Araştırma Makalesi
BibTex RIS Kaynak Göster

FABRICATION OF ELECTROCHEMICAL NANOSENSOR BASED ON CuO AND GRAPHITE POWDER AND ITS APPLICATION FOR TRACE ANALYSIS OF OP (ORGANOPHOSPHORUS) PESTICIDES IN REAL SAMPLES

Yıl 2021, Cilt: 45 Sayı: 2, 332 - 343, 31.05.2021
https://doi.org/10.33483/jfpau.911025

Öz

Objective: Uncomplicated, low-cost, highly discerning, and sensitive electrochemically active nanosensors have been synthesized using copper salt as a precursor, surfactants, and structural directing agents. These synthesized CuO Nanoparticles (NPs) were electroactive and EC treatments were also performed by modifying these NPs with graphite powder (CPE) to enhance the electrocatalytic activity, sensitivity.
Material and Method: The characterization of these fabricated nanosensors was done by cyclic voltammetry (CV), differential pulse voltammetry (DPV), field emission scanning electron microscopy (FESEM), powder X-ray diffraction (PXRD), transmission electron microscopy (TEM).
Result and Discussion: The EC behavior of Organophosphorus (OP) pesticides in the real samples was examined by these fabricated sensors. Parameters such as pH of solution scan rate of the experiment, accumulation time, and potential difference have been optimized in the experiment for trace determination of OP pesticides.

Teşekkür

The authors are highly thankful to the Department of Chemistry Dr. HarisinghGour Central University Sagar (M.P.) India and Sophisticated Instrumentation Centre (SIC) of our university, for providing the necessary laboratory facilities. The author is also thankful to Prof. Ratnesh Das for providing guidance and support.

