Derleme
BibTex RIS Kaynak Göster

ROMATOİD ARTRİT TEDAVİSİNDE HEDEFLENDİRİLMİŞ İLAÇ TAŞIYICI SİSTEMLERE GENEL BAKIŞ

Yıl 2024, Cilt: 48 Sayı: 1, 259 - 273, 20.01.2024
https://doi.org/10.33483/jfpau.1300942

Öz

Amaç: Romatoid artrit eklem, kemik, kıkırdak, tendon ve bağlarda hasara sebep olabilen otoimmün bir hastalıktır. Tedavisi, semptomları hafifletmeye yönelik olarak glukokortikoidlerin, modifiye edici antiromatizmal ilaçların (DMARD) ve biyolojiklerin spesifik olmayan, sistemik uygulamalarını içerir. Geleneksel tedavi yaklaşımlarında ilaçların sık aralıklarla ve yüksek dozlarda uygulanması gerekmekte olup, bu durum hastaların yaşam kalitesini düşüren yan etkilere neden olmaktadır. Nano boyutlu ilaç taşıyıcı sistemlerin romatoid artrit tedavisi için geliştirilerek enflamasyon bölgelerine ulaştırılması, böylelikle etkin maddelerin dozunun azaltılması, sistemik yan etkilerinin en aza indirilmesi mümkün olabilmektedir.
Sonuç ve Tartışma: Pek çok çalışmada gösterildiği gibi çeşitli ilaç taşıyıcı sistemlerin romatoid artrit tedavisinde geleneksel tedavi yöntemlerine alternatif olarak kullanılması hastalığın semptomlarının önlenmesi ve hafifletilmesi açısından oldukça olumlu sonuçlar ortaya koymuştur. Kanser tedavisinde olduğu gibi çeşitli hedefleme yaklaşımlarından faydalanılarak gelecek yıllarda romatoid artrit tedavisinde de umut verici gelişmeler olacağı düşünülmektedir.

