Araştırma Makalesi
BibTex RIS Kaynak Göster

SÜLFONAMİDOBENZOTİYAZOL TÜREVİ hGSTP1-1 İNHİBİTÖRLERİNİN TASARIMI

Yıl 2020, Cilt: 44 Sayı: 3, 388 - 396, 30.09.2020
https://doi.org/10.33483/jfpau.748521

Öz

Amaç: Glutatyon Transferazlar (GST), ekzojen ve endojen kaynaklı, elektrofilik ve hidrofobik bileşiklerin GSH ile konjugasyonunu katalizleyen Faz-II detoksifikasyon enzim ailesidir. GST izozimlerinden en önemlisi olan hGSTP1-1’in çok farklı insan kaynaklı tümörde fazla miktarda salgılandığı ve kanser tedavisinde çoklu ilaç direnç (MDR) gelişimine sebep olduğu bilinmektedir. Tüm bu nedenlerden dolayı son zamanlarda hGSTP1-1 enzimi kanser tedavisi için bir hedef haline gelmiştir. Bu çalışmanın amacı yeni hGSTP1-1 inhibitörleri tasarlamaktır. 
Gereç ve Yöntem: 5F-203 bileşiğinden hareketle, önilaç şeklinde etki gösterebileceği düşünülen bir seri sülfonamidobenzotiyazol türevi bileşik tasarlanmıştır. Bu bileşiklerin hGSTP1-1 enzimi ile etkileşimlerini incelemek üzere Schrodinger Maestro programı kullanılarak moleküler doking çalışmaları yapılmıştır.
Sonuç ve Tartışma: Bu çalışmada 5F-203 bileşiğinden hareketle, önilaç şeklinde etki gösterebileceği düşünülen bileşiklerin, GST enzimi aracılığıyla metabolizasyonu sırasında gerçekleşen hidrolizle 5F-203 ve türevi bileşikler açığa çıkararak antitümör özellik gösterebilecekleri düşünülmüştür. Tasarlanan bileşiklerin hGSTP1-1 enzimi ile etkileşimlerini incelemek üzere yapılan doking çalışmalarına göre bileşiklerin tamamının hGSTP1-1 enzimi ile kuvvetli etkileşimlerinin olduğu gözlenmiştir. Bileşiklerin tamamının hGSTP1-1 enzim inhibisyonu için önemli olan Arg13 ve Tyr7 ile hidrojen bağı ve Tyr108 ile pi-pi etkileşimleri gösterdiği belirlenmiştir. Bir sonraki basamak olarak bu bileşiklerin sentezi gerçekleştirilecek ve hGSTP1-1 enzimi üzerindeki etkileri deneysel olarak test edilecektir. Böylece yapı-etki ilişkileri tanımlanarak daha etkili yeni bileşiklerin tasarlanması ve böylece direnç mekanizması inhibe edilerek antikanser ilaçların etkinliğinin artırılması söz konusu olabilecektir.

Destekleyen Kurum

Ankara Üniversitesi Bilimsel Araştırma Projeleri

Proje Numarası

18H0237002

Teşekkür

Bu çalışma, Ankara Üniversitesi Bilimsel Araştırma Projeleri (Proje No: 18H0237002) tarafından desteklenmiştir.