Kaynakça

  • 1. a)Imran Khan, Umar J. Pandit, Sneha Wankar, Ratnesh Das, Sudhir N. Limaye.(2016) "Fabrication of electrochemical nanosensor based on polyaniline film-coated AgNP-MWCNT-modified GCE and its application for trace analysis of fenitrothion" , Ionics. 23:1293–1308
  • b)Hanrahan G, Patil DG, Wang J (2004) EC sensors for environmental monitoring: design, development and applications. Journal of Environmental Monitoring6:657–664.
  • 2. Pandit UJ, Khan I, Wankar S, Raj KK, Limaye SN (2015) Development of an EC method for the determination of Bicalutamide at the SWCNT/CPE in pharmaceutical preparations and human biological fluids. Analytical methods 7:10192–10198.
  • 3. Habibi B, Jahanbakhshi M (2014) Silver NPs/multi walled carbon nanotubes nanocomposite modified electrode: voltammetric determination of clonazepam. Electrochimica Acta118:10–17.
  • 4. Zeng Y, Yu D, Yu Y, Zhou T, Shi G (2012) Differential pulse voltammetric determination of methyl parathion based on multiwalled carbon nanotubes–poly (acrylamide) nanocomposite film modified electrode. Journal Of Hazard Material 217-218:315–322.
  • 5. Wang J (2005) Carbon-nanotube based EC biosensors: a review. Electroanalysis 17:7–14.
  • 6. Zargar B, Parham H, Hatamie A (2015) EC investigation and stripping voltammetric determination of captopril at CuO NPs/multi-wall carbon nanotube nanocomposite electrode in tablet and urine samples. Analytical methods 7:1026–1035.
  • 7. Afkhami A, Ghaedi H, Madrakian T, Nematollahi D, Mokhtari B (2014) Electro-oxidation and voltammetric determination of oxymetholone in the presence of mestanolone using glassy carbon electrode modified with carbon nano tubes. Talanta 121:1–8.
  • 8. Pandit UJ, Khan I, Wankar S, Raj KK, Limaye SN (2016) Development of EC method for determination of Tolvaptan at MWCNT/CPE in pharmaceutical preparations and human biological fluids. Analytical Chemistry Letters 5:338–350.
  • 9. Kumaravel A, Chandrasekaran M (2011) A biocompatible nano TiO2/nafion composite modified glassy carbon electrode for the detection of fenitrothion. Journal of Electroanalytical Chemistry 650:163–170.
  • 10. Abbar JC, Nandibewoor ST (2012) Development of EC method for the determination of chlorzoxazone drug and its analytical applications to pharmaceutical dosage form and human biological fluids. Industrial and Engineering Chemistry Results 51:111–118.
  • 11. Li C, Wang C, Ma Y, Hu S (2004) Voltammetric determination of trace amounts of fenitrothion on a novel nano-TiO2 polymer film electrode. Microchimica Acta 148:27–33.
  • 12. Brahman PK, Dar RA, Pitre KS (2013) Conducting polymer film based EC sensor for the determination of amoxicillin in micellar media. Sensors Actuators B 176:307–314.
  • 13. Dar RA, Brahman PK, Tiwari S, Pitre KS (2012) EC studies of quinine in surfactant media using hanging mercury drop electrode: a cyclic voltammetric study. Colloid Surf B: Biointerfaces 98:72–79.
  • 14. S. Kargozar and M. Mozafari,( 2018) Nanotechnology and Nanomedicine: Start small, think big, Material Today , 15492–15500. 5(7).
  • 15. J. F. Liu, et al.,( 2006) Antioxidant redox sensors based on DNA modied carbon screen-printed electrodes, Analalytical Chemistry, , 78(19), 6879–6884
  • 16. Fatima Mustafa and Silvana Andreescu,(2020) Nanotechnology-based approaches for food sensing and packaging applications, Royal society of chemistry Advances, , 10, 19309
  • 17. E. F. S. Authority, R. Schoonjans and B. Eryasa,( 2019) Annual report of the EFSA Scientific Network of Risk Assessment of Nanotechnologies in Food and Feed for 2018, EFSA Supporting Publications, , 16(4), 1626E
  • 18. Hongyong Xiang ,Qinghua Cai, Yuan Li , Zhenxing Zhang , Lina CaoKun Li and Haijun Yang ; (2020, ); Sensors Applied for the Detection of Pesticides and Heavy Metals in Freshwaters ,Hindawi Journal of Sensors Volume Article ID 8503491, 22 pages
  • 19. C. V. Garcia, G. H. Shin and J. T. Kim,( 2018) Metal oxide-based nanocomposites in food packaging: Applications, migration, and regulations, Trends in Food Science and Technology , 82, 21–31
  • 20. Bayne, S.; Carlin, M. (2017) Forensic Applications of High Performance Liquid Chromatography; CRC Press Taylor & Francis Group: Boca Raton, FL, USA,.
  • 21. Carlin, M.G.; Dean, J.R.( 2017) Forensic Applications of Gas Chromatography; CRC Press Taylor & Francis Group: Boca Raton, FL, USA,.
  • 22. Stuart, B.H. (2013) Forensic Analytical Techniques; Wiley & Sons Ltd.: Chichester, UK,.
  • 23. Smith, J.P.; Randviir, E.P.; Banks, C.E.( 2016) An introduction to forensic electrochemistry. In Forensic Science: A Multidisciplinary Approach; Katz, E., Halámek, J., Eds.; Wiley-VCH: Weinheim, Germany,.
  • 24. Yáñez-Sedeño, P.; Agüí, L.; Villalonga, R.; Pingarrón, J.M.( 2014) Biosensors in forensic analysis: A review. Analytica Chimica Acta, 823, 1–19. [CrossRef] [PubMed]

CuO VE GRAFİT TOZUNA DAYALI ELEKTROKİMYASAL NANOSENSÖR İMALATI VE GERÇEK NUMUNELERDE OP (ORGANOFOSFOR) PESTİSİTLERİNİN ESER MADDE ANALİZİ İÇİN UYGULAMASI

