Araştırma Makalesi
BibTex RIS Kaynak Göster

ASKORBİK ASİT İÇEREN POLİELEKTROLİT KİTOZAN-JELATİN HİDROJELLERİN GELİŞTİRİLMESİ VE KARAKTERİZASYONU

Yıl 2023, Cilt: 47 Sayı: 3, 719 - 730, 20.09.2023
https://doi.org/10.33483/jfpau.1269790

Öz

Amaç: Çalışmanın amacı, güçlü bir antioksidan olan askorbik asit içeren, polielektrolit kompleksi olan ve olmayan kitozan-jelatin hidrojelleri formüle etmektir.
Gereç ve Yöntem: Polielektrolit kompleksi oluşumunun, jelatin konsantrasyonunun (%10-20) ve kitozan:jelatin oranının (1:1, 1:2, 2:1 a/a) reolojik özellikler, in vitro salım ve enkapsülasyon etkinliği üzerindeki etkisi araştırılmıştır. Salım sonuçları AUC, MDT ve MRT kullanılarak karşılaştırılmıştır. Ayrıca MTT testi kullanılarak L929 hücre hattı üzerindeki 24 ve 72 saatlik sitotoksik ve proliferatif etkileri incelenerek geliştirilen hidrojelin topikal kullanım potansiyeli değerlendirilmiştir
Sonuç ve Tartışma: Polielektrolit kompleksi oluşumu, ilaç salımının gelişmesine ve viskozitenin artmasına yol açmıştır. Boş ve ilaç yüklü polielektrolit hidrojellerin hücre canlılığının 72 saat sonunda tüm formülasyonlarda (kitozan:jelatin oranı 1:2 a/a olan formülasyonlar hariç) %70’in üzerinde olması, askorbik asit ve hidrojellerin hücresel toksisiteye neden olmadığını ve güvenle kullanılabilir olduğunu göstermektedir. Jelatin oranının en fazla %50 olması gerektiği ve fazla jelatinin hücre canlılığını azalttığı kanıtlanmıştır. Sonuç olarak F6 kodlu polielektrolit hidrojel (%20 jelatin; 2:1 a/a kitozan:jelatin), yüksek MDT ve AUC değerleri ve >%80 hücre canlılığı ile en uzun kontrollü ilaç salınımına yol açtığı için ideal formülasyondur. Sonuç olarak, polielektrolit kompleks oluşumu daha uygundur ve istenen özellikleri elde etmek için kitozan:jelatin oranı ve jelatin konsantrasyonu manipüle edilebilir.

