010.03.062
  • 34. Ottaviani, G., Martel, S., Carrupt, P.A. (2006). Parallel artificial membrane permeability assay: a new membrane for the fast prediction of passive human skin permeability. J. Med. Chem. 49, 3948–3954. https://doi.org/10.1021/jm060230
  • 35. Nakano, M., Patel, N. K. (1970). Release, uptake, and permeation behavior of salicylic acid in ointment bases. J. Pharm. Sci., 59(7), 985-988. https://doi.org/10.1002/jps.2600590714
  • 36. Watkinson, R.M., Guy, R.H., Hadgraft, J., Lane, M.E. (2009). Optimisation of cosolvent concentration for topical drug delivery II: influence of propylene glycol on ibuprofen permeation. Skin Pharmacol. Physiol., 22, 225–230. https://doi.org/10.1159/000231528
  • 37. Watkinson, R.M., Herkenne, C., Guy, R.H., Hadgraft, J., Oliveira, G., Lane, M.E. (2009). Influence of ethanol on the solubility, ionization and permeation characteristics of ibuprofen in silicone and human skin. Skin Pharmacol. Physiol., 22, 15–21. https://doi.org/10.1159/000183922
  • 38. Watkinson, R.M., Guy, R.H., Oliveira, G., Hadgraft, J., Lane, M.E., (2011). Optimisation of cosolvent concentration for topical drug delivery III – influence of lipophilic vehicles on ibuprofen permeation. Skin Pharmacol. Physiol., 24, 22–26. https://doi.org/10.1159/000315139
  • 39. Miki, R., Ichitsuka, Y., Yamada, T., Kimura, S., Egawa, Y., Seki, T., Juni, K., Ueda, H., Morimoto, Y., (2015). Development of a membrane impregnated with a poly(dimethylsiloxane)/poly(ethylene glycol) copolymer for a highthroughput screening of the permeability of drugs, cosmetics, and other chemicals across the human skin. Eur. J. Pharm. Sci. 66, 41–49. https://doi.org/10.1016/j.ejps.2014.09.024
  • 40. Joshi, V., Brewster, D., Colonero, P., (2012). Transdermal diffusion. In vitro diffusion studies in transdermal research: a synthetic membrane model in place of human skin. Drug Dev. Delivery, 12, 40–42.
  • 41. Merck. (2012). Millipore. Strat-MTM Membrane: A Synthetic Transdermal Diffusion Test Model. Millipore Corporation, Darmstadt, German. Erişim: http:// www.in-cosmetics.com/__novadocuments/61173?v=635459653141970000. Erişim Tarihi: 12.03.2021
  • 42. Haq, A., Goodyear, B., Ameen, D., Joshi, V., Michniak-Kohn, B. (2018). Strat-M® synthetic membrane: Permeability comparison to human cadaver skin. Int. J. Pharm., 547(1-2), 432-437. https://doi.org/10.1016/j.ijpharm.2018.06.012
  • 43. Kaur, L., Singh, K., Paul, S., Singh, S., Singh, S., Jain, S. K. (2018). A mechanistic study to determine the structural similarities between artificial membrane Strat-M™ and biological membranes and its application to carry out skin permeation study of amphotericin B nanoformulations. AAPS Pharmscitech, 19(4), 1606-1624. https://doi.org/10.1208/s12249-018-0959-6
  • 44. Simon, A., Amaro, M. I., Healy, A. M., Cabral, L. M., de Sousa, V. P. (2016). Comparative evaluation of rivastigmine permeation from a transdermal system in the Franz cell using synthetic membranes and pig ear skin with in vivo-in vitro correlation. Int. J. Pharm., 512(1), 234-241. https://doi.org/10.1016/j.ijpharm.2016.08.052
  • 45. Uchida, T., Kadhum, W. R., Kanai, S., Todo, H., Oshizaka, T., Sugibayashi, K. (2015). Prediction of skin permeation by chemical compounds using the artificial membrane, Strat-M™. Eur. J. Pharm. Sci., 67, 113-118. https://doi.org/10.1016/j.ejps.2014.11.002
  • 46. Kansy, M., Senner, F., Gubernator, K. (1998). Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. Journal of Medicinal Chemistry, 41(7), 1007-1010. https://doi.org/10.1021/jm970530e
  • 47. Faller, B. (2008). Artificial membrane assays to assess permeability. Current Drug Metabolism, 9(9), 886-892. https://doi.org/10.2174/138920008786485227
  • 48. Bujard, A., Sol, M., Carrupt, P.-A., Martel, S. (2014). Predicting both passive intestinal absorption and the dissociation constant toward albumin using the PAMPA technique. Eur. J. Pharm. Sci., 63, 36–44. https://doi.org/10.1016/j.ejps.2014.06.025
  • 49. Di, L., Kerns, E.H., Bezar, I.F., Petusky, S.L., Huang, Y. (2009). Comparison of blood–brain barrier permeability assays: in situ brain perfusion, MDR1-MDCKII and PAMPA-BBB. J. Pharm. Sci., 98, 1980–1991. https://doi.org/10.1002/jps.21580
  • 50. Sinko, B., Kokosi, J., Avdeef, A., Takacs-Novak, K. (2009). A PAMPA study of the permeability-enhancing effect of new ceramide analogues. Chem. Biodivers., 6, 1867–1874. https://doi.org/10.1002/cbdv.200900149
  • 51. Sinko, B., Garrigues, T.M., Balogh, G.T., Nagy, Z.K., Tsinman, O., Avdeef, A., Takacs- Novak, K. (2012). Skin-PAMPA: a new method for fast prediction of skin penetration. Eur. J. Pharm. Sci., 45, 698–707. https://doi.org/10.1016/j.ejps.2012.01.011
  • 52. Tsinman, K., Sinko, B. (2013). A high throughput method to predict skin penetration and screen topical formulations. Cosmet. Toiletries, 128, 192–199.