Yıl 2021, Cilt: 45 Sayı: 2, 332 - 343, 31.05.2021
https://doi.org/10.33483/jfpau.911025

Öz

Amaç: Karmaşık olmayan, düşükmaliyetli, son derece seçici ve hassas elektrokimyasal olarak aktif nanosensörler,bir öncü olarak bakır tuzu, yüzey aktif maddeler ve yapısal yönlendirme ajanları kullanılarak sentezlenmiştir. Sentezlenen bu CuO Nanopartiküller (NP'ler) elektroaktiftir ve elektro katalitik aktiviteyi ve hassasiyeti artırmak için grafit tozu (CPE) ile modifiye edilerek EC işlemleri de gerçekleştirilmiştir.
Gereç ve Yöntem: Bu fabrikasyon nano sensörlerin karakterizasyonu, dönüşümlü voltametri (CV), diferansiyel puls voltametri (DPV), alan emisyonu taramalı elektron mikroskobu (FESEM), toz X-ışınıkırınımı (PXRD) ve transmisyon elektron mikroskobu (TEM) ile yapılmıştır.
Sonuç ve Tartışma: Organofosforlu (OP) pestisitlerin gerçek numunelerdeki EC davranışı bu fabrikasyon sensörlerle incelenmiştir. OP pestisitlerinin eser madde tespiti için çözelti tarama hızının pH'ı, birikme süresi ve potansiyel fark gibi parametreler optimize edilmiştir.

