Kısa Bildiri
BibTex RIS Kaynak Göster

INTERACTION OF PTERIDOPHYTIC BIOACTIVE COMPOUNDS WITH FUNGAL DIHYDROFOLATE REDUCTASE ENZYME AS INHIBITOR

Yıl 2023, Cilt: 47 Sayı: 3, 1170 - 1176, 20.09.2023
https://doi.org/10.33483/jfpau.1270767

Öz

Objective: Fungal infections which are relatively common mainly invades the body of an immunosuppressed patients and people undergoing therapy. These pathogens act through different pathways like the Dihydrofolate reductase (DHFR) has a role in the folate synthetic pathway which is responsible for DNA synthesis. Since the early ages herbal remedies were used and have been tested for treating these fungal infections. Previous studies have revealed the use of bioactive molecules of pteridophytes to demonstrate antifungal activity.
Material and Method: In the present study different pteridophytes were selected from available library which showed the presence of bioactive phytoconstituents. In-silico studies on DHFR target (PDB ID: 6DRS and PDB ID: 3QLW) was carried out using PyRx program (India) to determine the affinity of bioactive molecules against the fungal strain.
Result and Discussion: Molecular docking was performed with 11 bioactive molecules showing activity against the selected target proteins. So, we can conclude that the selected bioactive molecules are active against fungal strain and can be further investigated for both in-vivo and in-vitro studies.

Destekleyen Kurum

KIET SCHOOL OF PHARMACY, KIET GROUP OF INSTITUTIONS, DELHI-NCR, GHAZIABAD-201206, UTTAR PRADESH, INDIA

Proje Numarası

NA

Teşekkür

Author acknowledges the KIET Group of Institutions, Ghaziabad, for the infrastructural support