Destekleyen Kurum

-

Teşekkür

-

Kaynakça

  • 1. Kourilovitch, M., Galarza-Maldonado, C., Ortiz-Prado, E. (2014). Diagnosis and classification of rheumatoid arthritis. Journal of Autoimmunity, 48-49, 26-30. [CrossRef]
  • 2. Firestein, G.S. (2003). Evolving concepts of rheumatoid arthritis. Nature, 423(6937), 356-361.
  • 3. Viatte, S., Plant, D., Raychaudhuri, S. (2013). Genetics and epigenetics of rheumatoid arthritis. Nature Reviews Rheumatology, 9(3), 141-153. [CrossRef]
  • 4. Janakiraman, K., Krishnaswami, V., Rajendran, V., Natesan, S., Kandasamy, R. (2018). Novel nano therapeutic materials for the effective treatment of rheumatoid arthritis-recent insights. Mater Today Commun, 17, 200-213. [CrossRef]
  • 5. Feldmann, M., Maini, S.R. (2008). Role of cytokines in rheumatoid arthritis: An education in pathophysiology and therapeutics. Immunological Reviews, 223, 7-19. [CrossRef]
  • 6. Prevalence of disabilities and associated health conditions among adults-United States, 1999. (2001). Morbidity and Mortality Weekly Report, 50(7), 120-125.
  • 7. Ngian, G.S. (2010). Rheumatoid arthritis. Australian Family Physician, 39(9), 626-628.
  • 8. Lipinska, J., Smolewska, E., Brozik, H., Stanczyk, J. (2008). Anti-CCP antibodies in children with Juvenile Idiopathic Arthritis (JIA)-Diagnostic and clinical significance. Central-European Journal of Immunity, 33(1), 19-23.
  • 9. Mitragotri, S., Yoo, J.W. (2011). Designing micro- and nano-particles for treating rheumatoid arthritis. Archives of Pharmacal Research, 34(11), 1887-1897. [CrossRef]
  • 10. Saag, K.G. (2002). Glucocorticoid use in rheumatoid arthritis. Current Rheumatology Reports, 4(3), 218-225. [CrossRef]
  • 11. Solomon, D.H., Katz, J.N., Jacobs, J.P., La Tourette, A.M., Coblyn, J. (2002). Management of glucocorticoid-induced osteoporosis in patients with rheumatoid arthritis: Rates and predictors of care in an academic rheumatology practice. Arthritis and Rheumatism, 46(12), 3136-3142. [CrossRef]
  • 12. Hua, C., Buttgereit, F., Combe, B. (2020). Glucocorticoids in rheumatoid arthritis: Current status and future studies. Rheumatic & Musculoskeletal Diseases Open, 6(1), 1-9. [CrossRef]
  • 13. Hafström, I., Albertsson, K., Boonen, A., van der Heijde, D., Landewé, R., Svensson, B. (2009). Remission achieved after 2 years treatment with low-dose prednisolone in addition to disease-modifying anti-rheumatic drugs in early rheumatoid arthritis is associated with reduced joint destruction still present after 4 years: An open 2-year continuation study. Annals of the Rheumatic Diseases, 68(4), 508-513. [CrossRef]
  • 14. van Vollenhoven, R.F. (2009). Treatment of rheumatoid arthritis: State of the art 2009. Nature Reviews Rheumatology, 5(10), 531-541. [CrossRef]
  • 15. Bonek, K., Roszkowski, L., Massalska, M., Maslinski, W., Ciechomska, M. (2021). Biologic drugs for rheumatoid arthritis in the context of biosimilars, genetics, epigenetics and covid-19 treatment. Cells, 10(2), 323-348. [CrossRef]
  • 16. Montesinos, M.C., Takedachi, M., Thompson, L.F., Wilder, T.F., Fernández, P., Cronstein, B.N. (2007). The antiinflammatory mechanism of methotrexate depends on extracellular conversion of adenine nucleotides to adenosine by ecto-5'-nucleotidase: Findings in a study of ecto-5'-nucleotidase gene-deficient mice. Arthritis and Rheumatism, 56(5), 1440-1445. [CrossRef]
  • 17. Galatage, S.T., Hebalkar, A.S., Gaikwad, S.S., Kumbhar, P.S., Patil, N.N., Desai, K.D., Kanekar, S.U., Kadam, S.S., Sansare, R.S., Sansare, S.S., Killedar, S.G. (2021). Rheumatoid arthritis: Severity classification, factors responsible, pathophysiology, current and herbal treatment. [CrossRef]
  • 18. Strand, V., Kimberly, R., Isaacs, J.D. (2007). Biologic therapies in rheumatology: Lessons learned, future directions. Nature Reviews. Drug Discovery, 6(1), 75-92. [CrossRef]
  • 19. Furst, D.E. (2010). The risk of infections with biologic therapies for rheumatoid arthritis. Seminars in Arthritis and Rheumatism, 39(5), 327-346. [CrossRef]
  • 20. Ren, H., He, Y., Liang, J., Cheng, Z., Zhang, M., Zhu, Y. (2019). Role of liposome size, surface charge, and pegylation on rheumatoid arthritis targeting therapy. ACS Applied Matererials Interfaces, 11(22), 20304-20315. [CrossRef]
  • 21. Gabizon, A.A. (2001). Stealth liposomes and tumor targeting: One step further in the quest for the magic bullet. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 7(2), 223-225.