Kaynakça

  • 1. Townsend, D.M., Tew, K.D. (2003). The role of glutathione S-transferase in anti-cancer drug resistance. Oncogene, 22(47), 7369-7375.
  • 2. Adler, V., Yin, Z., Fuchs, S.Y., Benerza, M., Rosario, L., Tew, K.D., Pincus, M.R., Sardana, M., Henderson, C.J., Wolf, C.R., Davis, R.J., Ronai, Z. (1999). Regulation of JNK signaling by GSTp. EMBO J, 18(5), 1321-1334.
  • 3. Armstrong, R.N. (1987). Enzyme-catalyzed Detoxication Reactions: Mechanisms and Stereochemistry. Crit. Rev. Biochem. Mol. Biol., 22(1), 39-88.
  • 4. Bolelli, K., Musdal, Y., Aki-Yalcin, E., Mannervik, B., Yalcin, I. (2017). Synthesis and activity mechanism of some novel 2-substituted benzothiazoles as hGSTP1-1 enzyme inhibitors. SAR QSAR Environ. Res., 28(11), 927-940.
  • 5. Jakobsson, P.J., Morgenstern, R., Mancini, J., Ford-Hutchinson, A., Persson, B. (1999). Common structural features of MAPEG-a widespread super family of associated proteins with highly divergent functions in eicosanoid and glutathione metabolism. Protein Sci., 8, 689-692.
  • 6. Mathew, N., Kalyanasundaram, M., Balaraman, K. (2006). Glutathione S-transferase (GST) inhibitors. Exp. Opin. Ther. Pat., 16(4), 431-444.
  • 7. Armstrong, R.N. (1997). Structure, Catalytic Mechanism, and Evolution of the Glutathione Transferases. Chem. Res. Toxiol., 10(1), 2-18.
  • 8. Raghunathan, S., Chandross, R.J., Kretsinger, R.H., Allison, T.J., Penington C.J., Rule, G.S. (1994). Crystal structure of human class mu glutathione transferase GSTM2-2. Effects of lattice packing on conformational heterogeneity. J. Mol. Biol., 238(5), 815-832.
  • 9. Reinemer, P., Dirr, H.W., Ladenstein, R., Schaffer, J., Gallay, O., Huber, R. (1991). The three-dimensional structure of class pi glutathione S-transferase in complex with glutathione sulfonate at 2.3 A resolution. EMBO J., 10(8), 1997-2005.
  • 10. Sinning, I., Kleywegt, G.J., Cowan, S.W., Reinemer, P., Dirr, H.W., Huber, R., Gilliland, G.L., Armstrong, R.N., Ji, X., Board, P.G. (1993) Structure determination and refinement of human alpha class glutathione transferase A1-1, and a comparison with the Mu and Pi class enzymes. J. Mol. Biol., 232(1), 192-212.
  • 11. Oakley, A. (2011). Glutathione transferases: a structural perspective. Drug Metab. Rev., 43(2), 138-151.
  • 12. Tew, K.D., Bomber, A.M., Hoffman, S.J. (1988). Ethacrynic acid and piriprost as enhancers of cytotoxicity in drug resistant and sensitive cell lines. Cancer Res., 48(13), 3622-3625.
  • 13. Tozkoparan, B., Aytaç, S.P. (2007). Kanser kemoterapisinde terapötik hedef olarak glutatyon S-transferazlar. Hacettepe Üniv. Ecz. Fak. Derg., 27(2), 139-164.
  • 14. Wang, Z., Jin, L., Wegrzyn, G., Wegrzyn, A. (2009). A novel method for screening the glutathione transferase inhibitors. BMC Biochemistry, 10(6), 1-11.
  • 15. Chen, C., Wu, C., LU, X., Yan, Z., Gao, J., Zhao, H., Li, S. (2013). Coniferyl Ferulate, a Strong Inhibitor of Glutathione S-Transferase Isolated from Radix Angelicae sinensis, Reverses Multidrug Resistance and Downregulates P-Glycoprotein. Hindawi Publ Corp, 639083, 1-10.
  • 16. Oakley, A.J., Lo Bello, M., Mazzetti, A.P., Federici, G., Parker, M.W. (1997). The glutathione conjugate of etharynic acid can bind to human pi class glutathione transferase P1-1 in two different modes. FEBS Letters, 419, 32-36.
  • 17. Zhao, Z., Koeplinger, K.A., Peterson, T., Conradi, R.A., Burton, P.S., Suarato, A., Heinrikson, R.L., Tomasselli, A.G. (2009). Mechanism, Structure-Activity Studies, and Potential Applications of Glutathione S-Transferase-catalyzed Cleavage of Sulfonamides. Drug Metab Dispos, 27(9), 992-998.
  • 18. Trapani, V., Patel, V., Leong, C.-O., Ciolino, H.P., Yeh, G.C., Hose, C., Trepel, J.B., Stevens, M.F.G., Sausville, E.A., Loaiza-Perez, A.I. (2003). DNA damage and cell cycle arrest induced by 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203, NSC 703786) is attenuated in aryl hydrocarbon receptor deficient MCF-7 cells. British Journal of Cancer, 88, 599–605.
  • 19. Ertan-Bolelli, T., Musdal, Y., Bolelli, K., Yılmaz, S., Aksoy, Y., Yıldız, I., Akı-Yalcın, E., Yalcın, I. (2014). Synthesis, Biological Evaluation of 2-Substituted-5-(4-nitrophenylsulfonamido) benzoxazoles as Human GST P1-1 Inhibitors and Description of the Binding Site Features, ChemMedChem, 9(5-SI), 984-992.
  • 20. Chikhi, A., Bensegueni, A. (2008). Comparative study of the efficiency of three protein-ligand docking programs. J. Proteomics Bioinf., 1(3), 161-165.
  • 21. Schneider, G., Böhm H. J. (2002). Virtual screening and fast automated docking methods. Drug Discovery Today, 7(1), 64-70.
  • 22. Toledo-Sherman, L. M., Chen, D. (2002). High-throughput virtual screening for drug discovery in parallel. Curr. Opin. Drug Discovery Dev., 5(3), 414–421.
  • 23. Lengauer, T., Rarey, M. (1996). Computational methods for biomolecular docking, Curr. Opin. Struct. Biol., 6(3), 402–406.
  • 24. Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., Shenkin, P. S. (2004). Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy, J. Med. Chem., 47(7), 1739-1749.
  • 25. Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., Banks, J. L. (2004). Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening, J. Med. Chem., 47(7), 1750-1759.