  • 53. Vizserálek, G., Berkó, S., Tóth, G., Balogh, R., Budai-Szűcs, M., Csányi, E., Sinkó, B., Takács-Novák, K. (2015). Permeability test for transdermal and local therapeutic patches using Skin PAMPA method. Eur. J. Pharm. Sci., 76, 165–172. https://doi.org/10.1016/j.ejps.2015.05.004
  • 54. Balazs, B., Vizserálek, G., Berkó, S., Budai-Szűcs, M., Kelemen, A., Sinkó, B., Takács- Novák, K., Szabó-Révész, P., Csányi, E. (2016). Investigation of the efficacy of transdermal penetration enhancers through the use of human skin and a skin mimic artificial membrane. J. Pharm. Sci., 105, 1134–1140. https://doi.org/10.1016/S0022-3549(15)00172-0
  • 55. Karadzovska, D., Riviere, J.E. (2013). Assessing vehicle effects on skin absorption using artificial membrane assays. Eur. J. Pharm. Sci., 50, 569–576. https://doi.org/10.1016/j.ijpharm.2018.06.012
  • 56. Zhang, Y., Lane, M. E., Hadgraft, J., Heinrich, M., Chen, T., Lian, G., & Sinko, B. (2019). A comparison of the in vitro permeation of niacinamide in mammalian skin and in the Parallel Artificial Membrane Permeation Assay (PAMPA) model. Int. J. Pharm., 556, 142-149. https://doi.org/10.1016/j.ijpharm.2018.11.065
  • 57. Kerns, E. H., Di, L., Petusky, S., Farris, M., Ley, R., Jupp, P. (2004). Combined application of parallel artificial membrane permeability assay and Caco-2 permeability assays in drug discovery. J. Pharm. Sci., 93(6), 1440-1453. https://doi.org/10.1002/jps.20075
  • 58. Avdeef, A. (2005). The rise of PAMPA. Expert Opinion on Drug Metabolism & Toxicology, 1(2), 325-342. https://doi.org/10.1517/17425255.1.2.325
  • 59. Flaten, G.E., Bunjes, H., Luthman, K., Brandl, M. (2006). Drug permeability across a phospholipid vesicle based barrier 2. Characterization of barrier structure, storage stability and stability towards pH changes. Eur. J. Pharm. Sci. 28, 336– 343. https://doi.org/10.1016/j.ejps.2006.03.008
  • 60. Flaten, G.E., Awoyemi, O., Luthman, K., Brandl, M., Massing, U. (2009). The Phospholipid Vesicle-based Permeability Assay: 5. Development Towards an Automated Procedure for High Throughput Permeability Screening. JALA, s. 12–21. https://doi.org/10.1016/j.jala.2008.04.002
  • 61. Engesland, A., Skar, M., Hansen, T., Škalko-Basnet, N., Flaten, G.E. (2013). New applications of phospholipid vesicle-based permeation assay: permeation model mimicking skin barrier. J. Pharm. Sci., 102, 1588–1600. https://doi.org/10.1002/jps.23509
  • 62. Palac, Z., Engesland, A., Flaten, G.E., Škalko-Basnet, N., Filipovic´- Grčić, J., Vanic´, Zˇ. (2014). Liposomes for (trans)dermal drug delivery: the skin-PVPA as a novel in vitro stratum corneum model in formulation development. J. Liposome Res., 24, 313–322. https://doi.org/10.3109/08982104.2014.899368
  • 63. Shakel, Z., Nunes, C., Lima, S. A. C., Reis, S. (2019). Development of a novel human stratum corneum model, as a tool in the optimization of drug formulations. Int. J. Pharm., 569, 118571. https://doi.org/10.1016/j.ijpharm.2019.118571
  • 64. Moniz, T., Lima, S. A. C., Reis, S. (2020). Application of the Human stratum corneum lipid-based mimetic model in assessment of drug-loaded nanoparticles for skin administration. Int. J. Pharm., 591, 119960. https://doi.org/10.1016/j.ijpharm.2020.119960
  • 65. Ma, M., Di, H. J., Zhang, H., Yao, J. H., Dong, J., Yan, G. J., Chen, J. (2017). Development of phospholipid vesicle-based permeation assay models capable of evaluating percutaneous penetration enhancing effect. Drug Dev. Ind. Pharm. 43 (12), 2055-2063. https://doi.org/10.1080/03639045.2017.1371730
  • 66. Engesland, A., Škalko-Basnet, N., Flaten, G.E. (2015). PVPA and EpiSkin® in assessment of drug therapies destined for skin administration. J. Pharm. Sci., 104 (3), 1119–1127. https://doi.org/10.1002/jps.24315