  • 22. Ochoa, C.D., Stevens, T. (2012). Studies on the cell biology of interendothelial cell gaps. American Journal of Physiology Lung Cellular and Molecular Physiology, 302(3), 275-286. [CrossRef]
  • 23. Partridge, C.A., Horvath, C.J., Del Vecchio, P.J., Phillips, P.G., Malik, A.B. (1992). Influence of extracellular matrix in tumor necrosis factor-induced increase in endothelial permeability. The American Journal of Physiology, 263(6), 627-633. [CrossRef]
  • 24. Ağardan, N.B.M., Torchilin, V.P. (2016). Chapter 1 - Engineering of stimuli-sensitive nanopreparations to overcome physiological barriers and cancer multidrug resistance. In Grumezescu, A.M. (Ed.), Engineering of Nanobiomaterials, William Andrew Publishing. (pp.1-28).
  • 25. Ishihara, T., Kubota, T., Choi, T., Higaki, M. (2009). Treatment of experimental arthritis with stealth-type polymeric nanoparticles encapsulating betamethasone phosphate. The Journal of Pharmacology and Experimental Therapeutics. 329(2), 412-417. [CrossRef]
  • 26. Ulmansky, R., Turjeman, K., Baru, M., Katzavian, G., Harel, M., Sigal, A., Naparstek, Y., Barenholz, Y. (2012). Glucocorticoids in nano-liposomes administered intravenously and subcutaneously to adjuvant arthritis rats are superior to the free drugs in suppressing arthritis and inflammatory cytokines. Journal of Controlled Release, 160(2), 299-305. [CrossRef]
  • 27. Feng, X. , Chen, Y. (2018). Drug delivery targets and systems for targeted treatment of rheumatoid arthritis. Journal of Drug Targeting, 26(10), 845-857. [CrossRef]
  • 28. van der Heijden, J.W., Oerlemans, R., Dijkmans, B.A., Qi, H., van der Laken, C.J., Lems, W.F., Jackman, A.L., Kraan, M.C., Tak, P.P., Ratnam, M., Jansen, G. (2009). Folate receptor beta as a potential delivery route for novel folate antagonists to macrophages in the synovial tissue of rheumatoid arthritis patients. Arthritis and Rheumatism, 60(1), 12-21. [CrossRef]
  • 29. Paulos, C.M., Turk, M.J., Breur, G.J., Low, P.S. (2004). Folate receptor-mediated targeting of therapeutic and imaging agents to activated macrophages in rheumatoid arthritis. Advanced Drug Delivery Reviews, 56(8), 1205-1217. [CrossRef]
  • 30. Piscaer, T.M., Müller, C., Mindt, T.L., Lubberts, E., Verhaar, J.A., Krenning, E.P. (2011). Imaging of activated macrophages in experimental osteoarthritis using folate-targeted animal single-photon-emission computed tomography/computed tomography. Arthritis and Rheumatism, 63(7), 1898-1907. [CrossRef]
  • 31. Schiffelers, R.M., Koning, G.A., ten Hagen, T.L., Fens, M.H., Schraa, A.J., Janssen, A.P., Kok, R.J.,Molema, G., Storm, G. (2003). Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. Journal of Controlled Release, 91(1-2), 115-122. [CrossRef]
  • 32. Koning, G.A., Schiffelers, R.M., Wauben, M.H., Kok, R.J., Mastrobattista, E., Molema, G. (2006). Targeting of angiogenic endothelial cells at sites of inflammation by dexamethasone phosphate-containing RGD peptide liposomes inhibits experimental arthritis. Arthritis and Rheumatism, 54(4), 1198-1208. [CrossRef]
  • 33. Kriegsmann, J., Keyszer, G.M., Geiler, T., Lagoo, A.S., Lagoo-Deenadayalan, S., Gay, R.E. (1995). Expression of E-selectin messenger RNA and protein in rheumatoid arthritis. Arthritis and Rheumatism, 38(6), 750-754. [CrossRef]
  • 34. Ma, S., Tian, X.Y., Zhang, Y., Mu, C., Shen, H., Bismuth, J. (2016). E-selectin-targeting delivery of microRNAs by microparticles ameliorates endothelial inflammation and atherosclerosis. Scientific Reports, 6, 22910. [CrossRef]
  • 35. Trujillo-Nolasco, R.M., Morales-Avila, E., Ocampo-García, B.E., Ferro-Flores, G., Gibbens-Bandala, B.V., Escudero-Castellanos, A. (2019). Preparation and in vitro evaluation of radiolabeled HA-PLGA nanoparticles as novel MTX delivery system for local treatment of rheumatoid arthritis. Materials Science Engineering: C, 103, 109766. [CrossRef]
  • 36. Movileanu, C., Anghelache, M., Turtoi, M., Voicu, G., Neacsu, I.A., Ficai, D., Trusca, R., Oprea, O., Ficai, A., Andronescu, E., Calin, M. (2022). Folic acid-decorated PEGylated magnetite nanoparticles as efficient drug carriers to tumor cells overexpressing folic acid receptor. International Journal of Pharmaceutics, 625, 122064. [CrossRef]
  • 37. Kang, L.J., Yoon, J., Rho, J.G., Han, H.S., Lee, S., Oh, Y.S., Kim, H., Kim, E., Kim, S.J., Lim, Y.T., Park J.H., Song, W.K., Yang, S., Kim, W. (2021). Self-assembled hyaluronic acid nanoparticles for osteoarthritis treatment. Biomaterials, 275, 120967. [CrossRef]
