Araştırma Makalesi
BibTex RIS Kaynak Göster

INTEGRATED BIOINFORMATIC ANALYSIS TO EVALUATE TARGET GENES AND PATHWAYS IN CHRONIC LYMPHOCYTIC LEUKEMIA

Yıl 2023, Cilt: 47 Sayı: 1, 239 - 249, 20.01.2023
https://doi.org/10.33483/jfpau.1205775

Öz

Objective: The most common type of leukemia, chronic lymphocytic leukemia (CLL), is characterized by progressive accumulation of monoclonal B cells with a specific immunophenotype in the blood, bone marrow, and lymphoid organ. The goal of this research was to use bioinformatic analysis to comprehend the molecular mechanisms causing CLL and to investigate potential targets for the diagnosis and therapy of CLL.
Material and Method: Expression data from CLL patients with accession numbers GSE22529 and GSE26725 were downloaded from the GEO database for bioinformatic analysis. GSE22529 data was studied with samples from 41 CLL patients and 11 healthy groups, while GSE26725 data was studied with blood samples from 12 CLL patients and 5 healthy groups. GEO2R was used to find differentially expressed genes (DEGs) in CLL patient samples and healthy control samples. The DAVID program was used to perform GO and KEGG enrichment analyses on DEGs. Using the Cytoscape software, a protein-protein interaction (PPI) network was created, and hub genes associated with CLL were identified.
Result and Discussion: DEGs with p 0.05 and log2FC 0, log2FC>0 were chosen after analysis with GEO2R. In the GSE22529 dataset, 942 genes had higher expression levels in CLL patients compared with controls, while the expression of 1007 genes decreased. In the GSE26725 dataset, CLL patients had lower expression levels for 916 genes compared with controls, while 939 genes showed an increase in expression. 229 DEGs with higher expression levels and 308 DEGs with lower expression levels were found in both sets of data. It has been observed that these common genes, whose expression has changed, are enriched in protein processing in the ER, Chemokine, B-cell receptor, T-cell receptor, protein export pathways. Additionally, DDOST, RPL18, RPL18A, RPL19, RPL31, GNB3, GNB4, GNG11, GNGT1, NEDD8, UBE2M RBX1, FBXO21, SKP1, KLHL9 and CAND1 were identified as the most important genes. Our study's findings demonstrated that newly discovered genes and pathways may be candidates for CLL biomarkers that can be used for both the diagnosis and drug treatment of the disease.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • 1. Yan, H., Tian, S., Kleinstern, G., Wang, Z., Lee, J.H., Boddicker, N.J., Cerhan, J.R., Kay, N.E., Braggio, E., Slager, S.L. (2020). Chronic lymphocytic leukemia (CLL) risk is mediated by multiple enhancer variants within CLL risk loci. Human Molecular Genetics, 29(16), 2761-2774. [CrossRef]
  • 2. Hallek, M. (2019). Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment. Am J Hematology, 94(11), 1266-1287. [CrossRef]
  • 3. Gao, C., Zhou, C., Zhuang, J., Liu, L., Wei, J., Liu, C., Huayao, Li, H., Sun, C. (2019). Identification of key candidate genes and miRNA‑mRNA target pairs in chronic lymphocytic leukemia by integrated bioinformatics analysis. Molecular Medicine Reports, 19, 362-374. [CrossRef]
  • 4. Luo, P., Yang, Q., Cong, L.L., Wang, X.F., Li, Y.S., Zhong, X.M., Xie, R.T., Jia, C.Y., Yang, H.Q., Li, W.P., Cong, X.L., Xia, Q., Fu, D., Zeng, Q.H., Ma, Y.S. (2017). Identification of miR124a as a novel diagnostic and prognostic biomarker in nonsmall cell lung cancer for chemotherapy. Molecular Medicine Reports, 16, 238‑246. [CrossRef]
  • 5. Kamaraj, B., Gopalakrishnan, C., Purohit, R. (2014). In silico analysis of miRNA‑mediated gene regulation in OCA and OA genes. Cell Biochemistry and Biophysics, 70,1923-1932. [CrossRef]
  • 6. Zhang, Y., Han, X., Wu, H., Zhou, Y. (2017). Bioinformatics analysis of transcription profiling of solid pseudopapillary neoplasm of the pancreas. Molecular Medicine Reports, 16, 1635-1642. [CrossRef]
  • 7. Yan, H., Zheng, G., Qu, J., Liu, Y., Huang, X., Zhang, E., Cai, Z. (2019). Identification of key candidate genes and pathways in multiple myeloma by integrated bioinformatics analysis. Journal of Cellular Physiology, 234(12), 23785-23797. [CrossRef]
