Derleme
BibTex RIS Kaynak Göster

MANTARLARIN BİYOLOJİK AKTİVİTELERİ İLE İLGİLİ İN VİTRO, İN VİVO VE KLİNİK DEĞERLENDİRMELER

Yıl 2021, Cilt: 45 Sayı: 2, 344 - 378, 31.05.2021
https://doi.org/10.33483/jfpau.779015

Öz

Amaç: Mantarlar yüzyıllardan beri Uzakdoğu başta olmak üzere tüm dünyada gıda ve tıbbi amaçlı olarak kullanılmaktadır. Dünya genelinde kardiyovasküler hastalıklar, diyabet, kanser, obezite gibi hastalıkların hızla artması ve buna bağlı olarak tedavi ve bakım maliyetlerindeki artışlar, hem araştırıcılar hem de halk arasında alternatif tedavi yöntemlerine olan ilgiyi artmıştır.
Sonuç ve Tartışma: In vitro ve in vivo analizler ile klinik çalışmalar, başta Pleurotus spp, Lentinula edodes, Ganoderma lucidum, Grifolia frondosa gibi türler olmak üzere birçok mantar türünün yüzyıllardan beri süregelen geleneksel kullanımlarının doğruluğunu kanıtlamakta ve mantarlardan elde edilen ana biyoaktif bileşiklerin çeşitli hastalıkların önlenmesinde ve tedavisinde bir potansiyele sahip olduklarını göstermektedir. Bu derlemede mantarların, günümüzde sık rastlanan kanser, kardiyovasküler hastalıklar, diyabet gibi hastalıkların önlenmesi ve tedavisindeki potansiyellerini değerlendirmek amacıyla antitümör, antioksidan, antimikrobiyal, kolesterol düşürücü ve kan şekerini düzenleyici etkileri ile ilgili güncel in vitro, in vivo ve klinik çalışmalar derlenmiştir.