  • 38. Jin, M., Li, S., Wu, Y., Li, D., Han, Y. (2021). Construction of chitosan/alginate nano-drug delivery system for improving dextran sodium sulfate-induced colitis in mice. Nanomaterials, 11(8), 1884. [CrossRef]
  • 39. Kong, L., Barber, T., Aldinger, J., Bowman, L., Leonard, S., Zhao, J., Ding, M. (2022). ROS generation is involved in titanium dioxide nanoparticle-induced AP-1 activation through p38 MAPK and ERK pathways in JB6 cells. Environmental Toxicology, 37(2), 237-244. [CrossRef]
  • 40. Rafik, S.T., Zeitoun, T.M., Shalaby, T.I., Barakat, M.K., Ismail, C.A. (2023). Methotrexate conjugated gold nanoparticles improve rheumatoid vascular dysfunction in rat adjuvant-induced arthritis: Gold revival. Inflammopharmacology, 31(1), 321-335. [CrossRef]
  • 41. Wu, L., Shen, S. (2019). What potential do magnetic iron oxide nanoparticles have for the treatment of rheumatoid arthritis? Nanomedicine, 14(8), 927-930. [CrossRef]
  • 42. Hollander, J.L., Brown, E.M., Jessar, R.A., Brown, C.Y. (1951). Hydrocortisone and cortisone injected into arthritic joints; comparative effects of and use of hydrocortisone as a local antiarthritic agent. Journal of the American Medical Association, 147(17), 1629-1635. [CrossRef]
  • 43. Shinde Patil, V.R., Campbell, C.J., Yun, Y.H., Slack, S.M., Goetz, D.J. (2001). Particle diameter influences adhesion under flow. Biophysical Journal, 80(4), 1733-1743. [CrossRef]
  • 44. Gentile, F., Curcio, A., Indolfi, C., Ferrari, M., Decuzzi, P. (2008). The margination propensity of spherical particles for vascular targeting in the microcirculation. Journal of Nanobiotechnology, 6, 1-9. [CrossRef]
  • 45. Yoo, J.W., Doshi, N., Mitragotri, S. (2011). Adaptive micro and nanoparticles: Temporal control over carrier properties to facilitate drug delivery. Advanced Drug Delivery Reviews, 63(14-15), 1247-1256. [CrossRef]
  • 46. Decuzzi, P., Pasqualini, R., Arap, W., Ferrari, M. (2009). Intravascular delivery of particulate systems: does geometry really matter? Pharmaceutical Research, 26(1), 235-243. [CrossRef]
  • 47. Champion, J.A., Mitragotri, S. (2006). Role of target geometry in phagocytosis. Proceedings of National Academy Sciences of the United States of America, 103(13), 4930-4934. [CrossRef]
  • 48. Gref, R., Minamitake, Y., Peracchia, M.T., Trubetskoy, V., Torchilin, V., Langer, R. (1994). Biodegradable long-circulating polymeric nanospheres. Science, 263(5153), 1600-1603. [CrossRef]
  • 49. Owens III, D.E., Peppas, N.A. (2006). Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Internationals Journal of Pharmaceutics, 307(1), 93-102. [CrossRef]
  • 50. Levick, J.R. (1990). Hypoxia and acidosis in chronic inflammatory arthritis; relation to vascular supply and dynamic effusion pressure. The Journal of Rheumatology, 17(5), 579-582.
  • 51. Metselaar, J.M., Middelink, L.M., Wortel, C.H., Bos, R., van Laar, J.M., Vonkeman, H.E., Westhovens, R., Lammers, T., Yao, S.L., Kothekar, M., Raut, A., Bijlsma, J.W.J. (2022). Intravenous pegylated liposomal prednisolone outperforms intramuscular methylprednisolone in treating rheumatoid arthritis flares: A randomized controlled clinical trial. Journal of Controlled Release, 341, 548-554. [CrossRef]
  • 52. Anselmo, A.C., Mitragotri, S. (2016). Nanoparticles in the clinic. Bioengineering Translational Medicine, 1(1), 10-29. [CrossRef]
  • 53. Obeid, M.A., Al Qaraghuli, M.M., Alsaadi, M., Alzahrani, A.R., Niwasabutra, K., Ferro, V.A. (2017). Delivering natural products and biotherapeutics to improve drug efficacy. Therapeutic Delivery, 8(11), 947-956. [CrossRef]
  • 54. Jain, S., Heeralal, B., Swami, R., Swarnakar, N.K., Kushwah, V. (2018). Improved oral bioavailability, therapeutic efficacy, and reduced toxicity of tamoxifen-loaded liquid crystalline nanoparticles. An Official Journal of the American Association of Pharmaceutical Scientist, 19(1), 460-469. [CrossRef]
  • 55. Jahangirian, H., Lemraski, E.G., Webster, T.J., Rafiee-Moghaddam, R., Abdollahi, Y. (2017). A review of drug delivery systems based on nanotechnology and green chemistry: Green nanomedicine. International Journal of Nanomedicine, 12, 2957-2978. [CrossRef]
  • 56. Banik, B.L., Fattahi, P., Brown, J.L. (2016). Polymeric nanoparticles: The future of nanomedicine. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 8(2), 271-299. [CrossRef]
  • 57. Siddique, R., Mehmood, M.H., Haris, M., Saleem, A., Chaudhry, Z. (2022). Promising role of polymeric nanoparticles in the treatment of rheumatoid arthritis. Inflammopharmacology, 30(4), 1207-1218. [CrossRef]