  • 8. Bustin, S.A., Dorudi, S. (2004). Gene expression profiling for molecular staging and prognosis prediction in colorectal cancer. Expert Review of Molecular Diagnostics, 4, 599–607. [CrossRef]
  • 9. Nannini, M., Pantaleo, M.A., Maleddu, A., Astolfi, A., Formica, S., Biasco, G. (2009). Gene expression profiling in colorectal cancer using microarray technologies: results and perspectives. Cancer Treatment Reviews, 35, 201-209. [CrossRef]
  • 10. Kulasingam, V., Diamandis, E.P. (2008). Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nature Clinical Practice Oncology, 5, 588–599. [CrossRef]
  • 11. Gao, C., Zhou, C., Zhuang, J., Liu, L., Wei, J., Liu, C., Li, H., Sun, C. (2019). Identification of key candidate genes and miRNA‑mRNA target pairs in chronic lymphocytic leukemia by integrated bioinformatics analysis. Molecular Medicine Reports, 19(1), 362-374. [CrossRef]
  • 12. Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Holko, M., Yefanov, A., Lee, H., Zhang, N., Robertson, C.L., Serova, N., Davis, S., Soboleva, A. (2013). NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Research, 39(1), D1005-D1010. [CrossRef]
  • 13. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics. 25, 25-29. [CrossRef]
  • 14. Kanehisa M., Goto S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27-30. [CrossRef]
  • 15. Chang, X., Pan, J., Zhao, R., Yan, T., Wang, X., Guo, C., Yang, Y., Wang, G. (2022). DDOST Correlated with Malignancies and Immune Microenvironment in Gliomas. Frontiers in Immunology, 13, 1-13. [CrossRef]
  • 16. Shapanis, A., Lai, C., Smith, S., Coltart, G., Sommerlad, M., Schofield, J., Parkinson, E., Skipp, P.,Healy, E. (2021). Identification of Proteins Associated With Development of Metastasis From Cutaneous Squamous Cell Carcinomas (cSCCs) via Proteomic Analysis of Primary cSCCs. British Journal of Dermatology, 184(4), 709-721. [CrossRef]
  • 17. Zhu, C., Xiao, H., Jiang, X., Tong R., Guan, J. (2021). Prognostic Biomarker DDOST and Its Correlation With Immune Infiltrates in Hepatocellular Carcinoma. Frontiers in Genetics, 12, 1-13. [CrossRef]
  • 18. Gao, C., Zhou, C., Zhuang, J., Liu, L., Wei, J., Liu, C., Li, H., Sun, C. (2019). Identification of key candidate genes and miRNA‑mRNA target pairs in chronic lymphocytic leukemia by integrated bioinformatics analysis. Molecular Medicine Reports, 19, 362-374. [CrossRef]
  • 19. Sbarrato, T., Horvilleur, E., Pöyry, T., Hill, K., Chaplin, L.C., Spriggs, R.V., Stoneley, M., Wilson, L., Jayne, S., Vulliamy, T., Beck, D., Dokal, I., Dyer, M.J.S., Yeomans, A.M., Packham, G., Bushell, M., Wagner, S.D., Willis, A.E. (2016). A ribosome-related signature in peripheral blood CLL B cells is linked to reduced survival following treatment. Cell Death and Disease, 7(6), e2249. [CrossRef]
  • 20. Goudarzi, K.M., Lindström, M.S. (2016) Role of ribosomal protein mutations in tumor development (Review). International Journal of Oncology, 48(4), 1313-1324. [CrossRef]
  • 21. Burger, J.A. (2010). Chemokines and chemokine receptors in chronic lymphocytic leukemia (CLL):From understanding the basics towards therapeutic targeting. Seminars in Cancer Biology 20, 424-430. [CrossRef]
  • 22. Arenas, V., Castaño, J.L., Dominguez-Garcia, J.J., Yañez, L., Pipao´n, C. (2021). A Different View for an Old Disease: NEDDylation and Other Ubiquitin Like Post-Translational Modifications in Chronic Lymphocytic Leukemia. Frontiers in Oncology, 11, 729550. [CrossRef]
  • 23. Chen, Y., Sun., L. (2022). Inhibition of NEDD8 NEDDylation induced apoptosis in acute myeloid leukemia cells via p53 signaling pathway. Bioscience Reports 42(8), 1-16. [CrossRef]
  • 24. Severin, F., Frezzato, F., Visentin, A., Martini, V., Trimarco, V., Carraro, S., Tibaldi, E., Brunati,A.M., Piazza, F., Semenzato, G., Facco, M., Trentin, L. (2019). In chronic lymphocytic leukemia the JAK2/STAT3 pathway is constitutively activated and its inhibition leads to CLL cell death unaffected by the protective bone marrow microenvironment. Cancers (Basel). 11(12), 1939. [CrossRef]
  • 25. Zhou, J.D., Yao, D.M., Li, X.X., Zhang, T.J., Zhang, W., Ma, J.C., Guo, H., Deng, Z.Q., Lin, J., Qian, J. (2017). KRAS overexpression independent of RAS mutations confers an adverse prognosis in cytogenetically normal acute myeloid leukemia. Oncotarget, 8(39), 66087-66097. [CrossRef]