Kaynakça

  • 1. Sheraz, M.A., Ahmad, I., Vaid, F.M., Ahmed, S., Shaikh, R.H., Iqbal, K. (2011). Formulation and stability of ascorbic acid in topical preparations. Systematic Reviews in Pharmacy, 2(2), 86-90. [CrossRef]
  • 2. Canelas, V., Teixeira da Costa, C. (2007). Quantitative HPLC analysis of rosmarinic acid in extracts of melissa officinalis and spectrophotometric measurement of their antioxidant activities. Journal of Chemical Education, 84(9), 1502-1504. [CrossRef]
  • 3. Martemucci, G., Costagliola, C., Mariano, M., D’andrea, L., Napolitano, P., Alessandro, D., Gabriella A. (2022). Free radical properties, source and targets, antioxidant consumption and health. Oxygen, 2(2), 48-78. [CrossRef]
  • 4. Yucel, C., Seker Karatoprak, G., Yalcintas, S., Eren Boncu, T. (2022). Ethosomal (-)-epigallocatechin-3-gallate as a novel approach to enhance antioxidant, anti-collagenase and anti-elastase effects. Beilstein Journal of Nanotechnollogy, 13, 491-502. [CrossRef]
  • 5. Arrigoni, O., De Tullion, M.C. (2002). Ascorbic acid: Much more than just an antioxidant. Biochimica et Biophysica Acta, 1569, 1-9. [CrossRef]
  • 6. Ahmadi, F., Oveisi, Z., Mohammadi Samani, S., Amoozgar, Z. (2015). Chitosan based hydrogels: Characteristics and pharmaceutical applications. Research in Pharmaceutical Sciences, 10(1), 1-16.
  • 7. Ng, W.L., Yeong, W.Y., Naing, M.W. (2016). Development of polyelectrolyte chitosan-gelatin hydrogels for skin bioprinting. Procedia CIRP, 49, 105-112. [CrossRef]
  • 8. Huang, Y., Onyeri, S., Siewe, M., Moshfeghian, A., Madihally, S.V. (2005). In vitro characterization of chitosan-gelatin scaffolds for tissue engineering. Biomaterials, 26(36), 7616-2767. [CrossRef]
  • 9. Mao, J.S., Zhao, L.G., Yin, Y.J., Yao, D.Y. (2003). Structure and properties of bilayer chitosan-gelatin scaffolds. Biomaterials, 24, 1067-1074. [CrossRef]
  • 10. Mao, J.S., Cui, Y.L., Wang, X.H., Sun, Y., Yin, Y.J., Zhao, H.M., De Yao, K. (2004). A preliminary study on chitosan and gelatin polyelectrolyte complex cytocompatibility by cell cycle and apoptosis analysis. Biomaterials, 25(18), 3973-3981. [CrossRef]
  • 11. Nicolay, V.K., Nina, S., Yuliya, K., Galina, B. (2020). Formation of polyelectrolyte complexes from chitosan and alkaline gelatin. KnE Life Sciences, 109-119. [CrossRef]
  • 12. Malafaya, P.B., Silva, G.A., Reis, R.L. (2007). Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Advanced Drug Delivery Reviews, 59(4-5), 207-233. [CrossRef]
  • 13. Mao, J., Zhao, L., de Yao, K., Shang, Q., Yang, G., Cao, Y. (2003). Study of novel chitosan-gelatin artificial skin in vitro. Journal of Biomedical Materials Research, 64, 301-308. [CrossRef]
  • 14. Mathew, S.A., Arumainathan, S. (2022). Crosslinked chitosan-gelatin biocompatible nanocomposite as a neuro drug carrier. ACS Omega, 7(22), 18732-18744. [CrossRef]
  • 15. Lu, B., Wang, T., Li, Z., Dai, F., Lv, L., Tang, F., Yu, K., Liu, J., Lan, G. (2016). Healing of skin wounds with a chitosan-gelatin sponge loaded with tannins and platelet-rich plasma. International Journal of Biological Macromolecules, 82, 884-891. [CrossRef]
  • 16. Karamustafa, F., Çelebi, N., Değim, Z., Yılmaz, Ş. (2006). Evaluation of the viability of l-929 cells in the presence of alendronate and absorption enhancers. FABAD Journal of Pharmaceutical Sciences, 31, 1-5.
  • 17. ISO-10993-5. (2009). From https://www.iso.org/obp/ui/#iso:std:iso:10993:-5:ed-3:v1:en. Accessed date: 20.03.2023.
  • 18. ISO-7405. (2018). From https://www.iso.org/obp/ui/#iso:std:iso:7405:ed-3:v2:en. Accessed date: 20.03.2023.
  • 19. Fischetti, T., Celikkin, N., Contessi Negrini, N., Fare, S., Swieszkowski, W. (2020). Tripolyphosphate-crosslinked chitosan/gelatin biocomposite ink for 3d printing of uniaxial scaffolds. Frontiers in Bioengineering and Biotechnology, 8, 1-15. [CrossRef]
  • 20. Soni, G., Yadav, K.S. (2014). High encapsulation efficiency of poloxamer-based injectable thermoresponsive hydrogels of etoposide. Pharmaceutical Development and Technology, 19(6), 651-661. [CrossRef]
  • 21. Ergin, A.D., Sezgin Bayindir, Z., Yüksel, N. (2019). Characterization and optimization of colon targeted S-adenosyl-L-methionine loaded chitosan nanoparticles. Journal of Research in Pharmacy, 23(5), 914-926. [CrossRef]
  • 22. Zhang, Y., Huo, M., Zhou, J., Zou, A., Li, W., Yao, C., Xie, S. (2010). DDSolver: An add-in program for modeling and comparison of drug dissolution profiles. The AAPS Journal, 12(3), 263-271. [CrossRef]
  • 23. Lewin, S. (1976). Vitamin C: Its Molecular Biology and Medical Potential. Academic Press, London. p.231.
  • 24. Sun, H., Choi, D., Heo, J., Jung, S.Y., Hong, J. (2020). Studies on the drug loading and release profiles of degradable chitosan-based multilayer films for anticancer treatment. Cancers, 12(3), 593-607. [CrossRef]
  • 25. Zhou, Z., Liu, L., Liu, Q., Zhao, Y., Xu, G., Tang, A., Zeng, W., Yi, Q., Zhou, J. (2012). Study on controlled release of 5-fluorouracil from gelatin/chitosan microspheres. Journal of Macromolecular Science, Part A, 49(12), 1030-1034. [CrossRef]
  • 26. Mahjoorian, A., Jafarian, S., Fazeli, F., Saeidi A., Mohammad R. (2019). A mathematical model for describing the rheological behaviour of skin gelatine extracted from the caspian sea huso huso. Journal of Aquatic Food Product Technology, 29(1), 2-14. [CrossRef]
  • 27. Desbrieres, J. (2002). Viscosity of semiflexible chitosan solutions: Influence of concentration, temperature, and role of intermolecular interactions. Biomacromolecules, 3, 342-349.
  • 28. Ma, Y., Liu, Y., Su, H., Wang, L., Zhang, J. (2018). Relationship between hydrogen bond and viscosity for a series of pyridinium ionic liquids: Molecular dynamics and quantum chemistry. Journal of Molecular Liquids, 255, 176-184. [CrossRef]
  • 29. El-hefian, E.A. Yahaya, A.H. (2010). Rheological study of chitosan and its blends: An overview. Maejo International Journal of Science and Technology, 4(02), 210-220.
  • 30. Kwon, J., Subhash, G., Mei, R., Heger, I. (2011). An optical technique for determination of rheological properties of gelatin. Journal of Rheology, 55(5), 951-964. [CrossRef]
  • 31. Ramya, V., Madhu-Bala, V., Prakash-Shyam, K., Gowdhami, B., Sathiya-Priya, K., Vignesh, K., Vani, B., Kadalmani, B. (2021). Cytotoxic activity of Indigofera aspalathoides (Vahl.) extracts in cervical cancer (HeLa) cells: Ascorbic acid adjuvant treatment enhances the activity. Phytomedicine Plus, 1(4), 1-13. [CrossRef]
  • 32. Amimoto, I., Watanabe, R., Hirano, Y. (2022). Cell Behavior on peptide-immobilized substrate with cell aggregation inducing property. Processes, 10(9), 1-12. [CrossRef]