  • 58. Li, R., He, Y., Zhu, Y., Jiang, L., Zhang, S., Qin, J. (2019). Route to rheumatoid arthritis by macrophage-derived microvesicle-coated nanoparticles. Nano Letters, 19(1), 124-134. [CrossRef]
  • 59. Tan, T., Huang, Q., Chu, W., Li, B., Wu, J., Xia, Q. (2022). Delivery of germacrone (GER) using macrophages-targeted polymeric nanoparticles and its application in rheumatoid arthritis. Drug Delivery, 29(1), 692-701. [CrossRef]
  • 60. Allen, T.M., Cullis, P.R. (2013). Liposomal drug delivery systems: from concept to clinical applications. Advanced Drug Delivery Reviews, 65(1), 36-48. [CrossRef]
  • 61. Verrico, C.D., Wesson, S., Konduri, V., Hofferek, C.J., Vazquez-Perez, J., Blair, E. (2020). A randomized, double-blind, placebo-controlled study of daily cannabidiol for the treatment of canine osteoarthritis pain. Pain, 161(9), 2191-2202.
  • 62. Shen, Q., Shu, H., Xu, X., Shu, G., Du, Y., Ying, X. (2020). Tofacitinib citrate-based liposomes for effective treatment of rheumatoid arthritis. Die Pharmazie, 75(4), 131-135.
  • 63. Zhou, X., Huang, D., Wang, R., Wu, M., Zhu, L., Peng, W. (2021). Targeted therapy of rheumatoid arthritis via macrophage repolarization. Drug Delivery, 28(1), 2447-2459. [CrossRef]
  • 64. Qindeel, M., Khan, D., Ahmed, N., Khan, S., Asim Ur, R. (2020). Surfactant-free, self-assembled nanomicelles-based transdermal hydrogel for safe and targeted delivery of methotrexate against rheumatoid arthritis. ACS Nano, 14(4), 4662-4681. [CrossRef]
  • 65. Li, C., Chen, X., Luo, X., Wang, H., Zhu, Y., Du, G., Chen, W., Chen, Z., Hao, X., Zhang, Z., Sun, X. (2021). Nanoemulsions target to ectopic lymphoids in inflamed joints to restore immune tolerance in rheumatoid arthritis. Nano Letters, 21(6), 2551-2561. [CrossRef]
  • 66. Yousefpoor, Y., Amani, A., Divsalar, A., Mousavi, S.E., Shakeri, A., Sabzevari, J.T. (2022). Anti-rheumatic activity of topical nanoemulsion containing bee venom in rats. European Journal of Pharmaceutics and Biopharmaceutics, 172, 168-176. [CrossRef]
  • 67. Bashir, M., Ahmad, J., Asif, M., Khan, S.U.D., Irfan, M., Asim, Y.I., Asghar, S., Khan, I.U., Iqbal, M.S., Haseeb, A., Khalid, S.H., Abourehab, M. (2021). Nanoemulgel, an innovative carrier for diflunisal topical delivery with profound anti-inflammatory effect: In vitro and in vivo evaluation. International Journal of Nanomedicine, 16, 1457-1472. [CrossRef]
  • 68. Vadlapudi, A.D., Mitra, A.K. (2013). Nanomicelles: An emerging platform for drug delivery to the eye. Therapeutic Delivery, 4(1), 1-3. [CrossRef]
  • 69. Magne, T.M., Helal-Neto, E., Correa, L.B., Rebelo Alencar, L.M., Gemini Piperni, S., Iram, S.H. (2021). Rheumatoid arthritis treatment using hydroxychloroquine and methotrexate co-loaded nanomicelles: In vivo results. Colloids and Surfaces B: Biointerfaces, 206, 111952. [CrossRef]
  • 70. Yu, C., Liu, H., Guo, C., Chen, Q., Su, Y., Guo, H. (2022). Dextran sulfate-based MMP-2 enzyme-sensitive SR-A receptor targeting nanomicelles for the treatment of rheumatoid arthritis. Drug Delivery, 29(1), 454-465. [CrossRef]
  • 71. Yu, M., Jie, X., Xu, L., Chen, C., Shen, W., Cao, Y., Lian, G., Qi, R. (2015). Recent advances in dendrimer research for cardiovascular diseases. Biomacromolecules, 16(9), 2588-2598. [CrossRef]
  • 72. Wu, L.P., Ficker, M., Christensen, J.B., Trohopoulos, P.N., Moghimi, S.M. (2015). Dendrimers in medicine: Therapeutic concepts and pharmaceutical challenges. Bioconjugate Chemistry, 26(7), 1198-1211. [CrossRef]
  • 73. Han, H., Xing, J., Chen, W., Jia, J., Li, Q. (2023). Fluorinated polyamidoamine dendrimer-mediated miR-23b delivery for the treatment of experimental rheumatoid arthritis in rats. Nature Communications, 14(1), 944. [CrossRef]
  • 74. Oliveira, I.M., Gonçalves, C., Oliveira, E.P., Simón-Vázquez, R., da Silva Morais, A., González-Fernández, Á., Reis, R.L., Oliveria, J.M. (2021). PAMAM dendrimers functionalised with an anti-TNF α antibody and chondroitin sulphate for treatment of rheumatoid arthritis. Material Science and Engineering:C, 121, 111845. [CrossRef]
  • 75. Oliveira, I.M., Carvalho, M.R., Fernandes, D.C., Abreu, C.M., Maia, F.R., Pereira, H., Caballero, D., Kundu, S.C., Reis, R.L., Oliveria, J.M. (2021). Modulation of inflammation by anti-TNF α mAb-dendrimer nanoparticles loaded in tyramine-modified gellan gum hydrogels in a cartilage-on-a-chip model. Journal of Materials Chemistry B, 9(20), 4211-4218. [CrossRef]