Kaynakça

  • 1. Mujwar, S., Tripathi, A. (2022). Repurposing benzbromarone as antifolate to develop novel antifungal therapy for Candida albicans. Journal of Molecular Modelling, 28, 193. [CrossRef]
  • 2. Hainer, B.L. (2003). Dermatophyte infections. American Family Physician, 67(1), 101-108.
  • 3. Basak, T., Nath, V., Kumar, V., Goyal, A.K. (2021). In silico identification of antifungal compounds as mutant DHFRase inhibitors: structure-based approach, molecular dynamics simulation and structural integrity analysis. Journal of Computational Biophysics and Chemistry, 20(6), 589-602. [CrossRef]
  • 4. Ghannoum, M.A., Rice, L.B. (1999). Antifungal agents: Mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clinical Microbiology Reviews, 12(4), 501-517. [CrossRef]
  • 5. Chawla, P., Teli, G., Gill, R.K., Narang, R.K. (2021). An insight into synthetic strategies and recent developments of dihydrofolate reductase inhibitors. Chemistry Europe, 6(43), 12101-12145. [CrossRef]
  • 6. DeJarnette, C., Luna-Tapia, A., Estredge, L.R., Palmer, G.E. (2020). Dihydrofolate reductase is a valid target for antifungal development in the human pathogen Candida albicans. mSphere, 5(3), e00374-20. [CrossRef] 7. Kaushik, K., Agarwal, S. (2019). The role of herbal antifungal agents for the management of fungal diseases: A systematic review. Asian journal of pharmaceutical and clinical research, 12(7), 34-40. [CrossRef]
  • 8. Baskaran, X.R., Vigila, A.V.G., Zhang, S.Z., Feng, S.X., Liao, W.B. (2018). A review of the use of pteridophytes for treating human ailments. Journal of Zhejiang University-SCIENCE B, 19(2), 85-119.
  • 9. Mimica-Dukic, N., Simin, N., Cvejic, J., Jovin, E., Orcic, D., Bozin, B. (2008). Phenolic compounds in field horsetail (Equisetum arvense L.) as natural antioxidants. Molecules, 13(7), 1455-1464.
  • 10. Vastinge-Tuominen, M., Perera-Ivarsson, P., Shen, J., Bohlin, L., Rolfsen, W. (2004). The fern Polypodium decumanum, used in the treatment of psoriasis, and its fatty acid constituents as inhibitors of leukotriene b4 formation. Prostaglandins Leukotrienes and Essential Fatty Acids, 50(5), 279-284. [CrossRef]
  • 11. Semwal, P., Painuli, S., Painuli, K.M., Antika, G., Tumer, T.B., Thapliyal, A., Setzer, W.N., Martorell, M., Alshehri, M.M., Taheri, Y., Daştan, S.D., Ayatollahi, S.A., Petkoska, A.T., Sharifi-Rad, J., Cho, W.C. (2021). Diplazium esculentum (Retz.) Sw.: Ethnomedicinal, phytochemical, and pharmacological overview of the himalayan ferns. Oxidative Medicine and Cellular Longevity, 2021, 1917890. [CrossRef]
  • 12. Lin, L.J., Huang, X.B., Lv, Z.C. (2016). Isolation and identification of flavonoids components from pteris vittata l. SpringerPlus, 5(1), 1649. [CrossRef]
  • 13. Chaturvedi, M., Kajal, N., Yadav, J.P. (2021). In silico approach for identification of natural compounds as potential COVID 19 main protease (Mpro) inhibitors. Virus Disease, 32, 325-329. [CrossRef]
  • 14. Aliye, M., Dekebo, A., Tesso, H., Abdo, T., Eswaramoorthy, R., Melaku, Y. (2021). Molecular docking analysis and evaluation of the antibacterial and antioxidant activities of the constituents of Ocimum cufodontii. Scientific Reports, 11(1), 10101. [CrossRef]
  • 15. Azam, S.S., Abbasi, S.W. (2013). Molecular docking studies for the identification of novel melatoninergic inhibitors for acetylserotonin-O-methyltransferase using different docking routines. Theoretical Biology and Medical Modelling, 10, 63. [CrossRef]
  • 16. Ferreira, L.G., Dos Santos, R.N., Oliva, G., Andicopulo, A.D. (2015). Molecular docking and structure-based drug design strategies. Molecules, 20, 13384-13421. [CrossRef]
  • 17. Susmi, T.F., Khan, M.R., Rahman, A., Mahmud, S., Saleh, A., Reza, A., Rahi, S. (2022). In vitro antioxidant and cytotoxicity activities and in silico anticancer property of methanolic leaf extract of Leucas indica. Informatics in Medicine Unlocked, 31, 100963. [CrossRef]
  • 18. Pathak, R.K., Gupta, A., Shukla, R., Baunthiyal, M. (2018). Identification of new drug-like compounds from millets as Xanthine oxidoreductase inhibitors for treatment of Hyperuricemia: A molecular docking and simulation study. Computational Biology and Chemistry, 76, 32-41. [CrossRef]
  • 19. James, J.P., Ail, P.D., Crasta, L., Kamath, R.S., Shura, M.H., Sindhu, T.J. (2023). In silico ADMET and molecular interaction profiles of phytochemicals from medicinal plants in Dakshina Kannada. Journal of Health and Allied Sciences NU (accepted). [CrossRef]
  • 20. Article, O., Markandeyan, D., Kannaiyan, S., Suresh, S., Nimmakayala, R., Ilamurugan, R., Santhalingam, K., Paul, B. (2016). Virtual screening of phytochemicals for methotrexate like dihydrofolate reductase and aminoimidazole-4-carboxamide ribonucleotide (aicar) transformylase inhibitory property using molegro virtual docker. International Journal of Pharmacy and Pharmaceutical Sciences, 8(5), 83-87.