DESIGN OF SULFONAMIDOBENZOTHIAZOLE DERIVATIVES AS hGSTP1-1 INHIBITORS

Yıl 2020, Cilt: 44 Sayı: 3, 388 - 396, 30.09.2020
https://doi.org/10.33483/jfpau.748521

Öz

Objective: The glutathione transferases (GSTs) are a family of widely distributed Phase II detoxification enzymes that catalyse the conjugation of exogenius and endogenius electrophilic and hydrophobic compounds. GSTP1-1 is frequently overexpressed in rat and human tumours. It is suggested that overexpression of hGSTP1-1 by human tumor cells may play a role in multi drug resistance (MDR) to cancer chemotherapy. Hence, hGSTP1-1 can be a promising target for cancer treatment. The aim of this study is to design new hGSTP1-1 inhibitors.
Material and Method: a series of sulfonamidobenzothiazole derivatives which are thought to act as prodrug have been designed based on the 5F-203 compound. To examine the interactions of these compounds with the hGSTP1-1 enzyme, molecular docking studies were carried out, by using the Schrodinger Maestro Software.
Result and Discussion: In this study, considering the compound 5F-203, it is thought that the compounds thought to be effective in the form of prodrugs may exhibit antitumor properties by releasing 5F-203 and its derivative compounds by hydrolysis during metabolism by GST enzyme. It has been observed that all of the compounds have strong interactions with the enzyme hGSTP1-1, according to the doking studies conducted to examine the interactions of the designed compounds with the enzyme hGSTP1-1. It was determined that all of the compounds showed hydrogen bonding with Arg13 and Tyr7, which are important for hGSTP1-1 enzyme inhibition, and pi-pi interactions with Tyr108. As a next step, the synthesis of these compounds will be carried out and their effects on the enzyme hGSTP1-1 will be tested experimentally. Thus, by defining structure-activity relationships, it can be possible to design more effective new compounds and increase the effectiveness of anticancer drugs by inhibiting the resistance mechanism.