Kaynakça

  • Referans1 Miles, P.G., Chang, S.T. (2004). Mushrooms: cultivation, nutritional value, medicinal effect, and environmental impact. CRC press.
  • Referans2 FAO, Food and Agriculture Organization of the United Nations. 2018. http://www.fao.org/home/en.
  • Referans3 Dembitsky, V.M., Terent'ev, A.O., Levitsky, D.O. (2010). Amino and fatty acids of wild edible mushrooms of the genus Boletus. Records of Natural Products, 4(4), 218.
  • Referans4 Sevindik, M. (2018). Investigation of oxidant and antioxidant status of edible mushroom Clavariadelphus truncatus. Mantar Dergisi/The Journal of Fungus, 9(2)165-168.
  • Referans5 Reis, F.S., Martins, A., Barros, L., Ferreira, I.C. (2012). Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: A comparative study between in vivo and in vitro samples. Food and Chemical Toxicology, 50(5), 1201-1207.
  • Referans6 Ghahremani-Majd, H., Dashti, F. (2015). Chemical composition and antioxidant properties of cultivated button mushrooms (Agaricus bisporus). Horticulture, Environment, and Biotechnology, 56(3), 376-382.
  • Referans7 Manzi, P., Aguzzi, A., Pizzoferrato, L. (2001). Nutritional value of mushrooms widely consumed in Italy. Food chemistry, 73(3), 321-325.
  • Referans8 Salmones W. (2017). Medicinal Properties and Clinical Effects of Medicinal Mushrooms Zied D.C ve Pardo-Giménez A. (Eds.), Edible and Medicinal Mushrooms: Technology and Applications, Wiley Blackwell, İngiltere (2017).
  • Referans9 CFR Ferreira, I., A Vaz, J., Vasconcelos, M. H., Martins, A. (2010). Compounds from wild mushrooms with antitumor potential. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 10(5), 424-436.
  • Referans10 Ferreira, I. C., Heleno, S. A., Reis, F. S., Stojkovic, D., Queiroz, M. J. R., Vasconcelos, M. H., Sokovic, M. (2015). Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochemistry, 114, 38-55.
  • Referans11 Wang, Q., Wang, F., Xu, Z., & Ding, Z. (2017). Bioactive mushroom polysaccharides: a review on monosaccharide composition, biosynthesis and regulation. Molecules, 22(6), 955.
  • Referans12 Aleem, E. (2013). β-Glucans and their applications in cancer therapy: focus on human studies. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 13(5), 709-719.
  • Referans13 Wang, Y., Liu, Y., Yu, H., Zhou, S., Zhang, Z., Wu, D., Zhang, J. (2017). Structural characterization and immuno-enhancing activity of a highly branched water-soluble β-glucan from the spores of Ganoderma lucidum. Carbohydrate polymers, 167, 337-344.
  • Referans14 Ramberg, J. E., Nelson, E. D., Sinnott, R. A. (2010). Immunomodulatory dietary polysaccharides: a systematic review of the literature. Nutrition journal, 9(1), 54.
  • Referans15 Amdekar, S. (2016). Ganoderma lucidum (Reishi): source of pharmacologically active compounds. Current Science, 111(6), 976.
  • Referans16 Khatian, N., Aslam, M. (2018). A review of Ganoderma lucidum (Reishi): A miraculous medicinal mushroom. Inventi Rapid: Ethnopharmacology, 4, 1-6.
  • Referans17 Loyd, A. L., Richter, B. S., Jusino, M. A., Truong, C., Smith, M. E., Blanchette, R. A., Smith, J. A. (2018). Identifying the “mushroom of immortality”: assessing the Ganoderma species composition in commercial Reishi products. Frontiers in Microbiology, 9, 1557.
  • Referans18 Nandi, S., Sikder, R., Acharya, K. (2019). Secondary Metabolites of Mushrooms: A Potential Source for Anticancer Therapeutics with Translational Opportunities. In Advancing Frontiers in Mycology & Mycotechnology (pp. 563-598). Springer, Singapore.
  • Referans19 Qi, F., Zhao, L., Zhou, A., Zhang, B., Li, A., Wang, Z., Han, J. (2015). The advantages of using traditional Chinese medicine as an adjunctive therapy in the whole course of cancer treatment instead of only terminal stage of cancer. Bioscience trends, 9(1), 16-34.
  • Referans20 Lee, H. H., Lee, S., Lee, K., Shin, Y. S., Kang, H., Cho, H. (2015). Anti-cancer effect of Cordyceps militaris in human colorectal carcinoma RKO cells via cell cycle arrest and mitochondrial apoptosis. DARU Journal of Pharmaceutical Sciences, 23(1), 35.
  • Referans21 Wada, T., Sumardika, I. W., Saito, S., Ruma, I. M. W., Kondo, E., Shibukawa, M., Sakaguchi, M. (2017). Identification of a novel component leading to anti-tumor activity besides the major ingredient cordycepin in Cordyceps militaris extract. Journal of Chromatography B, 1061, 209-219.
  • Referans22 Tomonobu, N., Komalasari, N. L. G. Y., Sumardika, I. W., Jiang, F., Chen, Y., Yamamoto, K. I., Sakaguchi, M. (2020). Xylitol acts as an anticancer monosaccharide to induce selective cancer death via regulation of the glutathione level. Chemico-Biological Interactions, 109085.
  • Referans23 Huo, X., Liu, C., Bai, X., Li, W., Li, J., Hu, X., Cao, L. (2017). Aqueous extract of Cordyceps sinensis potentiates the antitumor effect of DDP and attenuates therapy-associated toxicity in non-small cell lung cancer via IκBα/NFκB and AKT/MMP2/MMP9 pathways. Rsc Advances, 7(60), 37743-37754.
  • Referans24 Jin, Y., Meng, X., Qiu, Z., Su, Y., Yu, P., Qu, P. (2018). Anti-tumor and anti-metastatic roles of cordycepin, one bioactive compound of Cordyceps militaris. Saudi journal of biological sciences, 25(5), 991-995.
  • Referans25 Xu, Z., Chen, X., Zhong, Z., Chen, L., Wang, Y. (2011). Ganoderma lucidum polysaccharides: immunomodulation and potential anti-tumor activities. The American journal of Chinese medicine, 39(01), 15-27.
  • Referans26 Qu, L., Li, S., Zhuo, Y., Chen, J., Qin, X., Guo, G. (2017). Anticancer effect of triterpenes from Ganoderma lucidum in human prostate cancer cells. Oncology letters, 14(6), 7467-7472.
  • Referans27 Wu, K., Na, K., Chen, D., Wang, Y., Pan, H., Wang, X. (2018). Effects of non-steroidal anti-inflammatory drug-activated gene-1 on Ganoderma lucidum polysaccharides-induced apoptosis of human prostate cancer PC-3 cells. International journal of oncology, 53(6), 2356-2368.
  • Referans28 Sohretoglu, D., Huang, S. (2018). Ganoderma lucidum polysaccharides as an anti-cancer agent. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 18(5), 667-674.
  • Referans29 Wang, X., Sun, D., Tai, J., Wang, L. (2017). Ganoderic acid A inhibits proliferation and invasion, and promotes apoptosis in human hepatocellular carcinoma cells. Molecular medicine reports, 16(4), 3894-3900.
  • Referans30 Zhao, R. L., He, Y. M. (2018). Network pharmacology analysis of the anti-cancer pharmacological mechanisms of Ganoderma lucidum extract with experimental support using Hepa1-6-bearing C57 BL/6 mice. Journal of ethnopharmacology, 210, 287-295.
  • Referans31 Martínez-Montemayor, M. M., Ling, T., Suárez-Arroyo, I. J., Ortiz-Soto, G., Santiago-Negrón, C. L., Lacourt-Ventura, M. Y., Rivas, F. (2019). Identification of biologically active Ganoderma lucidum compounds and synthesis of improved derivatives that confer anticancer activities in vitro. Frontiers in pharmacology, 10, 115.
  • Referans32 Lavi, I., Friesem, D., Geresh, S., Hadar, Y., Schwartz, B. (2006). An aqueous polysaccharide extract from the edible mushroom Pleurotus ostreatus induces anti-proliferative and pro-apoptotic effects on HT-29 colon cancer cells. Cancer letters, 244(1), 61-70.
  • Referans33 Gu, Y. H., Sivam, G. (2006). Cytotoxic effect of oyster mushroom Pleurotus ostreatus on human androgen-independent prostate cancer PC-3 cells. Journal of medicinal food, 9(2), 196-204.
  • Referans34 Martin, K. R., Brophy, S. K. (2010). Commonly consumed and specialty dietary mushrooms reduce cellular proliferation in MCF-7 human breast cancer cells. Experimental biology and medicine, 235(11), 1306-1314.
  • Referans35 Tong, H., Xia, F., Feng, K., Sun, G., Gao, X., Sun, L., Sun, X. (2009). Structural characterization and in vitro antitumor activity of a novel polysaccharide isolated from the fruiting bodies of Pleurotus ostreatus. Bioresource Technology, 100(4), 1682-1686.
  • Referans36 Hassan, M.A.A., Rouf, R., Tiralongo, E., May, T. W., Tiralongo, J. (2015). Mushroom lectins: specificity, structure and bioactivity relevant to human disease. International journal of molecular sciences, 16(4), 7802-7838.
  • Referans37 Sałata, A., Lemieszek, M., Parzymies, M. (2018). The nutritional and health properties of an oyster mushroom (Pleurotus ostreatus (Jacq. Fr) P. Kumm.). Acta Sci. Pol. Hortorum Cultus, 17, 185-197.
  • Referans38 Refaie, F. M., Esmat, A. Y., Daba, A. S., Osman, W. M., Taha, S. M. (2010). Hepatoprotective activity of polysaccharopeptides from Pleurotus ostreatus mycelium on thioacetamide-intoxicated mice. Micologia Aplicada International, 22(1), 1-13.
  • Referans39 Wu, X., Zheng, S., Cui, L., Wang, H., & Ng, T. B. (2010). Isolation and characterization of a novel ribonuclease from the pink oyster mushroom Pleurotus djamor. The Journal of general and applied microbiology, 56(3), 231-239.
  • Referans40 Jing, X., Mao, D., Geng, L., Xu, C. (2013). Medium optimization, molecular characterization, and bioactivity of exopolysaccharides from Pleurotus eryngii. Archives of microbiology, 195(10-11), 749-757.
  • Referans41 Ma, G., Yang, W., Mariga, A. M., Fang, Y., Ma, N., Pei, F., Hu, Q. (2014). Purification, characterization and antitumor activity of polysaccharides from Pleurotus eryngii residue. Carbohydrate Polymers, 114, 297-305.
  • Referans42 Wu, J. Y., Chen, C. H., Chang, W. H., Chung, K. T., Liu, Y. W., Lu, F. J., Chen, C. H. (2011). Anti-cancer effects of protein extracts from Calvatia lilacina, Pleurotus ostreatus and Volvariella volvacea. Evidence-Based Complementary and Alternative Medicine, 2011.
  • Referans43 Wiater, A., Paduch, R., Pleszczyńska, M., Próchniak, K., Choma, A., Kandefer-Szerszeń, M., Szczodrak, J. (2011). α-(1→ 3)-d-Glucans from fruiting bodies of selected macromycetes fungi and the biological activity of their carboxymethylated products. Biotechnology letters, 33(4), 787-795.
  • Referans44 Wiater, A., Paduch, R., Choma, A., Sylwia, S., Pleszczynska, M., Tomczyk, M., Janusz, S. (2015). (1→ 3)-α-D-Glucans from Aspergillus spp.: Structural Characterization and Biological Study on their Carboxymethylated Derivatives. Current drug targets, 16(13), 1488-1494.
  • Referans45 Sharif, S., Atta, A., Huma, T., Shah, A. A., Afzal, G., Rashid, S., Mustafa, G. (2018). Anticancer, antithrombotic, antityrosinase, and anti‐α‐glucosidase activities of selected wild and commercial mushrooms from Pakistan. Food Science & Nutrition, 6(8), 2170-2176.
  • Referans46 Facchini, J. M., Alves, E. P., Aguilera, C., Gern, R. M. M., Silveira, M. L. L., Wisbeck, E., Furlan, S. A. (2014). Antitumor activity of Pleurotus ostreatus polysaccharide fractions on Ehrlich tumor and Sarcoma 180. International journal of biological macromolecules, 68, 72-77.
  • Referans47 Zhang, Y., Li, Q., Shu, Y., Wang, H., Zheng, Z., Wang, J., & Wang, K. (2015). Induction of apoptosis in S180 tumour bearing mice by polysaccharide from Lentinus edodes via mitochondria apoptotic pathway. Journal of Functional Foods, 15, 151-159.
  • Referans48 Finimundy, T. C., Scola, G., Scariot, F. J., Dillon, A. J., Moura, S., Echeverrigaray, S., Roesch-Ely, M. (2018). Extrinsic and intrinsic apoptotic responses induced by shiitake culinary-medicinal mushroom Lentinus edodes (Agaricomycetes) aqueous extract against a larynx carcinoma cell line. International journal of medicinal mushrooms, 20(1).
  • Referans49 Zhang, Y., Ma, G., Fang, L., Wang, L., Xie, J. (2014). The Immunostimulatory and Anti-tumor Activities of Polysaccharide fromAgaricus bisporus (brown). Journal of Food and Nutrition Research, 2(3), 122-126.
  • Referans50 Smiderle, F. R., Ruthes, A. C., van Arkel, J., Chanput, W., Iacomini, M., Wichers, H. J., Van Griensven, L. J. (2011). Polysaccharides from Agaricus bisporus and Agaricus brasiliensis show similarities in their structures and their immunomodulatory effects on human monocytic THP-1 cells. BMC complementary and alternative medicine, 11(1), 58.
  • Referans51 Pires, A. D. R. A., Ruthes, A. C., Cadena, S. M. S. C., Iacomini, M. (2017). Cytotoxic effect of a mannogalactoglucan extracted from Agaricus bisporus on HepG2 cells. Carbohydrate polymers, 170, 33-42.
  • Referans52 Poyraz, B., Güneş, H., Bahar, T. Ü. L., Sermenli, H. B. (2015). Antibacterial and antitumor activity of crude methanolic extracts from various macrofungi species. Research Journal of Biology Sciences, 8(1), 05-10.
  • Referans53 Song, F. Q., Liu, Y., Kong, X. S., Chang, W., Song, G. (2013). Progress on understanding the anticancer mechanisms of medicinal mushroom: Inonotus obliquus. Asian Pacific Journal of Cancer Prevention, 14(3), 1571-1578.