AN OVERWIEW OF TARGETED DRUG DELIVERY SYSTEMS FOR RHEUMATOID ARTHRITIS TREATMENT

Yıl 2024, Cilt: 48 Sayı: 1, 259 - 273, 20.01.2024
https://doi.org/10.33483/jfpau.1300942

Öz

Objective: Rheumatoid arthritis is an autoimmune disease that can cause damage to bones, cartilage, tendons and ligaments. Its treatment includes non-specific, systemic administration of glucocorticoids, DMARDs and biologics to relieve symptoms. In traditional treatment approaches, drugs need to be administered at frequent intervals and in high doses, which causes side effects that reduce the quality of life of patients. It is possible to develop nano-sized drug delivery systems for the treatment of rheumatoid arthritis and deliver them to the areas of inflammation, thus reducing the dose of drugs and minimizing their systemic side effects.
Result and Discussion: As shown in many studies, the use of various drug delivery systems as an alternative to traditional treatment methods in the treatment of rheumatoid arthritis has shown very positive results in terms of prevention and alleviation of the symptoms of the disease. It is thought that there will be promising developments in the treatment of rheumatoid arthritis in the coming years utilizing of various targeting approaches as in cancer treatment.

Kaynakça

  • 1. Kourilovitch, M., Galarza-Maldonado, C., Ortiz-Prado, E. (2014). Diagnosis and classification of rheumatoid arthritis. Journal of Autoimmunity, 48-49, 26-30. [CrossRef]
  • 2. Firestein, G.S. (2003). Evolving concepts of rheumatoid arthritis. Nature, 423(6937), 356-361.
  • 3. Viatte, S., Plant, D., Raychaudhuri, S. (2013). Genetics and epigenetics of rheumatoid arthritis. Nature Reviews Rheumatology, 9(3), 141-153. [CrossRef]
  • 4. Janakiraman, K., Krishnaswami, V., Rajendran, V., Natesan, S., Kandasamy, R. (2018). Novel nano therapeutic materials for the effective treatment of rheumatoid arthritis-recent insights. Mater Today Commun, 17, 200-213. [CrossRef]
  • 5. Feldmann, M., Maini, S.R. (2008). Role of cytokines in rheumatoid arthritis: An education in pathophysiology and therapeutics. Immunological Reviews, 223, 7-19. [CrossRef]
  • 6. Prevalence of disabilities and associated health conditions among adults-United States, 1999. (2001). Morbidity and Mortality Weekly Report, 50(7), 120-125.
  • 7. Ngian, G.S. (2010). Rheumatoid arthritis. Australian Family Physician, 39(9), 626-628.
  • 8. Lipinska, J., Smolewska, E., Brozik, H., Stanczyk, J. (2008). Anti-CCP antibodies in children with Juvenile Idiopathic Arthritis (JIA)-Diagnostic and clinical significance. Central-European Journal of Immunity, 33(1), 19-23.
  • 9. Mitragotri, S., Yoo, J.W. (2011). Designing micro- and nano-particles for treating rheumatoid arthritis. Archives of Pharmacal Research, 34(11), 1887-1897. [CrossRef]
  • 10. Saag, K.G. (2002). Glucocorticoid use in rheumatoid arthritis. Current Rheumatology Reports, 4(3), 218-225. [CrossRef]
  • 11. Solomon, D.H., Katz, J.N., Jacobs, J.P., La Tourette, A.M., Coblyn, J. (2002). Management of glucocorticoid-induced osteoporosis in patients with rheumatoid arthritis: Rates and predictors of care in an academic rheumatology practice. Arthritis and Rheumatism, 46(12), 3136-3142. [CrossRef]
  • 12. Hua, C., Buttgereit, F., Combe, B. (2020). Glucocorticoids in rheumatoid arthritis: Current status and future studies. Rheumatic & Musculoskeletal Diseases Open, 6(1), 1-9. [CrossRef]
  • 13. Hafström, I., Albertsson, K., Boonen, A., van der Heijde, D., Landewé, R., Svensson, B. (2009). Remission achieved after 2 years treatment with low-dose prednisolone in addition to disease-modifying anti-rheumatic drugs in early rheumatoid arthritis is associated with reduced joint destruction still present after 4 years: An open 2-year continuation study. Annals of the Rheumatic Diseases, 68(4), 508-513. [CrossRef]
  • 14. van Vollenhoven, R.F. (2009). Treatment of rheumatoid arthritis: State of the art 2009. Nature Reviews Rheumatology, 5(10), 531-541. [CrossRef]
  • 15. Bonek, K., Roszkowski, L., Massalska, M., Maslinski, W., Ciechomska, M. (2021). Biologic drugs for rheumatoid arthritis in the context of biosimilars, genetics, epigenetics and covid-19 treatment. Cells, 10(2), 323-348. [CrossRef]
  • 16. Montesinos, M.C., Takedachi, M., Thompson, L.F., Wilder, T.F., Fernández, P., Cronstein, B.N. (2007). The antiinflammatory mechanism of methotrexate depends on extracellular conversion of adenine nucleotides to adenosine by ecto-5'-nucleotidase: Findings in a study of ecto-5'-nucleotidase gene-deficient mice. Arthritis and Rheumatism, 56(5), 1440-1445. [CrossRef]
  • 17. Galatage, S.T., Hebalkar, A.S., Gaikwad, S.S., Kumbhar, P.S., Patil, N.N., Desai, K.D., Kanekar, S.U., Kadam, S.S., Sansare, R.S., Sansare, S.S., Killedar, S.G. (2021). Rheumatoid arthritis: Severity classification, factors responsible, pathophysiology, current and herbal treatment. [CrossRef]