ENTEGRE BİYOİNFORMATİK ANALİZ İLE KRONİK LENFOSİTİK LÖSEMİDE HEDEF GENLERİN VE YOLAKLARIN BELİRLENMESİ

Yıl 2023, Cilt: 47 Sayı: 1, 239 - 249, 20.01.2023
https://doi.org/10.33483/jfpau.1205775

Öz

Amaç: En yaygın lösemi türü olan kronik lenfositik lösemi (KLL), kanda, kemik iliğinde ve lenfoid organda spesifik bir immünofenotipe sahip monoklonal B hücrelerinin ilerleyici birikimi ile karakterize edilir. Bu çalışmanın amacı, biyoinformatik analiz yaparak KLL’nin altında yatan moleküler mekanizmaları araştırmak, KLL tanı ve tedavisi için potansiyel hedefleri belirlemektir.
Gereç ve Yöntem: Biyoinformatik analiz için GEO veri tabanından KLL hasta verilerine ait GSE22529 ve GSE26725 erişim numaralarına sahip ekspresyon dataları indirildi. GSE22529 numaralı data 41 KLL hasta ve 11 sağlıklı gruptan, GSE26725 numaralı data ise 12 KLL ve 5 sağlıklı gruptan alınan kan örnekleri ile çalışılmıştır. KLL hasta örnekleri ile sağlıklı kontrol örnekler farklı şekilde ifade edilen genleri (DEGs) bulabilmek için GEO2R ile analiz edildi. DEG'ler için DAVID programı kullanılarak GO ve KEGG zenginleştirme analizleri gerçekleştirildi. Cytoscape yazılımı kullanılarak protein-protein etkileşim (PPI) ağı oluşturuldu ve KLL ile ilişkili önemli genler tesbit edildi.
Sonuç ve Tartışma: GEO2R ile analiz sonrası p<0.05 ve log2FC<0, log2FC>0 olan DEG’ler seçildi. GSE22529 veri setinde KLL hastalarında kontrol grubuna göre 942 genin ifadesi artmış, 1007 genin ifadesi azalmıştır. GSE26725 veri setinde ise KLL hastalarında kontrol grubuna göre 939 genin ifadesi artmış, 916 genin ifadesi azalmıştır. Her 2 veri seti için ortak olarak ifadesi artan 229, ifadesi azalan 308 DEG tanımlanmıştır. İfadesi değişen bu ortak genlerin ER’de protein işlenmesi, kemokin, B-hücre reseptör, T-hücre reseptör, protein taşıma gibi yolaklarda zenginleştiği görülmüştür. Buna ek olarak DDOST, RPL18, RPL18A, RPL19, RPL31, GNB3, GNB4, GNG11, GNGT1, NEDD8, UBE2M RBX1, FBXO21, SKP1, KLHL9 and CAND1 en önemli genler olarak belirlenmiştir. Çalışmamızın sonucu, ortaya çıkan genlerin ve yolakların KLL’nin tanısında ve ilaç tedavisinde kullanılabilecek birer biyobelirteç adayı olabileceğini göstermiştir.