  • Referans54 Çöl B., Balcı E., Güneş H., Allı H. (2017). Schizophyllum commune Fr. Türünden Misel Eldesi, Moleküler Tanımlanması ve Antitümör Etkisinin Araştırılması: Süleyman Demirel University Journal of Natural and Applied Sciences Volume 21, Issue 2, 586-591, 2017.
  • Referans55 Kosanić, M., Ranković, B., Rančić, A., Stanojković, T. (2016). Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. Journal of food and drug analysis, 24(3), 477-484.
  • Referans56 Xu, T., B Beelman, R.., D Lambert, J. (2012). The cancer preventive effects of edible mushrooms. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 12(10), 1255-1263.
  • Referans57 Mei, Y., Zhu, H., Hu, Q., Liu, Y., Zhao, S., Peng, N., Liang, Y. (2015). A novel polysaccharide from mycelia of cultured Phellinus linteus displays antitumor activity through apoptosis. Carbohydrate polymers, 124, 90-97.
  • Referans58 Lu, T. L., Huang, G. J., Lu, T. J., Wu, J. B., Wu, C. H., Yang, T. C., Chen, Y. F. (2009). Hispolon from Phellinus linteus has antiproliferative effects via MDM2-recruited ERK1/2 activity in breast and bladder cancer cells. Food and chemical toxicology, 47(8), 2013-2021.
  • Referans59 Huang, H. Y., Chieh, S. Y., Tso, T. K., Chien, T. Y., Lin, H. T., Tsai, Y. C. (2011). Orally administered mycelial culture of Phellinus linteus exhibits antitumor effects in hepatoma cell-bearing mice. Journal of ethnopharmacology, 133(2), 460-466.
  • Referans60 Pei, J. J., Wang, Z. B., Ma, H. L., Yan, J. K. (2015). Structural features and antitumor activity of a novel polysaccharide from alkaline extract of Phellinus linteus mycelia. Carbohydrate polymers, 115, 472-477.
  • Referans61 Delmanto, R. D., de Lima, P. L. A., Sugui, M. M., da Eira, A. F., Salvadori, D. M. F., Speit, G., Ribeiro, L. R. (2001). Antimutagenic effect of Agaricus blazei Murrill mushroom on the genotoxicity induced by cyclophosphamide. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 496(1-2), 15-21.
  • Referans62 Niu, Y. C., Liu, J. C., Zhao, X. M., Wu, X. X. (2008). A low molecular weight polysaccharide isolated from Agaricus blazei suppresses tumor growth and angiogenesis in vivo. Oncology Reports, 21(1), 145-152.
  • Referans63 Matsushita, Y., Furutani, Y., Matsuoka, R., Furukawa, T. (2018). Hot water extract of Agaricus blazei Murrill specifically inhibits growth and induces apoptosis in human pancreatic cancer cells. BMC complementary and alternative medicine, 18(1), 319.
  • Referans64 Masuda, Y., Inoue, M., Miyata, A., Mizuno, S., Nanba, H. (2009). Maitake β-glucan enhances therapeutic effect and reduces myelosupression and nephrotoxicity of cisplatin in mice. International Immunopharmacology, 9(5), 620-626.
  • Referans65 Alonso, E. N., Orozco, M., Nieto, A. E., Balogh, G. A. (2013). Genes related to suppression of malignant phenotype induced by Maitake D-Fraction in breast cancer cells. Journal of medicinal food, 16(7), 602-617.
  • Referans66 He, Y., Li, X., Hao, C., Zeng, P., Zhang, M., Liu, Y., Zhang, L. (2018). Grifola frondosa polysaccharide: a review of antitumor and other biological activity studies in China. Discovery medicine, 25(138), 159-176.
  • Referans67 Roca-Lema, D., Martinez-Iglesias, O., de Ana Portela, C. F., Rodríguez-Blanco, A., Valladares-Ayerbes, M., Díaz-Díaz, A., Figueroa, A. (2019). In Vitro Anti-proliferative and Anti-invasive Effect of Polysaccharide-rich Extracts from Trametes Versicolor and Grifola Frondosa in Colon Cancer Cells. International journal of medical sciences, 16(2), 231.
  • Referans68 Chang, H. H., Hsieh, K. Y., Yeh, C. H., Tu, Y. P., Sheu, F. (2010). Oral administration of an Enoki mushroom protein FVE activates innate and adaptive immunity and induces anti-tumor activity against murine hepatocellular carcinoma. International immunopharmacology, 10(2), 239-246.
  • Referans69 Krasnopolskaya, L. M., Shuktueva, M. I., Avtonomova, A. V., Yarina, M. S., Dzhavakhyan, B. R., Isakova, E. B., Bukhman, V. M. (2016). Antitumor and Antioxidant Properties of Water-Soluble Polysaccharides from Submerged Mycelium of Flammulina velutipes. Antibiotiki i khimioterapiia= Antibiotics and chemoterapy [sic], 61(11-12), 16-20.
  • Referans70 Latha, K., Baskar, R. (2014, November). Comparative study on the production, purification and characterization of exopolysaccharides from oyster mushrooms, Pleurotus florida and Hypsizygus ulmarius and their applications. In Proc. 8th Int Conf Mush Biol Mush Prod.
  • Referans71 Phaniendra, A., Jestadi, D. B., Periyasamy, L. (2015). Free radicals: properties, sources, targets, and their implication in various diseases. Indian journal of clinical biochemistry, 30(1), 11-26.
  • Referans72 Nimse, S. B., Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. Rsc Advances, 5(35), 27986-28006.
  • Referans73 Hochmann, M. (1988). Les annotations marginales de Federico Zuccaro à un exemplaire des «Vies» de Vasari. La réaction anti-vasarienne à la fin du XVIe siècle. Revue de l'Art, 80(1), 64-71.
  • Referans74 Botterweck, A. A. M., Verhagen, H., Goldbohm, R. A., Kleinjans, J., Van den Brandt, P. A. (2000). Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: results from analyses in the Netherlands cohort study. Food and Chemical Toxicology, 38(7), 599-605.
  • Referans75 Babu, D. R., Rao, G. N. (2013). Antioxidant properties and electrochemical behavior of cultivated commercial Indian edible mushrooms. Journal of food science and technology, 50(2), 301-308.
  • Referans76 Atila, F., Tuzel, Y., Fernández, J. A., Cano, A. F., Sen, F. (2018). The effect of some agro–industrial wastes on yield, nutritional characteristics and antioxidant activities of Hericium erinaceus isolates. Scientia Horticulturae, 238, 246-254.
  • Referans77 Gąsecka, M., Siwulski, M., Magdziak, Z., Budzyńska, S., Stuper-Szablewska, K., Niedzielski, P., Mleczek, M. (2020). The effect of drying temperature on bioactive compounds and antioxidant activity of Leccinum scabrum (Bull.) Gray and Hericium erinaceus (Bull.) Pers. Journal of food science and technology, 57(2), 513-525.
  • Referans78 Côté, J., Caillet, S., Doyon, G., Sylvain, J. F., Lacroix, M. (2010). Analyzing cranberry bioactive compounds. Critical Reviews in Food Science and Nutrition, 50(9), 872-888.
  • Referans79 Palacios, I., Lozano, M., Moro, C., D’arrigo, M., Rostagno, M. A., Martínez, J. A., Villares, A. (2011). Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chemistry, 128(3), 674-678.
  • Referans80 Wong, K. H., Sabaratnam, V., Abdullah, N., Kuppusamy, U. R., Naidu, M. (2009). Effects of cultivation techniques and processing on antimicrobial and antioxidant activities of Hericium erinaceus (Bull.: Fr.) Pers. extracts. Food Technology and Biotechnology, 47(1), 47-55.
  • Referans81 Atila, F. (2019). Comparative evaluation of the antioxidant potential of Hericium erinaceus, Hericium americanum and Hericium coralloides. Acta Scientiarum Polonorum. Hortorum Cultus, 18(6).
  • Referans82 Woldegiorgis, A. Z., Abate, D., Haki, G. D., Ziegler, G. R. (2014). Antioxidant property of edible mushrooms collected from Ethiopia. Food chemistry, 157, 30-36.
  • Referans83 Rajasekaran, M., Kalaimagal, C. (2011). In vitro antioxidant activity of ethanolic extract of a medicinal mushroom, Ganoderma lucidum. Journal of Pharmaceutical Sciences and Research, 3(9), 1427.
  • Referans84 Kozarski, M., Klaus, A., Niksic, M., Jakovljevic, D., Helsper, J. P., Van Griensven, L. J. (2011). Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus. Food chemistry, 129(4), 1667-1675.
  • Referans85 Abdullah, N., Ismail, S. M., Aminudin, N., Shuib, A. S., Lau, B. F. (2012). Evaluation of selected culinary-medicinal mushrooms for antioxidant and ACE inhibitory activities. Evidence-Based Complementary and Alternative Medicine, 2012.
  • Referans86 Fasoranti, O., Ogidi, C. O., Oyetayo, V. O. (2019). Nutrient contents and antioxidant properties of Pleurotus spp. cultivated on substrate fortified with Selenium. Curr. Res. Environ. Appl. Mycol, 9, 66-76.
  • Referans87 Jayakumar, T., Ramesh, E., Geraldine, P. (2006). Antioxidant activity of the oyster mushroom, Pleurotus ostreatus, on CCl4-induced liver injury in rats. Food and Chemical Toxicology, 44(12), 1989-1996.
  • Referans88 Jayakumar, T., Sakthivel, M., Thomas, P. A., Geraldine, P. (2008). Pleurotus ostreatus, an oyster mushroom, decreases the oxidative stress induced by carbon tetrachloride in rat kidneys, heart and brain. Chemico-Biological Interactions, 176(2-3), 108-120.
  • Referans89 Nada, S. A., Omara, E. A., Abdel-Salam, O. M., Zahran, H. G. (2010). Mushroom insoluble polysaccharides prevent carbon tetrachloride-induced hepatotoxicity in rat. Food and Chemical Toxicology, 48(11), 3184-3188.
  • Referans90 Liu, J., Jia, L., Kan, J., Jin, C. H. (2013). In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus bisporus). Food and chemical toxicology, 51, 310-316.
  • Referans91 Xu, W. W., Li, B., Lai, E. T. C., Chen, L., Huang, J. J. H., Cheung, A. L. M., Cheung, P. C. K. (2014). Water extract from Pleurotus pulmonarius with antioxidant activity exerts in vivo chemoprophylaxis and chemosensitization for liver cancer. Nutrition and cancer, 66(6), 989-998.
  • Referans92 Meng, F., Zhou, B., Lin, R., Jia, L., Liu, X., Deng, P., Zhang, J. (2010). Extraction optimization and in vivo antioxidant activities of exopolysaccharide by Morchella esculenta SO-01. Bioresource technology, 101(12), 4564-4569.
  • Referans93 Jayakumar, T., Thomas, P. A., Sheu, J. R., & Geraldine, P. (2011). In-vitro and in-vivo antioxidant effects of the oyster mushroom Pleurotus ostreatus. Food research international, 44(4), 851-861.
  • Referans94 You, R., Wang, K., Liu, J., Liu, M., Luo, L., Zhang, Y. (2011). A comparison study between different molecular weight polysaccharides derived from Lentinus edodes and their antioxidant activities in vivo. Pharmaceutical biology, 49(12), 1298-1305.
  • Referans95 Yan, J. K., Wang, Y. Y., Ma, H. L., Wang, Z. B., Pei, J. J. (2016). Structural characteristics and antioxidant activity in vivo of a polysaccharide isolated from Phellinus linteus mycelia. Journal of the Taiwan Institute of Chemical Engineers, 65, 110-117.
  • Referans96 Barros, L., Calhelha, R. C., Vaz, J. A., Ferreira, I. C., Baptista, P., Estevinho, L. M. (2007). Antimicrobial activity and bioactive compounds of Portuguese wild edible mushrooms methanolic extracts. European Food Research and Technology, 225(2), 151-156.
  • Referans97 Skalicka-Wozniak, K., Szypowski, J., Los, R., Siwulski, M., Sobieralski, K., Glowniak, K., Malm, A. (2012). Evaluation of polysaccharides content in fruit bodies and their antimicrobial activity of four Ganoderma lucidum (W Curt.: Fr.) P. Karst. strains cultivated on different wood type substrates. Acta Societatis Botanicorum Poloniae, 81(1).
  • Referans98 Tamilselvan, N., Rajesh, K. (2019). Antimicrobial Efficacy of Medicinal Mushroom Ganoderma Lucidum.
  • Referans99 Ramesh, C. H., Pattar, M. G. (2010). Antimicrobial properties, antioxidant activity and bioactive compounds from six wild edible mushrooms of western ghats of Karnataka, India. Pharmacognosy research, 2(2), 107.
  • Referans100 Getha, K., Hatsu, M., Wong, H. J., Lee, S. S. (2009). Submerged cultivation of basidiomycete fungi associated with root diseases for production of valuable bioactive metabolites. Journal of Tropical Forest Science, 1-7.
  • Referans101 Suseem, S. R., Saral, A. M. (2013). Analysis on essential fatty acid esters of mushroom pleurotus eous and its antibacterial activity. Asian J Pharm Clin Res, 6(1), 188-91.
  • Referans102 Kosanić, M., Ranković, B., Dašić, M. (2012). Mushrooms as possible antioxidant and antimicrobial agents. Iranian journal of pharmaceutical research: IJPR, 11(4), 1095.
  • Referans103 Kosanic, M., Rankovic, B., Dasic, M. (2013). Antioxidant and antimicrobial properties of mushrooms. Bulgarian Journal of Agricultural Science, 19(5), 1040-1046.
  • Referans104 Moglad, E. H., Saadabi, A. M. (2012). Screening of antimicrobial activity of wild mushrooms from Khartoum State of Sudan. Microbiol J, 2(2), 64-9.
  • Referans105 Hussein, A. R., Ali, E. M., Hamid, E. (2018). Antibacterial Activity of Alcoholic and Aqueous Extracts of Agaricus bisporus Against Food Borne Bacterial Pathogens. Al-Nahrain Journal of Science, 21(1), 111-114.
  • Referans106 Waqas, H. M., Akbar, M., Khalil, T., Ishfaq, M., Aslam, N., Chohan, S. A., Iqbal, M. S. (2018). Identıfıcatıon Of Natural Antıfungal Constıtuents From Agarıcus Bısporus (Je Lange) Imbach. Applied Ecology and Environmental Research, 16(6), 7937-7951.