Proje Numarası

18H0237002

Kaynakça

  • 1. Townsend, D.M., Tew, K.D. (2003). The role of glutathione S-transferase in anti-cancer drug resistance. Oncogene, 22(47), 7369-7375.
  • 2. Adler, V., Yin, Z., Fuchs, S.Y., Benerza, M., Rosario, L., Tew, K.D., Pincus, M.R., Sardana, M., Henderson, C.J., Wolf, C.R., Davis, R.J., Ronai, Z. (1999). Regulation of JNK signaling by GSTp. EMBO J, 18(5), 1321-1334.
  • 3. Armstrong, R.N. (1987). Enzyme-catalyzed Detoxication Reactions: Mechanisms and Stereochemistry. Crit. Rev. Biochem. Mol. Biol., 22(1), 39-88.
  • 4. Bolelli, K., Musdal, Y., Aki-Yalcin, E., Mannervik, B., Yalcin, I. (2017). Synthesis and activity mechanism of some novel 2-substituted benzothiazoles as hGSTP1-1 enzyme inhibitors. SAR QSAR Environ. Res., 28(11), 927-940.
  • 5. Jakobsson, P.J., Morgenstern, R., Mancini, J., Ford-Hutchinson, A., Persson, B. (1999). Common structural features of MAPEG-a widespread super family of associated proteins with highly divergent functions in eicosanoid and glutathione metabolism. Protein Sci., 8, 689-692.
  • 6. Mathew, N., Kalyanasundaram, M., Balaraman, K. (2006). Glutathione S-transferase (GST) inhibitors. Exp. Opin. Ther. Pat., 16(4), 431-444.
  • 7. Armstrong, R.N. (1997). Structure, Catalytic Mechanism, and Evolution of the Glutathione Transferases. Chem. Res. Toxiol., 10(1), 2-18.
  • 8. Raghunathan, S., Chandross, R.J., Kretsinger, R.H., Allison, T.J., Penington C.J., Rule, G.S. (1994). Crystal structure of human class mu glutathione transferase GSTM2-2. Effects of lattice packing on conformational heterogeneity. J. Mol. Biol., 238(5), 815-832.
  • 9. Reinemer, P., Dirr, H.W., Ladenstein, R., Schaffer, J., Gallay, O., Huber, R. (1991). The three-dimensional structure of class pi glutathione S-transferase in complex with glutathione sulfonate at 2.3 A resolution. EMBO J., 10(8), 1997-2005.
  • 10. Sinning, I., Kleywegt, G.J., Cowan, S.W., Reinemer, P., Dirr, H.W., Huber, R., Gilliland, G.L., Armstrong, R.N., Ji, X., Board, P.G. (1993) Structure determination and refinement of human alpha class glutathione transferase A1-1, and a comparison with the Mu and Pi class enzymes. J. Mol. Biol., 232(1), 192-212.
  • 11. Oakley, A. (2011). Glutathione transferases: a structural perspective. Drug Metab. Rev., 43(2), 138-151.
  • 12. Tew, K.D., Bomber, A.M., Hoffman, S.J. (1988). Ethacrynic acid and piriprost as enhancers of cytotoxicity in drug resistant and sensitive cell lines. Cancer Res., 48(13), 3622-3625.
  • 13. Tozkoparan, B., Aytaç, S.P. (2007). Kanser kemoterapisinde terapötik hedef olarak glutatyon S-transferazlar. Hacettepe Üniv. Ecz. Fak. Derg., 27(2), 139-164.
  • 14. Wang, Z., Jin, L., Wegrzyn, G., Wegrzyn, A. (2009). A novel method for screening the glutathione transferase inhibitors. BMC Biochemistry, 10(6), 1-11.
  • 15. Chen, C., Wu, C., LU, X., Yan, Z., Gao, J., Zhao, H., Li, S. (2013). Coniferyl Ferulate, a Strong Inhibitor of Glutathione S-Transferase Isolated from Radix Angelicae sinensis, Reverses Multidrug Resistance and Downregulates P-Glycoprotein. Hindawi Publ Corp, 639083, 1-10.
  • 16. Oakley, A.J., Lo Bello, M., Mazzetti, A.P., Federici, G., Parker, M.W. (1997). The glutathione conjugate of etharynic acid can bind to human pi class glutathione transferase P1-1 in two different modes. FEBS Letters, 419, 32-36.
  • 17. Zhao, Z., Koeplinger, K.A., Peterson, T., Conradi, R.A., Burton, P.S., Suarato, A., Heinrikson, R.L., Tomasselli, A.G. (2009). Mechanism, Structure-Activity Studies, and Potential Applications of Glutathione S-Transferase-catalyzed Cleavage of Sulfonamides. Drug Metab Dispos, 27(9), 992-998.
  • 18. Trapani, V., Patel, V., Leong, C.-O., Ciolino, H.P., Yeh, G.C., Hose, C., Trepel, J.B., Stevens, M.F.G., Sausville, E.A., Loaiza-Perez, A.I. (2003). DNA damage and cell cycle arrest induced by 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203, NSC 703786) is attenuated in aryl hydrocarbon receptor deficient MCF-7 cells. British Journal of Cancer, 88, 599–605.
  • 19. Ertan-Bolelli, T., Musdal, Y., Bolelli, K., Yılmaz, S., Aksoy, Y., Yıldız, I., Akı-Yalcın, E., Yalcın, I. (2014). Synthesis, Biological Evaluation of 2-Substituted-5-(4-nitrophenylsulfonamido) benzoxazoles as Human GST P1-1 Inhibitors and Description of the Binding Site Features, ChemMedChem, 9(5-SI), 984-992.
  • 20. Chikhi, A., Bensegueni, A. (2008). Comparative study of the efficiency of three protein-ligand docking programs. J. Proteomics Bioinf., 1(3), 161-165.
  • 21. Schneider, G., Böhm H. J. (2002). Virtual screening and fast automated docking methods. Drug Discovery Today, 7(1), 64-70.
  • 22. Toledo-Sherman, L. M., Chen, D. (2002). High-throughput virtual screening for drug discovery in parallel. Curr. Opin. Drug Discovery Dev., 5(3), 414–421.
  • 23. Lengauer, T., Rarey, M. (1996). Computational methods for biomolecular docking, Curr. Opin. Struct. Biol., 6(3), 402–406.
  • 24. Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., Shenkin, P. S. (2004). Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy, J. Med. Chem., 47(7), 1739-1749.
  • 25. Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., Banks, J. L. (2004). Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening, J. Med. Chem., 47(7), 1750-1759.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Eczacılık ve İlaç Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Kayhan Bolelli 0000-0002-2179-997X