DEVELOPMENT AND CHARACTERIZATION OF ASCORBIC ACID LOADED POLYELECTROLYTE CHITOSAN-GELATIN HYDROGELS

Yıl 2023, Cilt: 47 Sayı: 3, 719 - 730, 20.09.2023
https://doi.org/10.33483/jfpau.1269790

Öz

Objective: Aim of study was to formulate chitosan-gelatin hydrogels containing ascorbic acid, an antioxidant, with/without polyelectrolyte-complex.
Material and Method: Effect of formation polyelectrolyte-complex, gelatin concentration (10-20%) and chitosan:gelatin ratio(1:1, 1:2, 2:1w/w) on the rheological properties, in-vitro release, encapsulation efficiency of hydrogels were investigated. Dissolution rates were also compared using area under dissolution curve (AUC), mean dissolution time (MDT), mean residence time (MRT). Also, the potential for topical use of the hydrogel was evaluated by examining the 24-and 72-hours cytotoxic and proliferative effects on L929 cell line using MTT test.
Result and Discussion: Polyelectrolyte complex formation led to improved drug release and increased viscosity. Cell viability of the free and drug-loaded polyelectrolyte-hydrogels was over 70% at the end of the 72h in all formulations (except formulations with chitosan:gelatin ratio of 1:2w/w) showed that ascorbic acid and hydrogels did not cause cellular toxicity and could be used safely. It has been demonstrated that the gelatin ratio should be at most 50%, and excess gelatin reduces cell viability. F6-coded-polyelectrolyte-hydrogel (20% gelatin; 2:1 chitosan:gelatin w/w) was ideal formulation as it led to best sustained drug release with high MDT and AUC values, and cell viability >80%. In conclusion, polyelectrolyte-complex formation is more superior, and chitosan:gelatin ratio and gelatin concentration can be manipulated to obtain the desired properties.