  • Referans107 Casaril, K. B. P. B., Kasuya, M. C. M., Vanetti, M. C. D. (2011). Antimicrobial activity and mineral composition of shiitake mushrooms cultivated on agricultural waste. Brazilian Archives of Biology and Technology, 54(5), 991-1002.
  • Referans108 Heleno, S. A., Barros, L., Martins, A., Morales, P., Fernández-Ruiz, V., Glamoclija, J., Ferreira, I. C. (2015). Nutritional value, bioactive compounds, antimicrobial activity and bioaccessibility studies with wild edible mushrooms. LWT-Food Science and Technology, 63(2), 799-806.
  • Referans109 Chowdhury, M. M. H., Kubra, K., Ahmed, S. R. (2015). Screening of antimicrobial, antioxidant properties and bioactive compounds of some edible mushrooms cultivated in Bangladesh. Annals of clinical microbiology and antimicrobials, 14(1), 8.
  • Referans110 Stanley, H. O., Onwuna, D. B., Ugboma, C. J. (2018). The Antimicrobial Activity of Sclerotia of Pleurotus tuberregium (Osu) on Some Clinical Isolates. Journal of Advances in Microbiology, 1-4.
  • Referans111 Al-Faqeeh, L. A. S., Naser, R., SR., K., Khan, S. W. (2019). TLC and FTIR Analyses of Hypsizygus ulmarius (Bull.) Fruiting Bodies. International Journal of Pharmacy & Pharmaceutical Research, 17, 61-71.
  • Referans112 Dong, Y., Zhang, J., Gao, Z., Zhao, H., Sun, G., Wang, X., Jia, L. (2019). Characterization and anti-hyperlipidemia effects of enzymatic residue polysaccharides from Pleurotus ostreatus. International journal of biological macromolecules, 129, 316-325.
  • Referans113 Nwobi, N. L., Usiobeigbe, O. S., Osaro, R. O., Nwobi, J. C. (2019). Ameliorative Effect of Pleurotus ostreatus on Lipid Levels and Atherogenic Indices in Hyperlipidemic Rats. Asian Journal of Research in Medical and Pharmaceutical Sciences, 1-6.
  • Referans114 Piskov, S., Timchenko, L., Grimm, W. D., Rzhepakovsky, I., Avanesyan, S., Sizonenko, M., Kurchenko, V. (2020). Effects of Various Drying Methods on Some Physico-Chemical Properties and the Antioxidant Profile and ACE Inhibition Activity of Oyster Mushrooms (Pleurotus Ostreatus). Foods, 9(2), 160.
  • Referans115 Ravi, B., Renitta, R. E., Prabha, M. L., Issac, R., Naidu, S. (2013). Evaluation of antidiabetic potential of oyster mushroom (Pleurotus ostreatus) in alloxan-induced diabetic mice. Immunopharmacology and immunotoxicology, 35(1), 101-109.
  • Referans116 Schneider, I., Kressel, G., Meyer, A., Krings, U., Berger, R. G., Hahn, A. (2011). Lipid lowering effects of oyster mushroom (Pleurotus ostreatus) in humans. Journal of Functional Foods, 3(1), 17-24.
  • Referans117 Anandhi, R., Annadurai, T., Anitha, T. S., Muralidharan, A. R., Najmunnisha, K., Nachiappan, V., Geraldine, P. (2013). Antihypercholesterolemic and antioxidative effects of an extract of the oyster mushroom, Pleurotus ostreatus, and its major constituent, chrysin, in Triton WR-1339-induced hypercholesterolemic rats. Journal of physiology and biochemistry, 69(2), 313-323.
  • Referans118 Jeong, S. C., Jeong, Y. T., Yang, B. K., Islam, R., Koyyalamudi, S. R., Pang, G., Song, C. H. (2010). White button mushroom (Agaricus bisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutrition research, 30(1), 49-56.
  • Referans119 Priya, G., Chellaram, C. In vivo Anti–hyperlipidemic Effects of Edible Mushroom, Agaricus bisporus.
  • Referans120 Balakrishnan, P., Loganayagi, C. T. (2018). Antihyperglycemic activity of Agaricus bisporus mushroom extracts on alloxan induced diabetic rats. Int J Pharma Res Health Sci, 6(2), 2475-79.
  • Referans121 Kała, K., Kryczyk-Poprawa, A., Rzewińska, A., Muszyńska, B. (2020). Fruiting bodies of selected edible mushrooms as a potential source of lovastatin. European Food Research and Technology, 246(4), 713-722.
  • Referans122 Chen, J., Mao, D., Yong, Y., Li, J., Wei, H., Lu, L. (2012). Hepatoprotective and hypolipidemic effects of water-soluble polysaccharidic extract of Pleurotus eryngii. Food chemistry, 130(3), 687-694.
  • Referans123 Chen, L., Zhang, Y., Sha, O., Xu, W., Wang, S. (2016). Hypolipidaemic and hypoglycaemic activities of polysaccharide from Pleurotus eryngii in Kunming mice. International journal of biological macromolecules, 93, 1206-1209.
  • Referans124 Xu, N., Ren, Z., Zhang, J., Song, X., Gao, Z., Jing, H., Jia, L. (2017). Antioxidant and anti-hyperlipidemic effects of mycelia zinc polysaccharides by Pleurotus eryngii var. tuoliensis. International journal of biological macromolecules, 95, 204-214.
  • Referans125 Zhang, C., Li, J., Wang, J., Song, X., Zhang, J., Wu, S., Jia, L. (2017). Antihyperlipidaemic and hepatoprotective activities of acidic and enzymatic hydrolysis exopolysaccharides from Pleurotus eryngii SI-04. BMC complementary and alternative medicine, 17(1), 403.
  • Referans126 Zhang, C., Zhang, L., Liu, H., Zhang, J., Hu, C., Jia, L. (2018). Antioxidation, anti-hyperglycaemia and renoprotective effects of extracellular polysaccharides from Pleurotus eryngii SI-04. International journal of biological macromolecules, 111, 219-228.
  • Referans127 Sarker, M.M.R. (2015). Antihyperglycemic, insulin-sensitivity and anti-hyperlipidemic potential of Ganoderma lucidum, a dietary mushroom, on alloxan-and glucocorticoid-induced diabetic Long-Evans rats. Functional Foods in Health and Disease, 5(12), 450-466.
  • Referans128 Meneses, M. E., Martínez-Carrera, D., Torres, N., Sánchez-Tapia, M., Aguilar-López, M., Morales, P., Tovar, A.R.(2016). Hypocholesterolemic properties and prebiotic effects of Mexican Ganoderma lucidum in C57BL/6 mice. PloS one, 11(7).
  • Referans129 Xu, Y., Zhang, X., Yan, X. H., Zhang, J. L., Wang, L. Y., Xue, H., Liu, X. J. (2019). Characterization, hypolipidemic and antioxidant activities of degraded polysaccharides from Ganoderma lucidum. International journal of biological macromolecules, 135, 706-716.
  • Referans130 Li, L., Xu, J. X., Cao, Y. J., Lin, Y. C., Guo, W. L., Liu, J. Y., Rao, P. F. (2019). Preparation of Ganoderma lucidum polysaccharide chromium (III) complex and its hypoglycemic and hypolipidemic activities in high-fat and high-fructose diet-induced pre-diabetic mice. International journal of biological macromolecules, 140, 782-793.
  • Referans131 Wang, L., Xu, N., Zhang, J., Zhao, H., Lin, L., Jia, S., Jia, L. (2015). Antihyperlipidemic and hepatoprotective activities of residue polysaccharide from Cordyceps militaris SU-12. Carbohydrate polymers, 131, 355-362.
  • Referans132 Liu, R. M., Dai, R., Luo, Y., Xiao, J. H. (2019). Glucose-lowering and hypolipidemic activities of polysaccharides from Cordyceps taii in streptozotocin-induced diabetic mice. BMC complementary and alternative medicine, 19(1), 230.
  • Referans133 Yoon, K. N., Alam, N., Lee, J. S., Cho, H. J., Kim, H. Y., Shim, M. J., Lee, T. S. (2011). Antihyperlipidemic effect of dietary Lentinus edodes on plasma, feces and hepatic tissues in hypercholesterolemic rats. Mycobiology, 39(2), 96-102.
  • Referans134 Yang, H., Hwang, I., Kim, S., Hong, E. J., Jeung, E. B. (2013). Lentinus edodes promotes fat removal in hypercholesterolemic mice. Experimental and therapeutic medicine, 6(6), 1409-1413.
  • Referans135 Zhang, Y., Hu, T., Zhou, H., Zhang, Y., Jin, G., Yang, Y. (2016). Antidiabetic effect of polysaccharides from Pleurotus ostreatus in streptozotocin-induced diabetic rats. International journal of biological macromolecules, 83, 126-132.
  • Referans136 Pandimeena, M., Prabu, M., Sumathy, R., Kumuthakalavalli, R. (2015). Evaluation of phytochemicals and in vitro anti-inflammatory, anti-diabetic activity of the white oyster mushroom, Pleurotus florida. Int. Res. J. Pharmaceut. Appl. Sci, 5, 16-21.
  • Referans137 Khatun, S., Islam, A., Guler, P., Cakilcioglu, U., Chatterjee, N. C. (2013). Hypoglycemic activity of a dietary mushroom Pleurotus florida on alloxan induced diabetic rats. Biol. Divers. Conserv., 6, 91-96.
  • Referans138 Balaji, P., Madhanraj, R., Rameshkumar, K., Veeramanikandan, V., Eyini, M., Arun, A., Mahmoud, A. H. (2020). Evaluation of antidiabetic activity of Pleurotus pulmonarius against streptozotocin-nicotinamide induced diabetic wistar albino rats. Saudi Journal of Biological Sciences, 27(3), 913-924.
  • Referans139 Ng, S. H., Zain, M., Shazwan, M., Zakaria, F., Ishak, W., Rosli, W., Nizam, W. A. (2015). Hypoglycemic and antidiabetic effect of Pleurotus sajor-caju aqueous extract in normal and streptozotocin-induced diabetic rats. BioMed research international, 2015.
  • Referans140 Etewa, R. L., Mohamed, H. (2010). Hypoglycemic effect of button (Agaricus bisporus) and oyster (pleurotus ostreatus) mushrooms on streptozotocin induced diabetic mice.
  • Referans141 Kumar, P. M. R., Kumar, M. S., Manivel, A., Mohan, S. C. (2018). Structural Characterization and Anti-Diabetic Activity of Polysaccharides from Agaricus bisporus Mushroom. Phytochemistry, 12(1), 14-20.
  • Referans142 Zaid, O. A. A., Sonbaty, S. E., Neama, M. A. Anti-diabetic activity of Agaricus bisporus: A biochemical and pathological study. Zaid, Omayma AR Abou, SawsanM EL Sonbaty, and M. A. Neama. "Anti-diabetic activity of Agaricus bisporus: A biochemical and pathological study."
  • Referans143 Balakrishnan, P., Loganayagi, C. T. (2018). Antihyperglycemic activity of Agaricus bisporus mushroom extracts on alloxan induced diabetic rats. Int J Pharma Res Health Sci, 6(2), 2475-79.
  • Referans144 Kim, H. M., Kang, J. S., Kim, J. Y., Park, S. K., Kim, H. S., Lee, Y. J., Han, S. B. (2010). Evaluation of antidiabetic activity of polysaccharide isolated from Phellinus linteus in non-obese diabetic mouse. International immunopharmacology, 10(1), 72-78.
  • Referans145 Zhang, L., Liu, Y., Ke, Y., Liu, Y., Luo, X., Li, C., Hu, B. (2018). Antidiabetic activity of polysaccharides from Suillellus luridus in streptozotocin-induced diabetic mice. International journal of biological macromolecules, 119, 134-140.
  • Referans146 Stojkovic, D., Smiljkovic, M., Ciric, A., Glamoclija, J., Van Griensven, L., Ferreira, I. C., Sokovic, M. (2019). An insight into antidiabetic properties of six medicinal and edible mushrooms: Inhibition of α-amylase and α-glucosidase linked to type-2 diabetes. South African Journal of Botany, 120, 100-103.
  • Referans147 Vincent, M., Philippe, E., Everard, A., Kassis, N., Rouch, C., Denom, J., Migrenne, S. (2013). Dietary supplementation with Agaricus blazei murill extract prevents diet‐induced obesity and insulin resistance in rats. Obesity, 21(3), 553-561.
  • Referans148 Chen, L., Zhang, Y., Sha, O., Xu, W., Wang, S. (2016). Hypolipidaemic and hypoglycaemic activities of polysaccharide from Pleurotus eryngii in Kunming mice. International journal of biological macromolecules, 93, 1206-1209.
  • Referans149 Oluba, O. M., Onyeneke, E. C., Ojieh, G. C., Idonije, B.O. (2010). Evaluation of the hypoglycemic effect of aqueous extract of Ganoderma lucidum on STZ-induced diabetic wistar rats. Ann Biol Res, 1(3), 41-49.
  • Referans150 Ma, H. T., Hsieh, J. F., Chen, S. T. (2015). Anti-diabetic effects of Ganoderma lucidum. Phytochemistry, 114, 109-113.
  • Referans151 Xiao, C., Wu, Q., Zhang, J., Xie, Y., Cai, W., Tan, J. (2017). Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice. Journal of ethnopharmacology, 196, 47-57.
  • Referans152 Guo, W. L., Shi, F. F., Li, L., Xu, J. X., Chen, M., Wu, L., Zhang, Y. Y. (2019). Preparation of a novel Grifola frondosa polysaccharide-chromium (III) complex and its hypoglycemic and hypolipidemic activities in high fat diet and streptozotocin-induced diabetic mice. International journal of biological macromolecules, 131, 81-88.
  • Referans153 Kou, L., Du, M., Liu, P., Zhang, B., Zhang, Y., Yang, P., Wang, X. (2019). Anti-diabetic and anti-nephritic activities of Grifola frondosa mycelium polysaccharides in diet-streptozotocin-induced diabetic rats via modulation on oxidative stress. Applied biochemistry and biotechnology, 187(1), 310-322.
  • Referans154 Chen, Y., Liu, Y., Sarker, M. M. R., Yan, X., Yang, C., Zhao, L., Zhao, C. (2018). Structural characterization and antidiabetic potential of a novel heteropolysaccharide from Grifola frondosa via IRS1/PI3K-JNK signaling pathways. Carbohydrate polymers, 198, 452-461.
  • Referans155 Meera, K. S., Sudha, G., Rajathi, K., & Manjusha, G. V. (2011). Antidiabetic effect of aqueous extract of Hypsizygus ulmarius on Streptozotocin-Nicotiinamide induced diabetic rats. Asian Journal of Pharmaceutical & Biological Research (AJPBR), 1(2).