  • 67. Ponec, M. (1992). In vitro cultured human skin cells as alternatives to animals for skin irritancy screening. International Journal of Cosmetic Science, 14(6), 245-264. https://doi.org/10.1111/j.1467-2494.1992.tb00058.x
  • 68. Godin, B., Touitou, E. (2007). Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv. Drug Deliv. Rev. 59, 1152–1161. https://doi.org/10.1016/j.addr.2007.07.004
  • 69. Netzlaff, F., Lehr, C.-M., Wertz, P.W., Schaefer, U.F., (2005). The human epidermis models EpiSkin, SkinEthic and EpiDerm: an evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport. Eur. J. Pharm. Biopharm. 60, 167–178. https://doi.org/10.1016/j.ejpb.2005.03.004
  • 70. Ponec, M., Boelsma, E., Gibbs, S., Mommaas, M. (2002). Characterization of reconstructed skin models. Skin Pharmacology and Physiology, 15 (Suppl. 1), 4-17. https://doi.org/10.1159/000066682
  • 71. Episkin Laboratories. Erişim: https://www.episkin.com/SkinEthic-RHE Erişim Tarihi: 10.03.2021.
  • 72. MatTek Laboratories Erişim: https://www.mattek.com/products/epidermft/ Erişim Tarihi: 10.03.2021.
  • 73. Netzlaff, F., Schaefer, U.F., Lehr, C.-M., Meiers, P., Stahl, J., Kietzmann, M., Niedorf, F., (2006). Comparison of bovine udder skin with human and porcine skin in percutaneous permeation experiments. Altern. Lab. Anim. 34, 499–513.
  • 74. Schäfer-Korting M, Bock U, Diembeck W. (2008). The use of reconstructed human epidermis for skin absorption testing: results of the validation study. Altern Lab Anim., 36(2):161–187. https://doi.org/10.1177/026119290803600207
  • 75. Schäfer-Korting M, Bock U, Gamer A. (2006). Reconstructed human epidermis for skin absorption testing: results of the German prevalidation study. Altern. Lab. Anim., 34:283-94. https://doi.org/10.1177/026119290603400312
  • 76. Dreher, F., Fouchard, F., Patouillet, C., Andrian, M., Simonnet, J. T., & Benech-Kieffer, F. (2002). Comparison of cutaneous bioavailability of cosmetic preparations containing caffeine or α-tocopherol applied on human skin models or human skin ex vivo at finite doses. Skin Pharmacol. Physiol,, 15(Suppl. 1), 40-58. https://doi.org/10.1159/000066680
  • 77. Labouta, H.I., Thude, S., Schneider, M. (2013). Setup for investigating gold nanoparticle penetration through reconstructed skin and comparison to published human skin data. J. Biomed. Opt. 18, 061218. https://doi.org/10.1117/1.JBO.18.6.061218
  • 78. Lotte, C., Patouillet, C., Zanini, M., Messager, A., & Roguet, R. (2002). Permeation and skin absorption: reproducibility of various industrial reconstructed human skin models. Skin Pharmacology and Physiology, 15(Suppl. 1), 18-30. https://doi.org/10.1159/00006667
  • 79. Bando, H., Mohri, S., Yamashita, F., Takakura, Y., Hashida, M. (1997). Effects of skin metabolism on percutaneous penetration of lipophilic drugs. J. Pharm. Sci., 86(6), 759-761. https://doi.org/10.1021/js960408n
  • 80. Gysler, A., Kleuser, B., Sippl, W., Lange, K., Korting, H. C., Höltje, H. D., Schäfer-Korting, M. (1999). Skin penetration and metabolism of topical glucocorticoids in reconstructed epidermis and in excised human skin. Pharm. Res., 16(9), 1386-1391. https://doi.org/10.1023/a:1018946924585
  • 81. Mahmoud, A., Haberland, A., Dürrfeld, M., Heydeck, D., Wagner, S., Schäfer-Korting, M. (2005). Cutaneous estradiol permeation, penetration and metabolism in pig and man. Skin Pharmacology and Physiology, 18(1), 27-35. https://doi.org/10.1159/000081683
  • 82. Slivka, S. R. (1992). Testosterone metabolism in an in vitro skin model. Cell Biology and Toxicology, 8(4), 267-276. https://doi.org/10.1007/BF00156735.