Kaynakça

  • 1. a)Imran Khan, Umar J. Pandit, Sneha Wankar, Ratnesh Das, Sudhir N. Limaye.(2016) "Fabrication of electrochemical nanosensor based on polyaniline film-coated AgNP-MWCNT-modified GCE and its application for trace analysis of fenitrothion" , Ionics. 23:1293–1308
  • b)Hanrahan G, Patil DG, Wang J (2004) EC sensors for environmental monitoring: design, development and applications. Journal of Environmental Monitoring6:657–664.
  • 2. Pandit UJ, Khan I, Wankar S, Raj KK, Limaye SN (2015) Development of an EC method for the determination of Bicalutamide at the SWCNT/CPE in pharmaceutical preparations and human biological fluids. Analytical methods 7:10192–10198.
  • 3. Habibi B, Jahanbakhshi M (2014) Silver NPs/multi walled carbon nanotubes nanocomposite modified electrode: voltammetric determination of clonazepam. Electrochimica Acta118:10–17.
  • 4. Zeng Y, Yu D, Yu Y, Zhou T, Shi G (2012) Differential pulse voltammetric determination of methyl parathion based on multiwalled carbon nanotubes–poly (acrylamide) nanocomposite film modified electrode. Journal Of Hazard Material 217-218:315–322.
  • 5. Wang J (2005) Carbon-nanotube based EC biosensors: a review. Electroanalysis 17:7–14.
  • 6. Zargar B, Parham H, Hatamie A (2015) EC investigation and stripping voltammetric determination of captopril at CuO NPs/multi-wall carbon nanotube nanocomposite electrode in tablet and urine samples. Analytical methods 7:1026–1035.
  • 7. Afkhami A, Ghaedi H, Madrakian T, Nematollahi D, Mokhtari B (2014) Electro-oxidation and voltammetric determination of oxymetholone in the presence of mestanolone using glassy carbon electrode modified with carbon nano tubes. Talanta 121:1–8.
  • 8. Pandit UJ, Khan I, Wankar S, Raj KK, Limaye SN (2016) Development of EC method for determination of Tolvaptan at MWCNT/CPE in pharmaceutical preparations and human biological fluids. Analytical Chemistry Letters 5:338–350.
  • 9. Kumaravel A, Chandrasekaran M (2011) A biocompatible nano TiO2/nafion composite modified glassy carbon electrode for the detection of fenitrothion. Journal of Electroanalytical Chemistry 650:163–170.
  • 10. Abbar JC, Nandibewoor ST (2012) Development of EC method for the determination of chlorzoxazone drug and its analytical applications to pharmaceutical dosage form and human biological fluids. Industrial and Engineering Chemistry Results 51:111–118.
  • 11. Li C, Wang C, Ma Y, Hu S (2004) Voltammetric determination of trace amounts of fenitrothion on a novel nano-TiO2 polymer film electrode. Microchimica Acta 148:27–33.
  • 12. Brahman PK, Dar RA, Pitre KS (2013) Conducting polymer film based EC sensor for the determination of amoxicillin in micellar media. Sensors Actuators B 176:307–314.
  • 13. Dar RA, Brahman PK, Tiwari S, Pitre KS (2012) EC studies of quinine in surfactant media using hanging mercury drop electrode: a cyclic voltammetric study. Colloid Surf B: Biointerfaces 98:72–79.
  • 14. S. Kargozar and M. Mozafari,( 2018) Nanotechnology and Nanomedicine: Start small, think big, Material Today , 15492–15500. 5(7).
  • 15. J. F. Liu, et al.,( 2006) Antioxidant redox sensors based on DNA modied carbon screen-printed electrodes, Analalytical Chemistry, , 78(19), 6879–6884
  • 16. Fatima Mustafa and Silvana Andreescu,(2020) Nanotechnology-based approaches for food sensing and packaging applications, Royal society of chemistry Advances, , 10, 19309
  • 17. E. F. S. Authority, R. Schoonjans and B. Eryasa,( 2019) Annual report of the EFSA Scientific Network of Risk Assessment of Nanotechnologies in Food and Feed for 2018, EFSA Supporting Publications, , 16(4), 1626E
  • 18. Hongyong Xiang ,Qinghua Cai, Yuan Li , Zhenxing Zhang , Lina CaoKun Li and Haijun Yang ; (2020, ); Sensors Applied for the Detection of Pesticides and Heavy Metals in Freshwaters ,Hindawi Journal of Sensors Volume Article ID 8503491, 22 pages
  • 19. C. V. Garcia, G. H. Shin and J. T. Kim,( 2018) Metal oxide-based nanocomposites in food packaging: Applications, migration, and regulations, Trends in Food Science and Technology , 82, 21–31
  • 20. Bayne, S.; Carlin, M. (2017) Forensic Applications of High Performance Liquid Chromatography; CRC Press Taylor & Francis Group: Boca Raton, FL, USA,.
  • 21. Carlin, M.G.; Dean, J.R.( 2017) Forensic Applications of Gas Chromatography; CRC Press Taylor & Francis Group: Boca Raton, FL, USA,.
  • 22. Stuart, B.H. (2013) Forensic Analytical Techniques; Wiley & Sons Ltd.: Chichester, UK,.
  • 23. Smith, J.P.; Randviir, E.P.; Banks, C.E.( 2016) An introduction to forensic electrochemistry. In Forensic Science: A Multidisciplinary Approach; Katz, E., Halámek, J., Eds.; Wiley-VCH: Weinheim, Germany,.
  • 24. Yáñez-Sedeño, P.; Agüí, L.; Villalonga, R.; Pingarrón, J.M.( 2014) Biosensors in forensic analysis: A review. Analytica Chimica Acta, 823, 1–19. [CrossRef] [PubMed]
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Ratnesh Das 0000-0002-5575-8359

Aayushı Chanderıya 0000-0001-8026-5065

Yayımlanma Tarihi 31 Mayıs 2021
Gönderilme Tarihi 7 Nisan 2021
Kabul Tarihi 20 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 45 Sayı: 2