IN VITRO, IN VIVO AND CLINICAL ASSESMENT ABOUT THE MEDICINAL CHARACTERISTICS OF MUSHROOMS

Yıl 2021, Cilt: 45 Sayı: 2, 344 - 378, 31.05.2021
https://doi.org/10.33483/jfpau.779015

Öz

Objective: For centuries, mushrooms have been used for food and medicinal purposes all over the world, especially in the Far East. The rapid increase of diseases such as cardiovascular diseases, diabetes, cancer, obesity worldwide and and increases in the costs of treatment and care of these diseases have increased the interest in alternative treatment methods among both researchers and the public.
Result and Discussion: In vitro, in vivo and clinical studies have proven the accuracy of many centuries-old traditional uses of mushrooms, especially species such as Pleurotus spp., Lentinula edodes, Ganoderma lucidum, Grifolia frondosa. Moreover, the studies show that that the main bioactive compounds derived from mushrooms have great potential in the prevention and treatment of various diseases. In this article, current in vitro, in vivo and clinical studies related to antitumor, antioxidant, antimicrobial, cholesterol lowering and blood sugar regulating properities of mushrooms were reviewed in order to evaluate the potentials in the prevention and treatment of diseases such as cancer, cardiovascular diseases and diabetes.

Kaynakça

  • Referans1 Miles, P.G., Chang, S.T. (2004). Mushrooms: cultivation, nutritional value, medicinal effect, and environmental impact. CRC press.
  • Referans2 FAO, Food and Agriculture Organization of the United Nations. 2018. http://www.fao.org/home/en.
  • Referans3 Dembitsky, V.M., Terent'ev, A.O., Levitsky, D.O. (2010). Amino and fatty acids of wild edible mushrooms of the genus Boletus. Records of Natural Products, 4(4), 218.
  • Referans4 Sevindik, M. (2018). Investigation of oxidant and antioxidant status of edible mushroom Clavariadelphus truncatus. Mantar Dergisi/The Journal of Fungus, 9(2)165-168.
  • Referans5 Reis, F.S., Martins, A., Barros, L., Ferreira, I.C. (2012). Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: A comparative study between in vivo and in vitro samples. Food and Chemical Toxicology, 50(5), 1201-1207.
  • Referans6 Ghahremani-Majd, H., Dashti, F. (2015). Chemical composition and antioxidant properties of cultivated button mushrooms (Agaricus bisporus). Horticulture, Environment, and Biotechnology, 56(3), 376-382.
  • Referans7 Manzi, P., Aguzzi, A., Pizzoferrato, L. (2001). Nutritional value of mushrooms widely consumed in Italy. Food chemistry, 73(3), 321-325.
  • Referans8 Salmones W. (2017). Medicinal Properties and Clinical Effects of Medicinal Mushrooms Zied D.C ve Pardo-Giménez A. (Eds.), Edible and Medicinal Mushrooms: Technology and Applications, Wiley Blackwell, İngiltere (2017).
  • Referans9 CFR Ferreira, I., A Vaz, J., Vasconcelos, M. H., Martins, A. (2010). Compounds from wild mushrooms with antitumor potential. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 10(5), 424-436.
  • Referans10 Ferreira, I. C., Heleno, S. A., Reis, F. S., Stojkovic, D., Queiroz, M. J. R., Vasconcelos, M. H., Sokovic, M. (2015). Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochemistry, 114, 38-55.
  • Referans11 Wang, Q., Wang, F., Xu, Z., & Ding, Z. (2017). Bioactive mushroom polysaccharides: a review on monosaccharide composition, biosynthesis and regulation. Molecules, 22(6), 955.
  • Referans12 Aleem, E. (2013). β-Glucans and their applications in cancer therapy: focus on human studies. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 13(5), 709-719.
  • Referans13 Wang, Y., Liu, Y., Yu, H., Zhou, S., Zhang, Z., Wu, D., Zhang, J. (2017). Structural characterization and immuno-enhancing activity of a highly branched water-soluble β-glucan from the spores of Ganoderma lucidum. Carbohydrate polymers, 167, 337-344.
  • Referans14 Ramberg, J. E., Nelson, E. D., Sinnott, R. A. (2010). Immunomodulatory dietary polysaccharides: a systematic review of the literature. Nutrition journal, 9(1), 54.
  • Referans15 Amdekar, S. (2016). Ganoderma lucidum (Reishi): source of pharmacologically active compounds. Current Science, 111(6), 976.
  • Referans16 Khatian, N., Aslam, M. (2018). A review of Ganoderma lucidum (Reishi): A miraculous medicinal mushroom. Inventi Rapid: Ethnopharmacology, 4, 1-6.
  • Referans17 Loyd, A. L., Richter, B. S., Jusino, M. A., Truong, C., Smith, M. E., Blanchette, R. A., Smith, J. A. (2018). Identifying the “mushroom of immortality”: assessing the Ganoderma species composition in commercial Reishi products. Frontiers in Microbiology, 9, 1557.
  • Referans18 Nandi, S., Sikder, R., Acharya, K. (2019). Secondary Metabolites of Mushrooms: A Potential Source for Anticancer Therapeutics with Translational Opportunities. In Advancing Frontiers in Mycology & Mycotechnology (pp. 563-598). Springer, Singapore.
  • Referans19 Qi, F., Zhao, L., Zhou, A., Zhang, B., Li, A., Wang, Z., Han, J. (2015). The advantages of using traditional Chinese medicine as an adjunctive therapy in the whole course of cancer treatment instead of only terminal stage of cancer. Bioscience trends, 9(1), 16-34.
  • Referans20 Lee, H. H., Lee, S., Lee, K., Shin, Y. S., Kang, H., Cho, H. (2015). Anti-cancer effect of Cordyceps militaris in human colorectal carcinoma RKO cells via cell cycle arrest and mitochondrial apoptosis. DARU Journal of Pharmaceutical Sciences, 23(1), 35.
  • Referans21 Wada, T., Sumardika, I. W., Saito, S., Ruma, I. M. W., Kondo, E., Shibukawa, M., Sakaguchi, M. (2017). Identification of a novel component leading to anti-tumor activity besides the major ingredient cordycepin in Cordyceps militaris extract. Journal of Chromatography B, 1061, 209-219.
  • Referans22 Tomonobu, N., Komalasari, N. L. G. Y., Sumardika, I. W., Jiang, F., Chen, Y., Yamamoto, K. I., Sakaguchi, M. (2020). Xylitol acts as an anticancer monosaccharide to induce selective cancer death via regulation of the glutathione level. Chemico-Biological Interactions, 109085.
  • Referans23 Huo, X., Liu, C., Bai, X., Li, W., Li, J., Hu, X., Cao, L. (2017). Aqueous extract of Cordyceps sinensis potentiates the antitumor effect of DDP and attenuates therapy-associated toxicity in non-small cell lung cancer via IκBα/NFκB and AKT/MMP2/MMP9 pathways. Rsc Advances, 7(60), 37743-37754.
  • Referans24 Jin, Y., Meng, X., Qiu, Z., Su, Y., Yu, P., Qu, P. (2018). Anti-tumor and anti-metastatic roles of cordycepin, one bioactive compound of Cordyceps militaris. Saudi journal of biological sciences, 25(5), 991-995.
  • Referans25 Xu, Z., Chen, X., Zhong, Z., Chen, L., Wang, Y. (2011). Ganoderma lucidum polysaccharides: immunomodulation and potential anti-tumor activities. The American journal of Chinese medicine, 39(01), 15-27.
  • Referans26 Qu, L., Li, S., Zhuo, Y., Chen, J., Qin, X., Guo, G. (2017). Anticancer effect of triterpenes from Ganoderma lucidum in human prostate cancer cells. Oncology letters, 14(6), 7467-7472.
  • Referans27 Wu, K., Na, K., Chen, D., Wang, Y., Pan, H., Wang, X. (2018). Effects of non-steroidal anti-inflammatory drug-activated gene-1 on Ganoderma lucidum polysaccharides-induced apoptosis of human prostate cancer PC-3 cells. International journal of oncology, 53(6), 2356-2368.
  • Referans28 Sohretoglu, D., Huang, S. (2018). Ganoderma lucidum polysaccharides as an anti-cancer agent. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 18(5), 667-674.
  • Referans29 Wang, X., Sun, D., Tai, J., Wang, L. (2017). Ganoderic acid A inhibits proliferation and invasion, and promotes apoptosis in human hepatocellular carcinoma cells. Molecular medicine reports, 16(4), 3894-3900.
  • Referans30 Zhao, R. L., He, Y. M. (2018). Network pharmacology analysis of the anti-cancer pharmacological mechanisms of Ganoderma lucidum extract with experimental support using Hepa1-6-bearing C57 BL/6 mice. Journal of ethnopharmacology, 210, 287-295.
  • Referans31 Martínez-Montemayor, M. M., Ling, T., Suárez-Arroyo, I. J., Ortiz-Soto, G., Santiago-Negrón, C. L., Lacourt-Ventura, M. Y., Rivas, F. (2019). Identification of biologically active Ganoderma lucidum compounds and synthesis of improved derivatives that confer anticancer activities in vitro. Frontiers in pharmacology, 10, 115.
  • Referans32 Lavi, I., Friesem, D., Geresh, S., Hadar, Y., Schwartz, B. (2006). An aqueous polysaccharide extract from the edible mushroom Pleurotus ostreatus induces anti-proliferative and pro-apoptotic effects on HT-29 colon cancer cells. Cancer letters, 244(1), 61-70.
  • Referans33 Gu, Y. H., Sivam, G. (2006). Cytotoxic effect of oyster mushroom Pleurotus ostreatus on human androgen-independent prostate cancer PC-3 cells. Journal of medicinal food, 9(2), 196-204.
  • Referans34 Martin, K. R., Brophy, S. K. (2010). Commonly consumed and specialty dietary mushrooms reduce cellular proliferation in MCF-7 human breast cancer cells. Experimental biology and medicine, 235(11), 1306-1314.
  • Referans35 Tong, H., Xia, F., Feng, K., Sun, G., Gao, X., Sun, L., Sun, X. (2009). Structural characterization and in vitro antitumor activity of a novel polysaccharide isolated from the fruiting bodies of Pleurotus ostreatus. Bioresource Technology, 100(4), 1682-1686.
  • Referans36 Hassan, M.A.A., Rouf, R., Tiralongo, E., May, T. W., Tiralongo, J. (2015). Mushroom lectins: specificity, structure and bioactivity relevant to human disease. International journal of molecular sciences, 16(4), 7802-7838.
  • Referans37 Sałata, A., Lemieszek, M., Parzymies, M. (2018). The nutritional and health properties of an oyster mushroom (Pleurotus ostreatus (Jacq. Fr) P. Kumm.). Acta Sci. Pol. Hortorum Cultus, 17, 185-197.
  • Referans38 Refaie, F. M., Esmat, A. Y., Daba, A. S., Osman, W. M., Taha, S. M. (2010). Hepatoprotective activity of polysaccharopeptides from Pleurotus ostreatus mycelium on thioacetamide-intoxicated mice. Micologia Aplicada International, 22(1), 1-13.
  • Referans39 Wu, X., Zheng, S., Cui, L., Wang, H., & Ng, T. B. (2010). Isolation and characterization of a novel ribonuclease from the pink oyster mushroom Pleurotus djamor. The Journal of general and applied microbiology, 56(3), 231-239.
  • Referans40 Jing, X., Mao, D., Geng, L., Xu, C. (2013). Medium optimization, molecular characterization, and bioactivity of exopolysaccharides from Pleurotus eryngii. Archives of microbiology, 195(10-11), 749-757.
  • Referans41 Ma, G., Yang, W., Mariga, A. M., Fang, Y., Ma, N., Pei, F., Hu, Q. (2014). Purification, characterization and antitumor activity of polysaccharides from Pleurotus eryngii residue. Carbohydrate Polymers, 114, 297-305.
  • Referans42 Wu, J. Y., Chen, C. H., Chang, W. H., Chung, K. T., Liu, Y. W., Lu, F. J., Chen, C. H. (2011). Anti-cancer effects of protein extracts from Calvatia lilacina, Pleurotus ostreatus and Volvariella volvacea. Evidence-Based Complementary and Alternative Medicine, 2011.
  • Referans43 Wiater, A., Paduch, R., Pleszczyńska, M., Próchniak, K., Choma, A., Kandefer-Szerszeń, M., Szczodrak, J. (2011). α-(1→ 3)-d-Glucans from fruiting bodies of selected macromycetes fungi and the biological activity of their carboxymethylated products. Biotechnology letters, 33(4), 787-795.
  • Referans44 Wiater, A., Paduch, R., Choma, A., Sylwia, S., Pleszczynska, M., Tomczyk, M., Janusz, S. (2015). (1→ 3)-α-D-Glucans from Aspergillus spp.: Structural Characterization and Biological Study on their Carboxymethylated Derivatives. Current drug targets, 16(13), 1488-1494.
  • Referans45 Sharif, S., Atta, A., Huma, T., Shah, A. A., Afzal, G., Rashid, S., Mustafa, G. (2018). Anticancer, antithrombotic, antityrosinase, and anti‐α‐glucosidase activities of selected wild and commercial mushrooms from Pakistan. Food Science & Nutrition, 6(8), 2170-2176.
  • Referans46 Facchini, J. M., Alves, E. P., Aguilera, C., Gern, R. M. M., Silveira, M. L. L., Wisbeck, E., Furlan, S. A. (2014). Antitumor activity of Pleurotus ostreatus polysaccharide fractions on Ehrlich tumor and Sarcoma 180. International journal of biological macromolecules, 68, 72-77.
  • Referans47 Zhang, Y., Li, Q., Shu, Y., Wang, H., Zheng, Z., Wang, J., & Wang, K. (2015). Induction of apoptosis in S180 tumour bearing mice by polysaccharide from Lentinus edodes via mitochondria apoptotic pathway. Journal of Functional Foods, 15, 151-159.
  • Referans48 Finimundy, T. C., Scola, G., Scariot, F. J., Dillon, A. J., Moura, S., Echeverrigaray, S., Roesch-Ely, M. (2018). Extrinsic and intrinsic apoptotic responses induced by shiitake culinary-medicinal mushroom Lentinus edodes (Agaricomycetes) aqueous extract against a larynx carcinoma cell line. International journal of medicinal mushrooms, 20(1).
  • Referans49 Zhang, Y., Ma, G., Fang, L., Wang, L., Xie, J. (2014). The Immunostimulatory and Anti-tumor Activities of Polysaccharide fromAgaricus bisporus (brown). Journal of Food and Nutrition Research, 2(3), 122-126.