Kaynakça

  • 1. Sheraz, M.A., Ahmad, I., Vaid, F.M., Ahmed, S., Shaikh, R.H., Iqbal, K. (2011). Formulation and stability of ascorbic acid in topical preparations. Systematic Reviews in Pharmacy, 2(2), 86-90. [CrossRef]
  • 2. Canelas, V., Teixeira da Costa, C. (2007). Quantitative HPLC analysis of rosmarinic acid in extracts of melissa officinalis and spectrophotometric measurement of their antioxidant activities. Journal of Chemical Education, 84(9), 1502-1504. [CrossRef]
  • 3. Martemucci, G., Costagliola, C., Mariano, M., D’andrea, L., Napolitano, P., Alessandro, D., Gabriella A. (2022). Free radical properties, source and targets, antioxidant consumption and health. Oxygen, 2(2), 48-78. [CrossRef]
  • 4. Yucel, C., Seker Karatoprak, G., Yalcintas, S., Eren Boncu, T. (2022). Ethosomal (-)-epigallocatechin-3-gallate as a novel approach to enhance antioxidant, anti-collagenase and anti-elastase effects. Beilstein Journal of Nanotechnollogy, 13, 491-502. [CrossRef]
  • 5. Arrigoni, O., De Tullion, M.C. (2002). Ascorbic acid: Much more than just an antioxidant. Biochimica et Biophysica Acta, 1569, 1-9. [CrossRef]
  • 6. Ahmadi, F., Oveisi, Z., Mohammadi Samani, S., Amoozgar, Z. (2015). Chitosan based hydrogels: Characteristics and pharmaceutical applications. Research in Pharmaceutical Sciences, 10(1), 1-16.
  • 7. Ng, W.L., Yeong, W.Y., Naing, M.W. (2016). Development of polyelectrolyte chitosan-gelatin hydrogels for skin bioprinting. Procedia CIRP, 49, 105-112. [CrossRef]
  • 8. Huang, Y., Onyeri, S., Siewe, M., Moshfeghian, A., Madihally, S.V. (2005). In vitro characterization of chitosan-gelatin scaffolds for tissue engineering. Biomaterials, 26(36), 7616-2767. [CrossRef]
  • 9. Mao, J.S., Zhao, L.G., Yin, Y.J., Yao, D.Y. (2003). Structure and properties of bilayer chitosan-gelatin scaffolds. Biomaterials, 24, 1067-1074. [CrossRef]
  • 10. Mao, J.S., Cui, Y.L., Wang, X.H., Sun, Y., Yin, Y.J., Zhao, H.M., De Yao, K. (2004). A preliminary study on chitosan and gelatin polyelectrolyte complex cytocompatibility by cell cycle and apoptosis analysis. Biomaterials, 25(18), 3973-3981. [CrossRef]
  • 11. Nicolay, V.K., Nina, S., Yuliya, K., Galina, B. (2020). Formation of polyelectrolyte complexes from chitosan and alkaline gelatin. KnE Life Sciences, 109-119. [CrossRef]
  • 12. Malafaya, P.B., Silva, G.A., Reis, R.L. (2007). Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Advanced Drug Delivery Reviews, 59(4-5), 207-233. [CrossRef]
  • 13. Mao, J., Zhao, L., de Yao, K., Shang, Q., Yang, G., Cao, Y. (2003). Study of novel chitosan-gelatin artificial skin in vitro. Journal of Biomedical Materials Research, 64, 301-308. [CrossRef]
  • 14. Mathew, S.A., Arumainathan, S. (2022). Crosslinked chitosan-gelatin biocompatible nanocomposite as a neuro drug carrier. ACS Omega, 7(22), 18732-18744. [CrossRef]
  • 15. Lu, B., Wang, T., Li, Z., Dai, F., Lv, L., Tang, F., Yu, K., Liu, J., Lan, G. (2016). Healing of skin wounds with a chitosan-gelatin sponge loaded with tannins and platelet-rich plasma. International Journal of Biological Macromolecules, 82, 884-891. [CrossRef]
  • 16. Karamustafa, F., Çelebi, N., Değim, Z., Yılmaz, Ş. (2006). Evaluation of the viability of l-929 cells in the presence of alendronate and absorption enhancers. FABAD Journal of Pharmaceutical Sciences, 31, 1-5.