Proje Numarası 18H0237002
Yayımlanma Tarihi 30 Eylül 2020
Gönderilme Tarihi 5 Haziran 2020
Kabul Tarihi 21 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 44 Sayı: 3

Kaynak Göster

APA Bolelli, K. (2020). SÜLFONAMİDOBENZOTİYAZOL TÜREVİ hGSTP1-1 İNHİBİTÖRLERİNİN TASARIMI. Journal of Faculty of Pharmacy of Ankara University, 44(3), 388-396. https://doi.org/10.33483/jfpau.748521
AMA Bolelli K. SÜLFONAMİDOBENZOTİYAZOL TÜREVİ hGSTP1-1 İNHİBİTÖRLERİNİN TASARIMI. Ankara Ecz. Fak. Derg. Eylül 2020;44(3):388-396. doi:10.33483/jfpau.748521
Chicago Bolelli, Kayhan. “SÜLFONAMİDOBENZOTİYAZOL TÜREVİ HGSTP1-1 İNHİBİTÖRLERİNİN TASARIMI”. Journal of Faculty of Pharmacy of Ankara University 44, sy. 3 (Eylül 2020): 388-96. https://doi.org/10.33483/jfpau.748521.
EndNote Bolelli K (01 Eylül 2020) SÜLFONAMİDOBENZOTİYAZOL TÜREVİ hGSTP1-1 İNHİBİTÖRLERİNİN TASARIMI. Journal of Faculty of Pharmacy of Ankara University 44 3 388–396.
IEEE K. Bolelli, “SÜLFONAMİDOBENZOTİYAZOL TÜREVİ hGSTP1-1 İNHİBİTÖRLERİNİN TASARIMI”, Ankara Ecz. Fak. Derg., c. 44, sy. 3, ss. 388–396, 2020, doi: 10.33483/jfpau.748521.
ISNAD Bolelli, Kayhan. “SÜLFONAMİDOBENZOTİYAZOL TÜREVİ HGSTP1-1 İNHİBİTÖRLERİNİN TASARIMI”. Journal of Faculty of Pharmacy of Ankara University 44/3 (Eylül 2020), 388-396. https://doi.org/10.33483/jfpau.748521.
JAMA Bolelli K. SÜLFONAMİDOBENZOTİYAZOL TÜREVİ hGSTP1-1 İNHİBİTÖRLERİNİN TASARIMI. Ankara Ecz. Fak. Derg. 2020;44:388–396.
MLA Bolelli, Kayhan. “SÜLFONAMİDOBENZOTİYAZOL TÜREVİ HGSTP1-1 İNHİBİTÖRLERİNİN TASARIMI”. Journal of Faculty of Pharmacy of Ankara University, c. 44, sy. 3, 2020, ss. 388-96, doi:10.33483/jfpau.748521.
Vancouver Bolelli K. SÜLFONAMİDOBENZOTİYAZOL TÜREVİ hGSTP1-1 İNHİBİTÖRLERİNİN TASARIMI. Ankara Ecz. Fak. Derg. 2020;44(3):388-96.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.