PTERİDOPİTİK BİYOAKTİF BİLEŞİKLERİN İNHİBİTÖR OLARAK MANTAR DİHİDROFOLAT REDÜKTAZ ENZİMİ İLE ETKİLEŞİMİ

Yıl 2023, Cilt: 47 Sayı: 3, 1170 - 1176, 20.09.2023
https://doi.org/10.33483/jfpau.1270767

Öz

Amaç: Nispeten yaygın olan mantar enfeksiyonları esas olarak immün sistemi baskılanmış hastaların ve tedavi gören kişilerin vücudunu istila eder. Bu patojenler, DNA sentezinden sorumlu olan folat sentezinde rol oynayan dihidrofolat redüktaz (DHFR) gibi farklı yolaklar üzerinden etki gösterir. İlk çağlardan beri bitkisel ilaçlara bu mantar enfeksiyonlarını tedavi etmek için kullanılmış ve test edilmiştir. Önceki çalışmalar, antifungal aktiviteyi göstermek için biyoaktif pteridofit moleküllerinin kullanıldığını ortaya koymaktadır.
Gereç ve Yöntem: Bu çalışmada, biyoaktif fito bileşenlerinin varlığını gösteren mevcut kütüphaneden farklı pteridofitler seçilmiştir. Biyoaktif moleküllerin mantar suşuna karşı afinitesini belirlemek için Pyrx (Hindistan) programı kullanılarak, DHFR hedefi (PDB ID 6DRS ve PDB ID 3QLW) üzerine in-siliko çalışmalar gerçekleştirilmiştir.
Sonuç ve Tartışma: Seçilen hedef proteinlere karşı aktivite gösteren 11 biyoaktif molekül ile molekler yerleştirme çalışması gerçekleştirilmiştir. Buna göre, seçilen biyoaktif moleküllerin mantar suşuna karşı aktif olduğu ve hem in-vivo hem de in vitro çalışmalar için daha fazla araştırılabileceği sonucuna varılmıştır.