  • 17. ISO-10993-5. (2009). From https://www.iso.org/obp/ui/#iso:std:iso:10993:-5:ed-3:v1:en. Accessed date: 20.03.2023.
  • 18. ISO-7405. (2018). From https://www.iso.org/obp/ui/#iso:std:iso:7405:ed-3:v2:en. Accessed date: 20.03.2023.
  • 19. Fischetti, T., Celikkin, N., Contessi Negrini, N., Fare, S., Swieszkowski, W. (2020). Tripolyphosphate-crosslinked chitosan/gelatin biocomposite ink for 3d printing of uniaxial scaffolds. Frontiers in Bioengineering and Biotechnology, 8, 1-15. [CrossRef]
  • 20. Soni, G., Yadav, K.S. (2014). High encapsulation efficiency of poloxamer-based injectable thermoresponsive hydrogels of etoposide. Pharmaceutical Development and Technology, 19(6), 651-661. [CrossRef]
  • 21. Ergin, A.D., Sezgin Bayindir, Z., Yüksel, N. (2019). Characterization and optimization of colon targeted S-adenosyl-L-methionine loaded chitosan nanoparticles. Journal of Research in Pharmacy, 23(5), 914-926. [CrossRef]
  • 22. Zhang, Y., Huo, M., Zhou, J., Zou, A., Li, W., Yao, C., Xie, S. (2010). DDSolver: An add-in program for modeling and comparison of drug dissolution profiles. The AAPS Journal, 12(3), 263-271. [CrossRef]
  • 23. Lewin, S. (1976). Vitamin C: Its Molecular Biology and Medical Potential. Academic Press, London. p.231.
  • 24. Sun, H., Choi, D., Heo, J., Jung, S.Y., Hong, J. (2020). Studies on the drug loading and release profiles of degradable chitosan-based multilayer films for anticancer treatment. Cancers, 12(3), 593-607. [CrossRef]
  • 25. Zhou, Z., Liu, L., Liu, Q., Zhao, Y., Xu, G., Tang, A., Zeng, W., Yi, Q., Zhou, J. (2012). Study on controlled release of 5-fluorouracil from gelatin/chitosan microspheres. Journal of Macromolecular Science, Part A, 49(12), 1030-1034. [CrossRef]
  • 26. Mahjoorian, A., Jafarian, S., Fazeli, F., Saeidi A., Mohammad R. (2019). A mathematical model for describing the rheological behaviour of skin gelatine extracted from the caspian sea huso huso. Journal of Aquatic Food Product Technology, 29(1), 2-14. [CrossRef]
  • 27. Desbrieres, J. (2002). Viscosity of semiflexible chitosan solutions: Influence of concentration, temperature, and role of intermolecular interactions. Biomacromolecules, 3, 342-349.
  • 28. Ma, Y., Liu, Y., Su, H., Wang, L., Zhang, J. (2018). Relationship between hydrogen bond and viscosity for a series of pyridinium ionic liquids: Molecular dynamics and quantum chemistry. Journal of Molecular Liquids, 255, 176-184. [CrossRef]
  • 29. El-hefian, E.A. Yahaya, A.H. (2010). Rheological study of chitosan and its blends: An overview. Maejo International Journal of Science and Technology, 4(02), 210-220.
  • 30. Kwon, J., Subhash, G., Mei, R., Heger, I. (2011). An optical technique for determination of rheological properties of gelatin. Journal of Rheology, 55(5), 951-964. [CrossRef]
  • 31. Ramya, V., Madhu-Bala, V., Prakash-Shyam, K., Gowdhami, B., Sathiya-Priya, K., Vignesh, K., Vani, B., Kadalmani, B. (2021). Cytotoxic activity of Indigofera aspalathoides (Vahl.) extracts in cervical cancer (HeLa) cells: Ascorbic acid adjuvant treatment enhances the activity. Phytomedicine Plus, 1(4), 1-13. [CrossRef]
  • 32. Amimoto, I., Watanabe, R., Hirano, Y. (2022). Cell Behavior on peptide-immobilized substrate with cell aggregation inducing property. Processes, 10(9), 1-12. [CrossRef]
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Tuğba Eren Böncü 0000-0003-4610-6882