  • Referans50 Smiderle, F. R., Ruthes, A. C., van Arkel, J., Chanput, W., Iacomini, M., Wichers, H. J., Van Griensven, L. J. (2011). Polysaccharides from Agaricus bisporus and Agaricus brasiliensis show similarities in their structures and their immunomodulatory effects on human monocytic THP-1 cells. BMC complementary and alternative medicine, 11(1), 58.
  • Referans51 Pires, A. D. R. A., Ruthes, A. C., Cadena, S. M. S. C., Iacomini, M. (2017). Cytotoxic effect of a mannogalactoglucan extracted from Agaricus bisporus on HepG2 cells. Carbohydrate polymers, 170, 33-42.
  • Referans52 Poyraz, B., Güneş, H., Bahar, T. Ü. L., Sermenli, H. B. (2015). Antibacterial and antitumor activity of crude methanolic extracts from various macrofungi species. Research Journal of Biology Sciences, 8(1), 05-10.
  • Referans53 Song, F. Q., Liu, Y., Kong, X. S., Chang, W., Song, G. (2013). Progress on understanding the anticancer mechanisms of medicinal mushroom: Inonotus obliquus. Asian Pacific Journal of Cancer Prevention, 14(3), 1571-1578.
  • Referans54 Çöl B., Balcı E., Güneş H., Allı H. (2017). Schizophyllum commune Fr. Türünden Misel Eldesi, Moleküler Tanımlanması ve Antitümör Etkisinin Araştırılması: Süleyman Demirel University Journal of Natural and Applied Sciences Volume 21, Issue 2, 586-591, 2017.
  • Referans55 Kosanić, M., Ranković, B., Rančić, A., Stanojković, T. (2016). Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. Journal of food and drug analysis, 24(3), 477-484.
  • Referans56 Xu, T., B Beelman, R.., D Lambert, J. (2012). The cancer preventive effects of edible mushrooms. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 12(10), 1255-1263.
  • Referans57 Mei, Y., Zhu, H., Hu, Q., Liu, Y., Zhao, S., Peng, N., Liang, Y. (2015). A novel polysaccharide from mycelia of cultured Phellinus linteus displays antitumor activity through apoptosis. Carbohydrate polymers, 124, 90-97.
  • Referans58 Lu, T. L., Huang, G. J., Lu, T. J., Wu, J. B., Wu, C. H., Yang, T. C., Chen, Y. F. (2009). Hispolon from Phellinus linteus has antiproliferative effects via MDM2-recruited ERK1/2 activity in breast and bladder cancer cells. Food and chemical toxicology, 47(8), 2013-2021.
  • Referans59 Huang, H. Y., Chieh, S. Y., Tso, T. K., Chien, T. Y., Lin, H. T., Tsai, Y. C. (2011). Orally administered mycelial culture of Phellinus linteus exhibits antitumor effects in hepatoma cell-bearing mice. Journal of ethnopharmacology, 133(2), 460-466.
  • Referans60 Pei, J. J., Wang, Z. B., Ma, H. L., Yan, J. K. (2015). Structural features and antitumor activity of a novel polysaccharide from alkaline extract of Phellinus linteus mycelia. Carbohydrate polymers, 115, 472-477.
  • Referans61 Delmanto, R. D., de Lima, P. L. A., Sugui, M. M., da Eira, A. F., Salvadori, D. M. F., Speit, G., Ribeiro, L. R. (2001). Antimutagenic effect of Agaricus blazei Murrill mushroom on the genotoxicity induced by cyclophosphamide. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 496(1-2), 15-21.
  • Referans62 Niu, Y. C., Liu, J. C., Zhao, X. M., Wu, X. X. (2008). A low molecular weight polysaccharide isolated from Agaricus blazei suppresses tumor growth and angiogenesis in vivo. Oncology Reports, 21(1), 145-152.
  • Referans63 Matsushita, Y., Furutani, Y., Matsuoka, R., Furukawa, T. (2018). Hot water extract of Agaricus blazei Murrill specifically inhibits growth and induces apoptosis in human pancreatic cancer cells. BMC complementary and alternative medicine, 18(1), 319.
  • Referans64 Masuda, Y., Inoue, M., Miyata, A., Mizuno, S., Nanba, H. (2009). Maitake β-glucan enhances therapeutic effect and reduces myelosupression and nephrotoxicity of cisplatin in mice. International Immunopharmacology, 9(5), 620-626.
  • Referans65 Alonso, E. N., Orozco, M., Nieto, A. E., Balogh, G. A. (2013). Genes related to suppression of malignant phenotype induced by Maitake D-Fraction in breast cancer cells. Journal of medicinal food, 16(7), 602-617.
  • Referans66 He, Y., Li, X., Hao, C., Zeng, P., Zhang, M., Liu, Y., Zhang, L. (2018). Grifola frondosa polysaccharide: a review of antitumor and other biological activity studies in China. Discovery medicine, 25(138), 159-176.
  • Referans67 Roca-Lema, D., Martinez-Iglesias, O., de Ana Portela, C. F., Rodríguez-Blanco, A., Valladares-Ayerbes, M., Díaz-Díaz, A., Figueroa, A. (2019). In Vitro Anti-proliferative and Anti-invasive Effect of Polysaccharide-rich Extracts from Trametes Versicolor and Grifola Frondosa in Colon Cancer Cells. International journal of medical sciences, 16(2), 231.
  • Referans68 Chang, H. H., Hsieh, K. Y., Yeh, C. H., Tu, Y. P., Sheu, F. (2010). Oral administration of an Enoki mushroom protein FVE activates innate and adaptive immunity and induces anti-tumor activity against murine hepatocellular carcinoma. International immunopharmacology, 10(2), 239-246.
  • Referans69 Krasnopolskaya, L. M., Shuktueva, M. I., Avtonomova, A. V., Yarina, M. S., Dzhavakhyan, B. R., Isakova, E. B., Bukhman, V. M. (2016). Antitumor and Antioxidant Properties of Water-Soluble Polysaccharides from Submerged Mycelium of Flammulina velutipes. Antibiotiki i khimioterapiia= Antibiotics and chemoterapy [sic], 61(11-12), 16-20.
  • Referans70 Latha, K., Baskar, R. (2014, November). Comparative study on the production, purification and characterization of exopolysaccharides from oyster mushrooms, Pleurotus florida and Hypsizygus ulmarius and their applications. In Proc. 8th Int Conf Mush Biol Mush Prod.
  • Referans71 Phaniendra, A., Jestadi, D. B., Periyasamy, L. (2015). Free radicals: properties, sources, targets, and their implication in various diseases. Indian journal of clinical biochemistry, 30(1), 11-26.
  • Referans72 Nimse, S. B., Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. Rsc Advances, 5(35), 27986-28006.
  • Referans73 Hochmann, M. (1988). Les annotations marginales de Federico Zuccaro à un exemplaire des «Vies» de Vasari. La réaction anti-vasarienne à la fin du XVIe siècle. Revue de l'Art, 80(1), 64-71.
  • Referans74 Botterweck, A. A. M., Verhagen, H., Goldbohm, R. A., Kleinjans, J., Van den Brandt, P. A. (2000). Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: results from analyses in the Netherlands cohort study. Food and Chemical Toxicology, 38(7), 599-605.
  • Referans75 Babu, D. R., Rao, G. N. (2013). Antioxidant properties and electrochemical behavior of cultivated commercial Indian edible mushrooms. Journal of food science and technology, 50(2), 301-308.
  • Referans76 Atila, F., Tuzel, Y., Fernández, J. A., Cano, A. F., Sen, F. (2018). The effect of some agro–industrial wastes on yield, nutritional characteristics and antioxidant activities of Hericium erinaceus isolates. Scientia Horticulturae, 238, 246-254.
  • Referans77 Gąsecka, M., Siwulski, M., Magdziak, Z., Budzyńska, S., Stuper-Szablewska, K., Niedzielski, P., Mleczek, M. (2020). The effect of drying temperature on bioactive compounds and antioxidant activity of Leccinum scabrum (Bull.) Gray and Hericium erinaceus (Bull.) Pers. Journal of food science and technology, 57(2), 513-525.
  • Referans78 Côté, J., Caillet, S., Doyon, G., Sylvain, J. F., Lacroix, M. (2010). Analyzing cranberry bioactive compounds. Critical Reviews in Food Science and Nutrition, 50(9), 872-888.
  • Referans79 Palacios, I., Lozano, M., Moro, C., D’arrigo, M., Rostagno, M. A., Martínez, J. A., Villares, A. (2011). Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chemistry, 128(3), 674-678.
  • Referans80 Wong, K. H., Sabaratnam, V., Abdullah, N., Kuppusamy, U. R., Naidu, M. (2009). Effects of cultivation techniques and processing on antimicrobial and antioxidant activities of Hericium erinaceus (Bull.: Fr.) Pers. extracts. Food Technology and Biotechnology, 47(1), 47-55.
  • Referans81 Atila, F. (2019). Comparative evaluation of the antioxidant potential of Hericium erinaceus, Hericium americanum and Hericium coralloides. Acta Scientiarum Polonorum. Hortorum Cultus, 18(6).
  • Referans82 Woldegiorgis, A. Z., Abate, D., Haki, G. D., Ziegler, G. R. (2014). Antioxidant property of edible mushrooms collected from Ethiopia. Food chemistry, 157, 30-36.
  • Referans83 Rajasekaran, M., Kalaimagal, C. (2011). In vitro antioxidant activity of ethanolic extract of a medicinal mushroom, Ganoderma lucidum. Journal of Pharmaceutical Sciences and Research, 3(9), 1427.
  • Referans84 Kozarski, M., Klaus, A., Niksic, M., Jakovljevic, D., Helsper, J. P., Van Griensven, L. J. (2011). Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus. Food chemistry, 129(4), 1667-1675.
  • Referans85 Abdullah, N., Ismail, S. M., Aminudin, N., Shuib, A. S., Lau, B. F. (2012). Evaluation of selected culinary-medicinal mushrooms for antioxidant and ACE inhibitory activities. Evidence-Based Complementary and Alternative Medicine, 2012.
  • Referans86 Fasoranti, O., Ogidi, C. O., Oyetayo, V. O. (2019). Nutrient contents and antioxidant properties of Pleurotus spp. cultivated on substrate fortified with Selenium. Curr. Res. Environ. Appl. Mycol, 9, 66-76.
  • Referans87 Jayakumar, T., Ramesh, E., Geraldine, P. (2006). Antioxidant activity of the oyster mushroom, Pleurotus ostreatus, on CCl4-induced liver injury in rats. Food and Chemical Toxicology, 44(12), 1989-1996.
  • Referans88 Jayakumar, T., Sakthivel, M., Thomas, P. A., Geraldine, P. (2008). Pleurotus ostreatus, an oyster mushroom, decreases the oxidative stress induced by carbon tetrachloride in rat kidneys, heart and brain. Chemico-Biological Interactions, 176(2-3), 108-120.
  • Referans89 Nada, S. A., Omara, E. A., Abdel-Salam, O. M., Zahran, H. G. (2010). Mushroom insoluble polysaccharides prevent carbon tetrachloride-induced hepatotoxicity in rat. Food and Chemical Toxicology, 48(11), 3184-3188.
  • Referans90 Liu, J., Jia, L., Kan, J., Jin, C. H. (2013). In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus bisporus). Food and chemical toxicology, 51, 310-316.
  • Referans91 Xu, W. W., Li, B., Lai, E. T. C., Chen, L., Huang, J. J. H., Cheung, A. L. M., Cheung, P. C. K. (2014). Water extract from Pleurotus pulmonarius with antioxidant activity exerts in vivo chemoprophylaxis and chemosensitization for liver cancer. Nutrition and cancer, 66(6), 989-998.
  • Referans92 Meng, F., Zhou, B., Lin, R., Jia, L., Liu, X., Deng, P., Zhang, J. (2010). Extraction optimization and in vivo antioxidant activities of exopolysaccharide by Morchella esculenta SO-01. Bioresource technology, 101(12), 4564-4569.
  • Referans93 Jayakumar, T., Thomas, P. A., Sheu, J. R., & Geraldine, P. (2011). In-vitro and in-vivo antioxidant effects of the oyster mushroom Pleurotus ostreatus. Food research international, 44(4), 851-861.
  • Referans94 You, R., Wang, K., Liu, J., Liu, M., Luo, L., Zhang, Y. (2011). A comparison study between different molecular weight polysaccharides derived from Lentinus edodes and their antioxidant activities in vivo. Pharmaceutical biology, 49(12), 1298-1305.
  • Referans95 Yan, J. K., Wang, Y. Y., Ma, H. L., Wang, Z. B., Pei, J. J. (2016). Structural characteristics and antioxidant activity in vivo of a polysaccharide isolated from Phellinus linteus mycelia. Journal of the Taiwan Institute of Chemical Engineers, 65, 110-117.
  • Referans96 Barros, L., Calhelha, R. C., Vaz, J. A., Ferreira, I. C., Baptista, P., Estevinho, L. M. (2007). Antimicrobial activity and bioactive compounds of Portuguese wild edible mushrooms methanolic extracts. European Food Research and Technology, 225(2), 151-156.
  • Referans97 Skalicka-Wozniak, K., Szypowski, J., Los, R., Siwulski, M., Sobieralski, K., Glowniak, K., Malm, A. (2012). Evaluation of polysaccharides content in fruit bodies and their antimicrobial activity of four Ganoderma lucidum (W Curt.: Fr.) P. Karst. strains cultivated on different wood type substrates. Acta Societatis Botanicorum Poloniae, 81(1).
  • Referans98 Tamilselvan, N., Rajesh, K. (2019). Antimicrobial Efficacy of Medicinal Mushroom Ganoderma Lucidum.
  • Referans99 Ramesh, C. H., Pattar, M. G. (2010). Antimicrobial properties, antioxidant activity and bioactive compounds from six wild edible mushrooms of western ghats of Karnataka, India. Pharmacognosy research, 2(2), 107.
  • Referans100 Getha, K., Hatsu, M., Wong, H. J., Lee, S. S. (2009). Submerged cultivation of basidiomycete fungi associated with root diseases for production of valuable bioactive metabolites. Journal of Tropical Forest Science, 1-7.
  • Referans101 Suseem, S. R., Saral, A. M. (2013). Analysis on essential fatty acid esters of mushroom pleurotus eous and its antibacterial activity. Asian J Pharm Clin Res, 6(1), 188-91.
  • Referans102 Kosanić, M., Ranković, B., Dašić, M. (2012). Mushrooms as possible antioxidant and antimicrobial agents. Iranian journal of pharmaceutical research: IJPR, 11(4), 1095.
  • Referans103 Kosanic, M., Rankovic, B., Dasic, M. (2013). Antioxidant and antimicrobial properties of mushrooms. Bulgarian Journal of Agricultural Science, 19(5), 1040-1046.
  • Referans104 Moglad, E. H., Saadabi, A. M. (2012). Screening of antimicrobial activity of wild mushrooms from Khartoum State of Sudan. Microbiol J, 2(2), 64-9.