Proje Numarası

NA

Kaynakça

  • 1. Mujwar, S., Tripathi, A. (2022). Repurposing benzbromarone as antifolate to develop novel antifungal therapy for Candida albicans. Journal of Molecular Modelling, 28, 193. [CrossRef]
  • 2. Hainer, B.L. (2003). Dermatophyte infections. American Family Physician, 67(1), 101-108.
  • 3. Basak, T., Nath, V., Kumar, V., Goyal, A.K. (2021). In silico identification of antifungal compounds as mutant DHFRase inhibitors: structure-based approach, molecular dynamics simulation and structural integrity analysis. Journal of Computational Biophysics and Chemistry, 20(6), 589-602. [CrossRef]
  • 4. Ghannoum, M.A., Rice, L.B. (1999). Antifungal agents: Mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clinical Microbiology Reviews, 12(4), 501-517. [CrossRef]
  • 5. Chawla, P., Teli, G., Gill, R.K., Narang, R.K. (2021). An insight into synthetic strategies and recent developments of dihydrofolate reductase inhibitors. Chemistry Europe, 6(43), 12101-12145. [CrossRef]
  • 6. DeJarnette, C., Luna-Tapia, A., Estredge, L.R., Palmer, G.E. (2020). Dihydrofolate reductase is a valid target for antifungal development in the human pathogen Candida albicans. mSphere, 5(3), e00374-20. [CrossRef] 7. Kaushik, K., Agarwal, S. (2019). The role of herbal antifungal agents for the management of fungal diseases: A systematic review. Asian journal of pharmaceutical and clinical research, 12(7), 34-40. [CrossRef]
  • 8. Baskaran, X.R., Vigila, A.V.G., Zhang, S.Z., Feng, S.X., Liao, W.B. (2018). A review of the use of pteridophytes for treating human ailments. Journal of Zhejiang University-SCIENCE B, 19(2), 85-119.
  • 9. Mimica-Dukic, N., Simin, N., Cvejic, J., Jovin, E., Orcic, D., Bozin, B. (2008). Phenolic compounds in field horsetail (Equisetum arvense L.) as natural antioxidants. Molecules, 13(7), 1455-1464.
  • 10. Vastinge-Tuominen, M., Perera-Ivarsson, P., Shen, J., Bohlin, L., Rolfsen, W. (2004). The fern Polypodium decumanum, used in the treatment of psoriasis, and its fatty acid constituents as inhibitors of leukotriene b4 formation. Prostaglandins Leukotrienes and Essential Fatty Acids, 50(5), 279-284. [CrossRef]
  • 11. Semwal, P., Painuli, S., Painuli, K.M., Antika, G., Tumer, T.B., Thapliyal, A., Setzer, W.N., Martorell, M., Alshehri, M.M., Taheri, Y., Daştan, S.D., Ayatollahi, S.A., Petkoska, A.T., Sharifi-Rad, J., Cho, W.C. (2021). Diplazium esculentum (Retz.) Sw.: Ethnomedicinal, phytochemical, and pharmacological overview of the himalayan ferns. Oxidative Medicine and Cellular Longevity, 2021, 1917890. [CrossRef]
  • 12. Lin, L.J., Huang, X.B., Lv, Z.C. (2016). Isolation and identification of flavonoids components from pteris vittata l. SpringerPlus, 5(1), 1649. [CrossRef]
  • 13. Chaturvedi, M., Kajal, N., Yadav, J.P. (2021). In silico approach for identification of natural compounds as potential COVID 19 main protease (Mpro) inhibitors. Virus Disease, 32, 325-329. [CrossRef]
  • 14. Aliye, M., Dekebo, A., Tesso, H., Abdo, T., Eswaramoorthy, R., Melaku, Y. (2021). Molecular docking analysis and evaluation of the antibacterial and antioxidant activities of the constituents of Ocimum cufodontii. Scientific Reports, 11(1), 10101. [CrossRef]
  • 15. Azam, S.S., Abbasi, S.W. (2013). Molecular docking studies for the identification of novel melatoninergic inhibitors for acetylserotonin-O-methyltransferase using different docking routines. Theoretical Biology and Medical Modelling, 10, 63. [CrossRef]
  • 16. Ferreira, L.G., Dos Santos, R.N., Oliva, G., Andicopulo, A.D. (2015). Molecular docking and structure-based drug design strategies. Molecules, 20, 13384-13421. [CrossRef]
  • 17. Susmi, T.F., Khan, M.R., Rahman, A., Mahmud, S., Saleh, A., Reza, A., Rahi, S. (2022). In vitro antioxidant and cytotoxicity activities and in silico anticancer property of methanolic leaf extract of Leucas indica. Informatics in Medicine Unlocked, 31, 100963. [CrossRef]
  • 18. Pathak, R.K., Gupta, A., Shukla, R., Baunthiyal, M. (2018). Identification of new drug-like compounds from millets as Xanthine oxidoreductase inhibitors for treatment of Hyperuricemia: A molecular docking and simulation study. Computational Biology and Chemistry, 76, 32-41. [CrossRef]
  • 19. James, J.P., Ail, P.D., Crasta, L., Kamath, R.S., Shura, M.H., Sindhu, T.J. (2023). In silico ADMET and molecular interaction profiles of phytochemicals from medicinal plants in Dakshina Kannada. Journal of Health and Allied Sciences NU (accepted). [CrossRef]
  • 20. Article, O., Markandeyan, D., Kannaiyan, S., Suresh, S., Nimmakayala, R., Ilamurugan, R., Santhalingam, K., Paul, B. (2016). Virtual screening of phytochemicals for methotrexate like dihydrofolate reductase and aminoimidazole-4-carboxamide ribonucleotide (aicar) transformylase inhibitory property using molegro virtual docker. International Journal of Pharmacy and Pharmaceutical Sciences, 8(5), 83-87.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri
Bölüm Kısa Bildiri
Yazarlar

Manohar Singh 0000-0002-4868-2835

Mansi Raghav 0000-0002-0539-0939

Akanksha Singh 0000-0002-8401-2708

Akanksha Kumari 0000-0003-2076-5150

Prıya Bansal 0000-0003-4371-1657

Surya Prakash 0000-0002-0838-3638

Abhıshek Kumar 0000-0003-3225-3160

Proje Numarası NA
Erken Görünüm Tarihi 18 Ağustos 2023
Yayımlanma Tarihi 20 Eylül 2023
Gönderilme Tarihi 25 Mart 2023
Kabul Tarihi 31 Temmuz 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 47 Sayı: 3