Çiğdem Yücel 0000-0002-0622-5150

Erken Görünüm Tarihi 11 Haziran 2023
Yayımlanma Tarihi 20 Eylül 2023
Gönderilme Tarihi 23 Mart 2023
Kabul Tarihi 2 Mayıs 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 47 Sayı: 3

Kaynak Göster

APA Eren Böncü, T., & Yücel, Ç. (2023). DEVELOPMENT AND CHARACTERIZATION OF ASCORBIC ACID LOADED POLYELECTROLYTE CHITOSAN-GELATIN HYDROGELS. Journal of Faculty of Pharmacy of Ankara University, 47(3), 719-730. https://doi.org/10.33483/jfpau.1269790
AMA Eren Böncü T, Yücel Ç. DEVELOPMENT AND CHARACTERIZATION OF ASCORBIC ACID LOADED POLYELECTROLYTE CHITOSAN-GELATIN HYDROGELS. Ankara Ecz. Fak. Derg. Eylül 2023;47(3):719-730. doi:10.33483/jfpau.1269790
Chicago Eren Böncü, Tuğba, ve Çiğdem Yücel. “DEVELOPMENT AND CHARACTERIZATION OF ASCORBIC ACID LOADED POLYELECTROLYTE CHITOSAN-GELATIN HYDROGELS”. Journal of Faculty of Pharmacy of Ankara University 47, sy. 3 (Eylül 2023): 719-30. https://doi.org/10.33483/jfpau.1269790.
EndNote Eren Böncü T, Yücel Ç (01 Eylül 2023) DEVELOPMENT AND CHARACTERIZATION OF ASCORBIC ACID LOADED POLYELECTROLYTE CHITOSAN-GELATIN HYDROGELS. Journal of Faculty of Pharmacy of Ankara University 47 3 719–730.
IEEE T. Eren Böncü ve Ç. Yücel, “DEVELOPMENT AND CHARACTERIZATION OF ASCORBIC ACID LOADED POLYELECTROLYTE CHITOSAN-GELATIN HYDROGELS”, Ankara Ecz. Fak. Derg., c. 47, sy. 3, ss. 719–730, 2023, doi: 10.33483/jfpau.1269790.
ISNAD Eren Böncü, Tuğba - Yücel, Çiğdem. “DEVELOPMENT AND CHARACTERIZATION OF ASCORBIC ACID LOADED POLYELECTROLYTE CHITOSAN-GELATIN HYDROGELS”. Journal of Faculty of Pharmacy of Ankara University 47/3 (Eylül 2023), 719-730. https://doi.org/10.33483/jfpau.1269790.
JAMA Eren Böncü T, Yücel Ç. DEVELOPMENT AND CHARACTERIZATION OF ASCORBIC ACID LOADED POLYELECTROLYTE CHITOSAN-GELATIN HYDROGELS. Ankara Ecz. Fak. Derg. 2023;47:719–730.
MLA Eren Böncü, Tuğba ve Çiğdem Yücel. “DEVELOPMENT AND CHARACTERIZATION OF ASCORBIC ACID LOADED POLYELECTROLYTE CHITOSAN-GELATIN HYDROGELS”. Journal of Faculty of Pharmacy of Ankara University, c. 47, sy. 3, 2023, ss. 719-30, doi:10.33483/jfpau.1269790.
Vancouver Eren Böncü T, Yücel Ç. DEVELOPMENT AND CHARACTERIZATION OF ASCORBIC ACID LOADED POLYELECTROLYTE CHITOSAN-GELATIN HYDROGELS. Ankara Ecz. Fak. Derg. 2023;47(3):719-30.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.