  • 83. Planz, V., Lehr, C. M., & Windbergs, M. (2016). In vitro models for evaluating safety and efficacy of novel technologies for skin drug delivery. Journal of Controlled Release, 242, 89-104. https://doi.org/10.1016/j.jconrel.2016.09.002
  • 84. Ackermann, K., Borgia, S. L., Korting, H. C., Mewes, K. R., & Schäfer-Korting, M. (2010). The Phenion® full-thickness skin model for percutaneous absorption testing. Skin Pharmacol. Physiol,, 23(2), 105-112. https://doi.org/10.1159/000265681
  • 85. Henkel Laboratories Erişim: https://www.phenion.com/products/reconstructed-tissues Erişim Tarihi: 11.03.2021.
  • 86. De Wecer, B., Petersohn, D., Mewes, K. R. (2013). Overview of human three-dimensional (3D) skin models used for dermal toxicity assessment. HPC Today, 8, 18-22.
  • 87. Neupane, R., Boddu, S. H., Renukuntla, J., Babu, R. J., & Tiwari, A. K. (2020). Alternatives to biological skin in permeation studies. Current Trends and Possibilities. Pharmaceutics, 12(2), 152. https://doi.org/10.3390/pharmaceutics12020152
  • 88. Abd, E., Yousef, S. A., Pastore, M. N., Telaprolu, K., Mohammed, Y. H., Namjoshi, S., Roberts, M. S. (2016). Skin models for the testing of transdermal drugs. Clinical Pharmacology: Advances and Applications, 8, 163. https://doi.org/10.2147/CPAA.S64788
Toplam 88 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Eczacılık ve İlaç Bilimleri
Bölüm Derleme
Yazarlar

Ömer Yedikaya 0000-0001-5504-384X

Fahriye Ulya Badıllı 0000-0002-4539-0618

Yayımlanma Tarihi 27 Eylül 2021
Gönderilme Tarihi 29 Nisan 2021
Kabul Tarihi 3 Ağustos 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Yedikaya, Ö., & Badıllı, F. U. (2021). İN VİTRO DERİ MODELLERİ. Journal of Faculty of Pharmacy of Ankara University, 45(3), 699-721. https://doi.org/10.33483/jfpau.930099
AMA Yedikaya Ö, Badıllı FU. İN VİTRO DERİ MODELLERİ. Ankara Ecz. Fak. Derg. Eylül 2021;45(3):699-721. doi:10.33483/jfpau.930099
Chicago Yedikaya, Ömer, ve Fahriye Ulya Badıllı. “İN VİTRO DERİ MODELLERİ”. Journal of Faculty of Pharmacy of Ankara University 45, sy. 3 (Eylül 2021): 699-721. https://doi.org/10.33483/jfpau.930099.
EndNote Yedikaya Ö, Badıllı FU (01 Eylül 2021) İN VİTRO DERİ MODELLERİ. Journal of Faculty of Pharmacy of Ankara University 45 3 699–721.
IEEE Ö. Yedikaya ve F. U. Badıllı, “İN VİTRO DERİ MODELLERİ”, Ankara Ecz. Fak. Derg., c. 45, sy. 3, ss. 699–721, 2021, doi: 10.33483/jfpau.930099.
ISNAD Yedikaya, Ömer - Badıllı, Fahriye Ulya. “İN VİTRO DERİ MODELLERİ”. Journal of Faculty of Pharmacy of Ankara University 45/3 (Eylül 2021), 699-721. https://doi.org/10.33483/jfpau.930099.
JAMA Yedikaya Ö, Badıllı FU. İN VİTRO DERİ MODELLERİ. Ankara Ecz. Fak. Derg. 2021;45:699–721.
MLA Yedikaya, Ömer ve Fahriye Ulya Badıllı. “İN VİTRO DERİ MODELLERİ”. Journal of Faculty of Pharmacy of Ankara University, c. 45, sy. 3, 2021, ss. 699-21, doi:10.33483/jfpau.930099.
Vancouver Yedikaya Ö, Badıllı FU. İN VİTRO DERİ MODELLERİ. Ankara Ecz. Fak. Derg. 2021;45(3):699-721.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.