Kaynak Göster

APA Das, R., & Chanderıya, A. (2021). FABRICATION OF ELECTROCHEMICAL NANOSENSOR BASED ON CuO AND GRAPHITE POWDER AND ITS APPLICATION FOR TRACE ANALYSIS OF OP (ORGANOPHOSPHORUS) PESTICIDES IN REAL SAMPLES. Journal of Faculty of Pharmacy of Ankara University, 45(2), 332-343. https://doi.org/10.33483/jfpau.911025
AMA Das R, Chanderıya A. FABRICATION OF ELECTROCHEMICAL NANOSENSOR BASED ON CuO AND GRAPHITE POWDER AND ITS APPLICATION FOR TRACE ANALYSIS OF OP (ORGANOPHOSPHORUS) PESTICIDES IN REAL SAMPLES. Ankara Ecz. Fak. Derg. Mayıs 2021;45(2):332-343. doi:10.33483/jfpau.911025
Chicago Das, Ratnesh, ve Aayushı Chanderıya. “FABRICATION OF ELECTROCHEMICAL NANOSENSOR BASED ON CuO AND GRAPHITE POWDER AND ITS APPLICATION FOR TRACE ANALYSIS OF OP (ORGANOPHOSPHORUS) PESTICIDES IN REAL SAMPLES”. Journal of Faculty of Pharmacy of Ankara University 45, sy. 2 (Mayıs 2021): 332-43. https://doi.org/10.33483/jfpau.911025.
EndNote Das R, Chanderıya A (01 Mayıs 2021) FABRICATION OF ELECTROCHEMICAL NANOSENSOR BASED ON CuO AND GRAPHITE POWDER AND ITS APPLICATION FOR TRACE ANALYSIS OF OP (ORGANOPHOSPHORUS) PESTICIDES IN REAL SAMPLES. Journal of Faculty of Pharmacy of Ankara University 45 2 332–343.
IEEE R. Das ve A. Chanderıya, “FABRICATION OF ELECTROCHEMICAL NANOSENSOR BASED ON CuO AND GRAPHITE POWDER AND ITS APPLICATION FOR TRACE ANALYSIS OF OP (ORGANOPHOSPHORUS) PESTICIDES IN REAL SAMPLES”, Ankara Ecz. Fak. Derg., c. 45, sy. 2, ss. 332–343, 2021, doi: 10.33483/jfpau.911025.
ISNAD Das, Ratnesh - Chanderıya, Aayushı. “FABRICATION OF ELECTROCHEMICAL NANOSENSOR BASED ON CuO AND GRAPHITE POWDER AND ITS APPLICATION FOR TRACE ANALYSIS OF OP (ORGANOPHOSPHORUS) PESTICIDES IN REAL SAMPLES”. Journal of Faculty of Pharmacy of Ankara University 45/2 (Mayıs 2021), 332-343. https://doi.org/10.33483/jfpau.911025.
JAMA Das R, Chanderıya A. FABRICATION OF ELECTROCHEMICAL NANOSENSOR BASED ON CuO AND GRAPHITE POWDER AND ITS APPLICATION FOR TRACE ANALYSIS OF OP (ORGANOPHOSPHORUS) PESTICIDES IN REAL SAMPLES. Ankara Ecz. Fak. Derg. 2021;45:332–343.
MLA Das, Ratnesh ve Aayushı Chanderıya. “FABRICATION OF ELECTROCHEMICAL NANOSENSOR BASED ON CuO AND GRAPHITE POWDER AND ITS APPLICATION FOR TRACE ANALYSIS OF OP (ORGANOPHOSPHORUS) PESTICIDES IN REAL SAMPLES”. Journal of Faculty of Pharmacy of Ankara University, c. 45, sy. 2, 2021, ss. 332-43, doi:10.33483/jfpau.911025.
Vancouver Das R, Chanderıya A. FABRICATION OF ELECTROCHEMICAL NANOSENSOR BASED ON CuO AND GRAPHITE POWDER AND ITS APPLICATION FOR TRACE ANALYSIS OF OP (ORGANOPHOSPHORUS) PESTICIDES IN REAL SAMPLES. Ankara Ecz. Fak. Derg. 2021;45(2):332-43.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.