Kaynak Göster

APA Singh, M., Raghav, M., Singh, A., Kumari, A., vd. (2023). INTERACTION OF PTERIDOPHYTIC BIOACTIVE COMPOUNDS WITH FUNGAL DIHYDROFOLATE REDUCTASE ENZYME AS INHIBITOR. Journal of Faculty of Pharmacy of Ankara University, 47(3), 1170-1176. https://doi.org/10.33483/jfpau.1270767
AMA Singh M, Raghav M, Singh A, Kumari A, Bansal P, Prakash S, Kumar A. INTERACTION OF PTERIDOPHYTIC BIOACTIVE COMPOUNDS WITH FUNGAL DIHYDROFOLATE REDUCTASE ENZYME AS INHIBITOR. Ankara Ecz. Fak. Derg. Eylül 2023;47(3):1170-1176. doi:10.33483/jfpau.1270767
Chicago Singh, Manohar, Mansi Raghav, Akanksha Singh, Akanksha Kumari, Prıya Bansal, Surya Prakash, ve Abhıshek Kumar. “INTERACTION OF PTERIDOPHYTIC BIOACTIVE COMPOUNDS WITH FUNGAL DIHYDROFOLATE REDUCTASE ENZYME AS INHIBITOR”. Journal of Faculty of Pharmacy of Ankara University 47, sy. 3 (Eylül 2023): 1170-76. https://doi.org/10.33483/jfpau.1270767.
EndNote Singh M, Raghav M, Singh A, Kumari A, Bansal P, Prakash S, Kumar A (01 Eylül 2023) INTERACTION OF PTERIDOPHYTIC BIOACTIVE COMPOUNDS WITH FUNGAL DIHYDROFOLATE REDUCTASE ENZYME AS INHIBITOR. Journal of Faculty of Pharmacy of Ankara University 47 3 1170–1176.
IEEE M. Singh, “INTERACTION OF PTERIDOPHYTIC BIOACTIVE COMPOUNDS WITH FUNGAL DIHYDROFOLATE REDUCTASE ENZYME AS INHIBITOR”, Ankara Ecz. Fak. Derg., c. 47, sy. 3, ss. 1170–1176, 2023, doi: 10.33483/jfpau.1270767.
ISNAD Singh, Manohar vd. “INTERACTION OF PTERIDOPHYTIC BIOACTIVE COMPOUNDS WITH FUNGAL DIHYDROFOLATE REDUCTASE ENZYME AS INHIBITOR”. Journal of Faculty of Pharmacy of Ankara University 47/3 (Eylül 2023), 1170-1176. https://doi.org/10.33483/jfpau.1270767.
JAMA Singh M, Raghav M, Singh A, Kumari A, Bansal P, Prakash S, Kumar A. INTERACTION OF PTERIDOPHYTIC BIOACTIVE COMPOUNDS WITH FUNGAL DIHYDROFOLATE REDUCTASE ENZYME AS INHIBITOR. Ankara Ecz. Fak. Derg. 2023;47:1170–1176.
MLA Singh, Manohar vd. “INTERACTION OF PTERIDOPHYTIC BIOACTIVE COMPOUNDS WITH FUNGAL DIHYDROFOLATE REDUCTASE ENZYME AS INHIBITOR”. Journal of Faculty of Pharmacy of Ankara University, c. 47, sy. 3, 2023, ss. 1170-6, doi:10.33483/jfpau.1270767.
Vancouver Singh M, Raghav M, Singh A, Kumari A, Bansal P, Prakash S, Kumar A. INTERACTION OF PTERIDOPHYTIC BIOACTIVE COMPOUNDS WITH FUNGAL DIHYDROFOLATE REDUCTASE ENZYME AS INHIBITOR. Ankara Ecz. Fak. Derg. 2023;47(3):1170-6.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.