Proje Numarası

-

Kaynakça

  • 1. Yan, H., Tian, S., Kleinstern, G., Wang, Z., Lee, J.H., Boddicker, N.J., Cerhan, J.R., Kay, N.E., Braggio, E., Slager, S.L. (2020). Chronic lymphocytic leukemia (CLL) risk is mediated by multiple enhancer variants within CLL risk loci. Human Molecular Genetics, 29(16), 2761-2774. [CrossRef]
  • 2. Hallek, M. (2019). Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment. Am J Hematology, 94(11), 1266-1287. [CrossRef]
  • 3. Gao, C., Zhou, C., Zhuang, J., Liu, L., Wei, J., Liu, C., Huayao, Li, H., Sun, C. (2019). Identification of key candidate genes and miRNA‑mRNA target pairs in chronic lymphocytic leukemia by integrated bioinformatics analysis. Molecular Medicine Reports, 19, 362-374. [CrossRef]
  • 4. Luo, P., Yang, Q., Cong, L.L., Wang, X.F., Li, Y.S., Zhong, X.M., Xie, R.T., Jia, C.Y., Yang, H.Q., Li, W.P., Cong, X.L., Xia, Q., Fu, D., Zeng, Q.H., Ma, Y.S. (2017). Identification of miR124a as a novel diagnostic and prognostic biomarker in nonsmall cell lung cancer for chemotherapy. Molecular Medicine Reports, 16, 238‑246. [CrossRef]
  • 5. Kamaraj, B., Gopalakrishnan, C., Purohit, R. (2014). In silico analysis of miRNA‑mediated gene regulation in OCA and OA genes. Cell Biochemistry and Biophysics, 70,1923-1932. [CrossRef]
  • 6. Zhang, Y., Han, X., Wu, H., Zhou, Y. (2017). Bioinformatics analysis of transcription profiling of solid pseudopapillary neoplasm of the pancreas. Molecular Medicine Reports, 16, 1635-1642. [CrossRef]
  • 7. Yan, H., Zheng, G., Qu, J., Liu, Y., Huang, X., Zhang, E., Cai, Z. (2019). Identification of key candidate genes and pathways in multiple myeloma by integrated bioinformatics analysis. Journal of Cellular Physiology, 234(12), 23785-23797. [CrossRef]
  • 8. Bustin, S.A., Dorudi, S. (2004). Gene expression profiling for molecular staging and prognosis prediction in colorectal cancer. Expert Review of Molecular Diagnostics, 4, 599–607. [CrossRef]
  • 9. Nannini, M., Pantaleo, M.A., Maleddu, A., Astolfi, A., Formica, S., Biasco, G. (2009). Gene expression profiling in colorectal cancer using microarray technologies: results and perspectives. Cancer Treatment Reviews, 35, 201-209. [CrossRef]
  • 10. Kulasingam, V., Diamandis, E.P. (2008). Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nature Clinical Practice Oncology, 5, 588–599. [CrossRef]
  • 11. Gao, C., Zhou, C., Zhuang, J., Liu, L., Wei, J., Liu, C., Li, H., Sun, C. (2019). Identification of key candidate genes and miRNA‑mRNA target pairs in chronic lymphocytic leukemia by integrated bioinformatics analysis. Molecular Medicine Reports, 19(1), 362-374. [CrossRef]
  • 12. Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Holko, M., Yefanov, A., Lee, H., Zhang, N., Robertson, C.L., Serova, N., Davis, S., Soboleva, A. (2013). NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Research, 39(1), D1005-D1010. [CrossRef]
  • 13. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics. 25, 25-29. [CrossRef]
  • 14. Kanehisa M., Goto S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27-30. [CrossRef]