  • 18. Strand, V., Kimberly, R., Isaacs, J.D. (2007). Biologic therapies in rheumatology: Lessons learned, future directions. Nature Reviews. Drug Discovery, 6(1), 75-92. [CrossRef]
  • 19. Furst, D.E. (2010). The risk of infections with biologic therapies for rheumatoid arthritis. Seminars in Arthritis and Rheumatism, 39(5), 327-346. [CrossRef]
  • 20. Ren, H., He, Y., Liang, J., Cheng, Z., Zhang, M., Zhu, Y. (2019). Role of liposome size, surface charge, and pegylation on rheumatoid arthritis targeting therapy. ACS Applied Matererials Interfaces, 11(22), 20304-20315. [CrossRef]
  • 21. Gabizon, A.A. (2001). Stealth liposomes and tumor targeting: One step further in the quest for the magic bullet. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 7(2), 223-225.
  • 22. Ochoa, C.D., Stevens, T. (2012). Studies on the cell biology of interendothelial cell gaps. American Journal of Physiology Lung Cellular and Molecular Physiology, 302(3), 275-286. [CrossRef]
  • 23. Partridge, C.A., Horvath, C.J., Del Vecchio, P.J., Phillips, P.G., Malik, A.B. (1992). Influence of extracellular matrix in tumor necrosis factor-induced increase in endothelial permeability. The American Journal of Physiology, 263(6), 627-633. [CrossRef]
  • 24. Ağardan, N.B.M., Torchilin, V.P. (2016). Chapter 1 - Engineering of stimuli-sensitive nanopreparations to overcome physiological barriers and cancer multidrug resistance. In Grumezescu, A.M. (Ed.), Engineering of Nanobiomaterials, William Andrew Publishing. (pp.1-28).
  • 25. Ishihara, T., Kubota, T., Choi, T., Higaki, M. (2009). Treatment of experimental arthritis with stealth-type polymeric nanoparticles encapsulating betamethasone phosphate. The Journal of Pharmacology and Experimental Therapeutics. 329(2), 412-417. [CrossRef]
  • 26. Ulmansky, R., Turjeman, K., Baru, M., Katzavian, G., Harel, M., Sigal, A., Naparstek, Y., Barenholz, Y. (2012). Glucocorticoids in nano-liposomes administered intravenously and subcutaneously to adjuvant arthritis rats are superior to the free drugs in suppressing arthritis and inflammatory cytokines. Journal of Controlled Release, 160(2), 299-305. [CrossRef]
  • 27. Feng, X. , Chen, Y. (2018). Drug delivery targets and systems for targeted treatment of rheumatoid arthritis. Journal of Drug Targeting, 26(10), 845-857. [CrossRef]
  • 28. van der Heijden, J.W., Oerlemans, R., Dijkmans, B.A., Qi, H., van der Laken, C.J., Lems, W.F., Jackman, A.L., Kraan, M.C., Tak, P.P., Ratnam, M., Jansen, G. (2009). Folate receptor beta as a potential delivery route for novel folate antagonists to macrophages in the synovial tissue of rheumatoid arthritis patients. Arthritis and Rheumatism, 60(1), 12-21. [CrossRef]
  • 29. Paulos, C.M., Turk, M.J., Breur, G.J., Low, P.S. (2004). Folate receptor-mediated targeting of therapeutic and imaging agents to activated macrophages in rheumatoid arthritis. Advanced Drug Delivery Reviews, 56(8), 1205-1217. [CrossRef]
  • 30. Piscaer, T.M., Müller, C., Mindt, T.L., Lubberts, E., Verhaar, J.A., Krenning, E.P. (2011). Imaging of activated macrophages in experimental osteoarthritis using folate-targeted animal single-photon-emission computed tomography/computed tomography. Arthritis and Rheumatism, 63(7), 1898-1907. [CrossRef]
  • 31. Schiffelers, R.M., Koning, G.A., ten Hagen, T.L., Fens, M.H., Schraa, A.J., Janssen, A.P., Kok, R.J.,Molema, G., Storm, G. (2003). Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. Journal of Controlled Release, 91(1-2), 115-122. [CrossRef]
  • 32. Koning, G.A., Schiffelers, R.M., Wauben, M.H., Kok, R.J., Mastrobattista, E., Molema, G. (2006). Targeting of angiogenic endothelial cells at sites of inflammation by dexamethasone phosphate-containing RGD peptide liposomes inhibits experimental arthritis. Arthritis and Rheumatism, 54(4), 1198-1208. [CrossRef]
  • 33. Kriegsmann, J., Keyszer, G.M., Geiler, T., Lagoo, A.S., Lagoo-Deenadayalan, S., Gay, R.E. (1995). Expression of E-selectin messenger RNA and protein in rheumatoid arthritis. Arthritis and Rheumatism, 38(6), 750-754. [CrossRef]
  • 34. Ma, S., Tian, X.Y., Zhang, Y., Mu, C., Shen, H., Bismuth, J. (2016). E-selectin-targeting delivery of microRNAs by microparticles ameliorates endothelial inflammation and atherosclerosis. Scientific Reports, 6, 22910. [CrossRef]
  • 35. Trujillo-Nolasco, R.M., Morales-Avila, E., Ocampo-García, B.E., Ferro-Flores, G., Gibbens-Bandala, B.V., Escudero-Castellanos, A. (2019). Preparation and in vitro evaluation of radiolabeled HA-PLGA nanoparticles as novel MTX delivery system for local treatment of rheumatoid arthritis. Materials Science Engineering: C, 103, 109766. [CrossRef]
  • 36. Movileanu, C., Anghelache, M., Turtoi, M., Voicu, G., Neacsu, I.A., Ficai, D., Trusca, R., Oprea, O., Ficai, A., Andronescu, E., Calin, M. (2022). Folic acid-decorated PEGylated magnetite nanoparticles as efficient drug carriers to tumor cells overexpressing folic acid receptor. International Journal of Pharmaceutics, 625, 122064. [CrossRef]