  • Referans105 Hussein, A. R., Ali, E. M., Hamid, E. (2018). Antibacterial Activity of Alcoholic and Aqueous Extracts of Agaricus bisporus Against Food Borne Bacterial Pathogens. Al-Nahrain Journal of Science, 21(1), 111-114.
  • Referans106 Waqas, H. M., Akbar, M., Khalil, T., Ishfaq, M., Aslam, N., Chohan, S. A., Iqbal, M. S. (2018). Identıfıcatıon Of Natural Antıfungal Constıtuents From Agarıcus Bısporus (Je Lange) Imbach. Applied Ecology and Environmental Research, 16(6), 7937-7951.
  • Referans107 Casaril, K. B. P. B., Kasuya, M. C. M., Vanetti, M. C. D. (2011). Antimicrobial activity and mineral composition of shiitake mushrooms cultivated on agricultural waste. Brazilian Archives of Biology and Technology, 54(5), 991-1002.
  • Referans108 Heleno, S. A., Barros, L., Martins, A., Morales, P., Fernández-Ruiz, V., Glamoclija, J., Ferreira, I. C. (2015). Nutritional value, bioactive compounds, antimicrobial activity and bioaccessibility studies with wild edible mushrooms. LWT-Food Science and Technology, 63(2), 799-806.
  • Referans109 Chowdhury, M. M. H., Kubra, K., Ahmed, S. R. (2015). Screening of antimicrobial, antioxidant properties and bioactive compounds of some edible mushrooms cultivated in Bangladesh. Annals of clinical microbiology and antimicrobials, 14(1), 8.
  • Referans110 Stanley, H. O., Onwuna, D. B., Ugboma, C. J. (2018). The Antimicrobial Activity of Sclerotia of Pleurotus tuberregium (Osu) on Some Clinical Isolates. Journal of Advances in Microbiology, 1-4.
  • Referans111 Al-Faqeeh, L. A. S., Naser, R., SR., K., Khan, S. W. (2019). TLC and FTIR Analyses of Hypsizygus ulmarius (Bull.) Fruiting Bodies. International Journal of Pharmacy & Pharmaceutical Research, 17, 61-71.
  • Referans112 Dong, Y., Zhang, J., Gao, Z., Zhao, H., Sun, G., Wang, X., Jia, L. (2019). Characterization and anti-hyperlipidemia effects of enzymatic residue polysaccharides from Pleurotus ostreatus. International journal of biological macromolecules, 129, 316-325.
  • Referans113 Nwobi, N. L., Usiobeigbe, O. S., Osaro, R. O., Nwobi, J. C. (2019). Ameliorative Effect of Pleurotus ostreatus on Lipid Levels and Atherogenic Indices in Hyperlipidemic Rats. Asian Journal of Research in Medical and Pharmaceutical Sciences, 1-6.
  • Referans114 Piskov, S., Timchenko, L., Grimm, W. D., Rzhepakovsky, I., Avanesyan, S., Sizonenko, M., Kurchenko, V. (2020). Effects of Various Drying Methods on Some Physico-Chemical Properties and the Antioxidant Profile and ACE Inhibition Activity of Oyster Mushrooms (Pleurotus Ostreatus). Foods, 9(2), 160.
  • Referans115 Ravi, B., Renitta, R. E., Prabha, M. L., Issac, R., Naidu, S. (2013). Evaluation of antidiabetic potential of oyster mushroom (Pleurotus ostreatus) in alloxan-induced diabetic mice. Immunopharmacology and immunotoxicology, 35(1), 101-109.
  • Referans116 Schneider, I., Kressel, G., Meyer, A., Krings, U., Berger, R. G., Hahn, A. (2011). Lipid lowering effects of oyster mushroom (Pleurotus ostreatus) in humans. Journal of Functional Foods, 3(1), 17-24.
  • Referans117 Anandhi, R., Annadurai, T., Anitha, T. S., Muralidharan, A. R., Najmunnisha, K., Nachiappan, V., Geraldine, P. (2013). Antihypercholesterolemic and antioxidative effects of an extract of the oyster mushroom, Pleurotus ostreatus, and its major constituent, chrysin, in Triton WR-1339-induced hypercholesterolemic rats. Journal of physiology and biochemistry, 69(2), 313-323.
  • Referans118 Jeong, S. C., Jeong, Y. T., Yang, B. K., Islam, R., Koyyalamudi, S. R., Pang, G., Song, C. H. (2010). White button mushroom (Agaricus bisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutrition research, 30(1), 49-56.
  • Referans119 Priya, G., Chellaram, C. In vivo Anti–hyperlipidemic Effects of Edible Mushroom, Agaricus bisporus.
  • Referans120 Balakrishnan, P., Loganayagi, C. T. (2018). Antihyperglycemic activity of Agaricus bisporus mushroom extracts on alloxan induced diabetic rats. Int J Pharma Res Health Sci, 6(2), 2475-79.
  • Referans121 Kała, K., Kryczyk-Poprawa, A., Rzewińska, A., Muszyńska, B. (2020). Fruiting bodies of selected edible mushrooms as a potential source of lovastatin. European Food Research and Technology, 246(4), 713-722.
  • Referans122 Chen, J., Mao, D., Yong, Y., Li, J., Wei, H., Lu, L. (2012). Hepatoprotective and hypolipidemic effects of water-soluble polysaccharidic extract of Pleurotus eryngii. Food chemistry, 130(3), 687-694.
  • Referans123 Chen, L., Zhang, Y., Sha, O., Xu, W., Wang, S. (2016). Hypolipidaemic and hypoglycaemic activities of polysaccharide from Pleurotus eryngii in Kunming mice. International journal of biological macromolecules, 93, 1206-1209.
  • Referans124 Xu, N., Ren, Z., Zhang, J., Song, X., Gao, Z., Jing, H., Jia, L. (2017). Antioxidant and anti-hyperlipidemic effects of mycelia zinc polysaccharides by Pleurotus eryngii var. tuoliensis. International journal of biological macromolecules, 95, 204-214.
  • Referans125 Zhang, C., Li, J., Wang, J., Song, X., Zhang, J., Wu, S., Jia, L. (2017). Antihyperlipidaemic and hepatoprotective activities of acidic and enzymatic hydrolysis exopolysaccharides from Pleurotus eryngii SI-04. BMC complementary and alternative medicine, 17(1), 403.
  • Referans126 Zhang, C., Zhang, L., Liu, H., Zhang, J., Hu, C., Jia, L. (2018). Antioxidation, anti-hyperglycaemia and renoprotective effects of extracellular polysaccharides from Pleurotus eryngii SI-04. International journal of biological macromolecules, 111, 219-228.
  • Referans127 Sarker, M.M.R. (2015). Antihyperglycemic, insulin-sensitivity and anti-hyperlipidemic potential of Ganoderma lucidum, a dietary mushroom, on alloxan-and glucocorticoid-induced diabetic Long-Evans rats. Functional Foods in Health and Disease, 5(12), 450-466.
  • Referans128 Meneses, M. E., Martínez-Carrera, D., Torres, N., Sánchez-Tapia, M., Aguilar-López, M., Morales, P., Tovar, A.R.(2016). Hypocholesterolemic properties and prebiotic effects of Mexican Ganoderma lucidum in C57BL/6 mice. PloS one, 11(7).
  • Referans129 Xu, Y., Zhang, X., Yan, X. H., Zhang, J. L., Wang, L. Y., Xue, H., Liu, X. J. (2019). Characterization, hypolipidemic and antioxidant activities of degraded polysaccharides from Ganoderma lucidum. International journal of biological macromolecules, 135, 706-716.
  • Referans130 Li, L., Xu, J. X., Cao, Y. J., Lin, Y. C., Guo, W. L., Liu, J. Y., Rao, P. F. (2019). Preparation of Ganoderma lucidum polysaccharide chromium (III) complex and its hypoglycemic and hypolipidemic activities in high-fat and high-fructose diet-induced pre-diabetic mice. International journal of biological macromolecules, 140, 782-793.
  • Referans131 Wang, L., Xu, N., Zhang, J., Zhao, H., Lin, L., Jia, S., Jia, L. (2015). Antihyperlipidemic and hepatoprotective activities of residue polysaccharide from Cordyceps militaris SU-12. Carbohydrate polymers, 131, 355-362.
  • Referans132 Liu, R. M., Dai, R., Luo, Y., Xiao, J. H. (2019). Glucose-lowering and hypolipidemic activities of polysaccharides from Cordyceps taii in streptozotocin-induced diabetic mice. BMC complementary and alternative medicine, 19(1), 230.
  • Referans133 Yoon, K. N., Alam, N., Lee, J. S., Cho, H. J., Kim, H. Y., Shim, M. J., Lee, T. S. (2011). Antihyperlipidemic effect of dietary Lentinus edodes on plasma, feces and hepatic tissues in hypercholesterolemic rats. Mycobiology, 39(2), 96-102.
  • Referans134 Yang, H., Hwang, I., Kim, S., Hong, E. J., Jeung, E. B. (2013). Lentinus edodes promotes fat removal in hypercholesterolemic mice. Experimental and therapeutic medicine, 6(6), 1409-1413.
  • Referans135 Zhang, Y., Hu, T., Zhou, H., Zhang, Y., Jin, G., Yang, Y. (2016). Antidiabetic effect of polysaccharides from Pleurotus ostreatus in streptozotocin-induced diabetic rats. International journal of biological macromolecules, 83, 126-132.
  • Referans136 Pandimeena, M., Prabu, M., Sumathy, R., Kumuthakalavalli, R. (2015). Evaluation of phytochemicals and in vitro anti-inflammatory, anti-diabetic activity of the white oyster mushroom, Pleurotus florida. Int. Res. J. Pharmaceut. Appl. Sci, 5, 16-21.
  • Referans137 Khatun, S., Islam, A., Guler, P., Cakilcioglu, U., Chatterjee, N. C. (2013). Hypoglycemic activity of a dietary mushroom Pleurotus florida on alloxan induced diabetic rats. Biol. Divers. Conserv., 6, 91-96.
  • Referans138 Balaji, P., Madhanraj, R., Rameshkumar, K., Veeramanikandan, V., Eyini, M., Arun, A., Mahmoud, A. H. (2020). Evaluation of antidiabetic activity of Pleurotus pulmonarius against streptozotocin-nicotinamide induced diabetic wistar albino rats. Saudi Journal of Biological Sciences, 27(3), 913-924.
  • Referans139 Ng, S. H., Zain, M., Shazwan, M., Zakaria, F., Ishak, W., Rosli, W., Nizam, W. A. (2015). Hypoglycemic and antidiabetic effect of Pleurotus sajor-caju aqueous extract in normal and streptozotocin-induced diabetic rats. BioMed research international, 2015.
  • Referans140 Etewa, R. L., Mohamed, H. (2010). Hypoglycemic effect of button (Agaricus bisporus) and oyster (pleurotus ostreatus) mushrooms on streptozotocin induced diabetic mice.
  • Referans141 Kumar, P. M. R., Kumar, M. S., Manivel, A., Mohan, S. C. (2018). Structural Characterization and Anti-Diabetic Activity of Polysaccharides from Agaricus bisporus Mushroom. Phytochemistry, 12(1), 14-20.
  • Referans142 Zaid, O. A. A., Sonbaty, S. E., Neama, M. A. Anti-diabetic activity of Agaricus bisporus: A biochemical and pathological study. Zaid, Omayma AR Abou, SawsanM EL Sonbaty, and M. A. Neama. "Anti-diabetic activity of Agaricus bisporus: A biochemical and pathological study."
  • Referans143 Balakrishnan, P., Loganayagi, C. T. (2018). Antihyperglycemic activity of Agaricus bisporus mushroom extracts on alloxan induced diabetic rats. Int J Pharma Res Health Sci, 6(2), 2475-79.
  • Referans144 Kim, H. M., Kang, J. S., Kim, J. Y., Park, S. K., Kim, H. S., Lee, Y. J., Han, S. B. (2010). Evaluation of antidiabetic activity of polysaccharide isolated from Phellinus linteus in non-obese diabetic mouse. International immunopharmacology, 10(1), 72-78.
  • Referans145 Zhang, L., Liu, Y., Ke, Y., Liu, Y., Luo, X., Li, C., Hu, B. (2018). Antidiabetic activity of polysaccharides from Suillellus luridus in streptozotocin-induced diabetic mice. International journal of biological macromolecules, 119, 134-140.
  • Referans146 Stojkovic, D., Smiljkovic, M., Ciric, A., Glamoclija, J., Van Griensven, L., Ferreira, I. C., Sokovic, M. (2019). An insight into antidiabetic properties of six medicinal and edible mushrooms: Inhibition of α-amylase and α-glucosidase linked to type-2 diabetes. South African Journal of Botany, 120, 100-103.
  • Referans147 Vincent, M., Philippe, E., Everard, A., Kassis, N., Rouch, C., Denom, J., Migrenne, S. (2013). Dietary supplementation with Agaricus blazei murill extract prevents diet‐induced obesity and insulin resistance in rats. Obesity, 21(3), 553-561.
  • Referans148 Chen, L., Zhang, Y., Sha, O., Xu, W., Wang, S. (2016). Hypolipidaemic and hypoglycaemic activities of polysaccharide from Pleurotus eryngii in Kunming mice. International journal of biological macromolecules, 93, 1206-1209.
  • Referans149 Oluba, O. M., Onyeneke, E. C., Ojieh, G. C., Idonije, B.O. (2010). Evaluation of the hypoglycemic effect of aqueous extract of Ganoderma lucidum on STZ-induced diabetic wistar rats. Ann Biol Res, 1(3), 41-49.
  • Referans150 Ma, H. T., Hsieh, J. F., Chen, S. T. (2015). Anti-diabetic effects of Ganoderma lucidum. Phytochemistry, 114, 109-113.
  • Referans151 Xiao, C., Wu, Q., Zhang, J., Xie, Y., Cai, W., Tan, J. (2017). Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice. Journal of ethnopharmacology, 196, 47-57.
  • Referans152 Guo, W. L., Shi, F. F., Li, L., Xu, J. X., Chen, M., Wu, L., Zhang, Y. Y. (2019). Preparation of a novel Grifola frondosa polysaccharide-chromium (III) complex and its hypoglycemic and hypolipidemic activities in high fat diet and streptozotocin-induced diabetic mice. International journal of biological macromolecules, 131, 81-88.
  • Referans153 Kou, L., Du, M., Liu, P., Zhang, B., Zhang, Y., Yang, P., Wang, X. (2019). Anti-diabetic and anti-nephritic activities of Grifola frondosa mycelium polysaccharides in diet-streptozotocin-induced diabetic rats via modulation on oxidative stress. Applied biochemistry and biotechnology, 187(1), 310-322.
  • Referans154 Chen, Y., Liu, Y., Sarker, M. M. R., Yan, X., Yang, C., Zhao, L., Zhao, C. (2018). Structural characterization and antidiabetic potential of a novel heteropolysaccharide from Grifola frondosa via IRS1/PI3K-JNK signaling pathways. Carbohydrate polymers, 198, 452-461.
  • Referans155 Meera, K. S., Sudha, G., Rajathi, K., & Manjusha, G. V. (2011). Antidiabetic effect of aqueous extract of Hypsizygus ulmarius on Streptozotocin-Nicotiinamide induced diabetic rats. Asian Journal of Pharmaceutical & Biological Research (AJPBR), 1(2).
Toplam 155 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Eczacılık ve İlaç Bilimleri
Bölüm Derleme
Yazarlar