  • 15. Chang, X., Pan, J., Zhao, R., Yan, T., Wang, X., Guo, C., Yang, Y., Wang, G. (2022). DDOST Correlated with Malignancies and Immune Microenvironment in Gliomas. Frontiers in Immunology, 13, 1-13. [CrossRef]
  • 16. Shapanis, A., Lai, C., Smith, S., Coltart, G., Sommerlad, M., Schofield, J., Parkinson, E., Skipp, P.,Healy, E. (2021). Identification of Proteins Associated With Development of Metastasis From Cutaneous Squamous Cell Carcinomas (cSCCs) via Proteomic Analysis of Primary cSCCs. British Journal of Dermatology, 184(4), 709-721. [CrossRef]
  • 17. Zhu, C., Xiao, H., Jiang, X., Tong R., Guan, J. (2021). Prognostic Biomarker DDOST and Its Correlation With Immune Infiltrates in Hepatocellular Carcinoma. Frontiers in Genetics, 12, 1-13. [CrossRef]
  • 18. Gao, C., Zhou, C., Zhuang, J., Liu, L., Wei, J., Liu, C., Li, H., Sun, C. (2019). Identification of key candidate genes and miRNA‑mRNA target pairs in chronic lymphocytic leukemia by integrated bioinformatics analysis. Molecular Medicine Reports, 19, 362-374. [CrossRef]
  • 19. Sbarrato, T., Horvilleur, E., Pöyry, T., Hill, K., Chaplin, L.C., Spriggs, R.V., Stoneley, M., Wilson, L., Jayne, S., Vulliamy, T., Beck, D., Dokal, I., Dyer, M.J.S., Yeomans, A.M., Packham, G., Bushell, M., Wagner, S.D., Willis, A.E. (2016). A ribosome-related signature in peripheral blood CLL B cells is linked to reduced survival following treatment. Cell Death and Disease, 7(6), e2249. [CrossRef]
  • 20. Goudarzi, K.M., Lindström, M.S. (2016) Role of ribosomal protein mutations in tumor development (Review). International Journal of Oncology, 48(4), 1313-1324. [CrossRef]
  • 21. Burger, J.A. (2010). Chemokines and chemokine receptors in chronic lymphocytic leukemia (CLL):From understanding the basics towards therapeutic targeting. Seminars in Cancer Biology 20, 424-430. [CrossRef]
  • 22. Arenas, V., Castaño, J.L., Dominguez-Garcia, J.J., Yañez, L., Pipao´n, C. (2021). A Different View for an Old Disease: NEDDylation and Other Ubiquitin Like Post-Translational Modifications in Chronic Lymphocytic Leukemia. Frontiers in Oncology, 11, 729550. [CrossRef]
  • 23. Chen, Y., Sun., L. (2022). Inhibition of NEDD8 NEDDylation induced apoptosis in acute myeloid leukemia cells via p53 signaling pathway. Bioscience Reports 42(8), 1-16. [CrossRef]
  • 24. Severin, F., Frezzato, F., Visentin, A., Martini, V., Trimarco, V., Carraro, S., Tibaldi, E., Brunati,A.M., Piazza, F., Semenzato, G., Facco, M., Trentin, L. (2019). In chronic lymphocytic leukemia the JAK2/STAT3 pathway is constitutively activated and its inhibition leads to CLL cell death unaffected by the protective bone marrow microenvironment. Cancers (Basel). 11(12), 1939. [CrossRef]
  • 25. Zhou, J.D., Yao, D.M., Li, X.X., Zhang, T.J., Zhang, W., Ma, J.C., Guo, H., Deng, Z.Q., Lin, J., Qian, J. (2017). KRAS overexpression independent of RAS mutations confers an adverse prognosis in cytogenetically normal acute myeloid leukemia. Oncotarget, 8(39), 66087-66097. [CrossRef]
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Buket Altınok Güneş 0000-0002-8852-6626

Proje Numarası -
Erken Görünüm Tarihi 21 Kasım 2022
Yayımlanma Tarihi 20 Ocak 2023
Gönderilme Tarihi 16 Kasım 2022
Kabul Tarihi 9 Aralık 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 47 Sayı: 1

Kaynak Göster

APA Altınok Güneş, B. (2023). INTEGRATED BIOINFORMATIC ANALYSIS TO EVALUATE TARGET GENES AND PATHWAYS IN CHRONIC LYMPHOCYTIC LEUKEMIA. Journal of Faculty of Pharmacy of Ankara University, 47(1), 239-249. https://doi.org/10.33483/jfpau.1205775
AMA Altınok Güneş B. INTEGRATED BIOINFORMATIC ANALYSIS TO EVALUATE TARGET GENES AND PATHWAYS IN CHRONIC LYMPHOCYTIC LEUKEMIA. Ankara Ecz. Fak. Derg. Ocak 2023;47(1):239-249. doi:10.33483/jfpau.1205775
Chicago Altınok Güneş, Buket. “INTEGRATED BIOINFORMATIC ANALYSIS TO EVALUATE TARGET GENES AND PATHWAYS IN CHRONIC LYMPHOCYTIC LEUKEMIA”. Journal of Faculty of Pharmacy of Ankara University 47, sy. 1 (Ocak 2023): 239-49. https://doi.org/10.33483/jfpau.1205775.
EndNote Altınok Güneş B (01 Ocak 2023) INTEGRATED BIOINFORMATIC ANALYSIS TO EVALUATE TARGET GENES AND PATHWAYS IN CHRONIC LYMPHOCYTIC LEUKEMIA. Journal of Faculty of Pharmacy of Ankara University 47 1 239–249.
IEEE B. Altınok Güneş, “INTEGRATED BIOINFORMATIC ANALYSIS TO EVALUATE TARGET GENES AND PATHWAYS IN CHRONIC LYMPHOCYTIC LEUKEMIA”, Ankara Ecz. Fak. Derg., c. 47, sy. 1, ss. 239–249, 2023, doi: 10.33483/jfpau.1205775.
ISNAD Altınok Güneş, Buket. “INTEGRATED BIOINFORMATIC ANALYSIS TO EVALUATE TARGET GENES AND PATHWAYS IN CHRONIC LYMPHOCYTIC LEUKEMIA”. Journal of Faculty of Pharmacy of Ankara University 47/1 (Ocak 2023), 239-249. https://doi.org/10.33483/jfpau.1205775.
JAMA Altınok Güneş B. INTEGRATED BIOINFORMATIC ANALYSIS TO EVALUATE TARGET GENES AND PATHWAYS IN CHRONIC LYMPHOCYTIC LEUKEMIA. Ankara Ecz. Fak. Derg. 2023;47:239–249.
MLA Altınok Güneş, Buket. “INTEGRATED BIOINFORMATIC ANALYSIS TO EVALUATE TARGET GENES AND PATHWAYS IN CHRONIC LYMPHOCYTIC LEUKEMIA”. Journal of Faculty of Pharmacy of Ankara University, c. 47, sy. 1, 2023, ss. 239-4, doi:10.33483/jfpau.1205775.
Vancouver Altınok Güneş B. INTEGRATED BIOINFORMATIC ANALYSIS TO EVALUATE TARGET GENES AND PATHWAYS IN CHRONIC LYMPHOCYTIC LEUKEMIA. Ankara Ecz. Fak. Derg. 2023;47(1):239-4.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.