Ceren Öztürk 0000-0002-8019-7856

Funda Atila 0000-0003-1129-1045

Yayımlanma Tarihi 31 Mayıs 2021
Gönderilme Tarihi 11 Ağustos 2020
Kabul Tarihi 10 Şubat 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 45 Sayı: 2

Kaynak Göster

APA Öztürk, C., & Atila, F. (2021). MANTARLARIN BİYOLOJİK AKTİVİTELERİ İLE İLGİLİ İN VİTRO, İN VİVO VE KLİNİK DEĞERLENDİRMELER. Journal of Faculty of Pharmacy of Ankara University, 45(2), 344-378. https://doi.org/10.33483/jfpau.779015
AMA Öztürk C, Atila F. MANTARLARIN BİYOLOJİK AKTİVİTELERİ İLE İLGİLİ İN VİTRO, İN VİVO VE KLİNİK DEĞERLENDİRMELER. Ankara Ecz. Fak. Derg. Mayıs 2021;45(2):344-378. doi:10.33483/jfpau.779015
Chicago Öztürk, Ceren, ve Funda Atila. “MANTARLARIN BİYOLOJİK AKTİVİTELERİ İLE İLGİLİ İN VİTRO, İN VİVO VE KLİNİK DEĞERLENDİRMELER”. Journal of Faculty of Pharmacy of Ankara University 45, sy. 2 (Mayıs 2021): 344-78. https://doi.org/10.33483/jfpau.779015.
EndNote Öztürk C, Atila F (01 Mayıs 2021) MANTARLARIN BİYOLOJİK AKTİVİTELERİ İLE İLGİLİ İN VİTRO, İN VİVO VE KLİNİK DEĞERLENDİRMELER. Journal of Faculty of Pharmacy of Ankara University 45 2 344–378.
IEEE C. Öztürk ve F. Atila, “MANTARLARIN BİYOLOJİK AKTİVİTELERİ İLE İLGİLİ İN VİTRO, İN VİVO VE KLİNİK DEĞERLENDİRMELER”, Ankara Ecz. Fak. Derg., c. 45, sy. 2, ss. 344–378, 2021, doi: 10.33483/jfpau.779015.
ISNAD Öztürk, Ceren - Atila, Funda. “MANTARLARIN BİYOLOJİK AKTİVİTELERİ İLE İLGİLİ İN VİTRO, İN VİVO VE KLİNİK DEĞERLENDİRMELER”. Journal of Faculty of Pharmacy of Ankara University 45/2 (Mayıs 2021), 344-378. https://doi.org/10.33483/jfpau.779015.
JAMA Öztürk C, Atila F. MANTARLARIN BİYOLOJİK AKTİVİTELERİ İLE İLGİLİ İN VİTRO, İN VİVO VE KLİNİK DEĞERLENDİRMELER. Ankara Ecz. Fak. Derg. 2021;45:344–378.
MLA Öztürk, Ceren ve Funda Atila. “MANTARLARIN BİYOLOJİK AKTİVİTELERİ İLE İLGİLİ İN VİTRO, İN VİVO VE KLİNİK DEĞERLENDİRMELER”. Journal of Faculty of Pharmacy of Ankara University, c. 45, sy. 2, 2021, ss. 344-78, doi:10.33483/jfpau.779015.
Vancouver Öztürk C, Atila F. MANTARLARIN BİYOLOJİK AKTİVİTELERİ İLE İLGİLİ İN VİTRO, İN VİVO VE KLİNİK DEĞERLENDİRMELER. Ankara Ecz. Fak. Derg. 2021;45(2):344-78.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.