  • 37. Kang, L.J., Yoon, J., Rho, J.G., Han, H.S., Lee, S., Oh, Y.S., Kim, H., Kim, E., Kim, S.J., Lim, Y.T., Park J.H., Song, W.K., Yang, S., Kim, W. (2021). Self-assembled hyaluronic acid nanoparticles for osteoarthritis treatment. Biomaterials, 275, 120967. [CrossRef]
  • 38. Jin, M., Li, S., Wu, Y., Li, D., Han, Y. (2021). Construction of chitosan/alginate nano-drug delivery system for improving dextran sodium sulfate-induced colitis in mice. Nanomaterials, 11(8), 1884. [CrossRef]
  • 39. Kong, L., Barber, T., Aldinger, J., Bowman, L., Leonard, S., Zhao, J., Ding, M. (2022). ROS generation is involved in titanium dioxide nanoparticle-induced AP-1 activation through p38 MAPK and ERK pathways in JB6 cells. Environmental Toxicology, 37(2), 237-244. [CrossRef]
  • 40. Rafik, S.T., Zeitoun, T.M., Shalaby, T.I., Barakat, M.K., Ismail, C.A. (2023). Methotrexate conjugated gold nanoparticles improve rheumatoid vascular dysfunction in rat adjuvant-induced arthritis: Gold revival. Inflammopharmacology, 31(1), 321-335. [CrossRef]
  • 41. Wu, L., Shen, S. (2019). What potential do magnetic iron oxide nanoparticles have for the treatment of rheumatoid arthritis? Nanomedicine, 14(8), 927-930. [CrossRef]
  • 42. Hollander, J.L., Brown, E.M., Jessar, R.A., Brown, C.Y. (1951). Hydrocortisone and cortisone injected into arthritic joints; comparative effects of and use of hydrocortisone as a local antiarthritic agent. Journal of the American Medical Association, 147(17), 1629-1635. [CrossRef]
  • 43. Shinde Patil, V.R., Campbell, C.J., Yun, Y.H., Slack, S.M., Goetz, D.J. (2001). Particle diameter influences adhesion under flow. Biophysical Journal, 80(4), 1733-1743. [CrossRef]
  • 44. Gentile, F., Curcio, A., Indolfi, C., Ferrari, M., Decuzzi, P. (2008). The margination propensity of spherical particles for vascular targeting in the microcirculation. Journal of Nanobiotechnology, 6, 1-9. [CrossRef]
  • 45. Yoo, J.W., Doshi, N., Mitragotri, S. (2011). Adaptive micro and nanoparticles: Temporal control over carrier properties to facilitate drug delivery. Advanced Drug Delivery Reviews, 63(14-15), 1247-1256. [CrossRef]
  • 46. Decuzzi, P., Pasqualini, R., Arap, W., Ferrari, M. (2009). Intravascular delivery of particulate systems: does geometry really matter? Pharmaceutical Research, 26(1), 235-243. [CrossRef]
  • 47. Champion, J.A., Mitragotri, S. (2006). Role of target geometry in phagocytosis. Proceedings of National Academy Sciences of the United States of America, 103(13), 4930-4934. [CrossRef]
  • 48. Gref, R., Minamitake, Y., Peracchia, M.T., Trubetskoy, V., Torchilin, V., Langer, R. (1994). Biodegradable long-circulating polymeric nanospheres. Science, 263(5153), 1600-1603. [CrossRef]
  • 49. Owens III, D.E., Peppas, N.A. (2006). Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Internationals Journal of Pharmaceutics, 307(1), 93-102. [CrossRef]
  • 50. Levick, J.R. (1990). Hypoxia and acidosis in chronic inflammatory arthritis; relation to vascular supply and dynamic effusion pressure. The Journal of Rheumatology, 17(5), 579-582.
  • 51. Metselaar, J.M., Middelink, L.M., Wortel, C.H., Bos, R., van Laar, J.M., Vonkeman, H.E., Westhovens, R., Lammers, T., Yao, S.L., Kothekar, M., Raut, A., Bijlsma, J.W.J. (2022). Intravenous pegylated liposomal prednisolone outperforms intramuscular methylprednisolone in treating rheumatoid arthritis flares: A randomized controlled clinical trial. Journal of Controlled Release, 341, 548-554. [CrossRef]
  • 52. Anselmo, A.C., Mitragotri, S. (2016). Nanoparticles in the clinic. Bioengineering Translational Medicine, 1(1), 10-29. [CrossRef]
  • 53. Obeid, M.A., Al Qaraghuli, M.M., Alsaadi, M., Alzahrani, A.R., Niwasabutra, K., Ferro, V.A. (2017). Delivering natural products and biotherapeutics to improve drug efficacy. Therapeutic Delivery, 8(11), 947-956. [CrossRef]
  • 54. Jain, S., Heeralal, B., Swami, R., Swarnakar, N.K., Kushwah, V. (2018). Improved oral bioavailability, therapeutic efficacy, and reduced toxicity of tamoxifen-loaded liquid crystalline nanoparticles. An Official Journal of the American Association of Pharmaceutical Scientist, 19(1), 460-469. [CrossRef]
  • 55. Jahangirian, H., Lemraski, E.G., Webster, T.J., Rafiee-Moghaddam, R., Abdollahi, Y. (2017). A review of drug delivery systems based on nanotechnology and green chemistry: Green nanomedicine. International Journal of Nanomedicine, 12, 2957-2978. [CrossRef]
  • 56. Banik, B.L., Fattahi, P., Brown, J.L. (2016). Polymeric nanoparticles: The future of nanomedicine. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 8(2), 271-299. [CrossRef]
  • 57. Siddique, R., Mehmood, M.H., Haris, M., Saleem, A., Chaudhry, Z. (2022). Promising role of polymeric nanoparticles in the treatment of rheumatoid arthritis. Inflammopharmacology, 30(4), 1207-1218. [CrossRef]
  • 58. Li, R., He, Y., Zhu, Y., Jiang, L., Zhang, S., Qin, J. (2019). Route to rheumatoid arthritis by macrophage-derived microvesicle-coated nanoparticles. Nano Letters, 19(1), 124-134. [CrossRef]
  • 59. Tan, T., Huang, Q., Chu, W., Li, B., Wu, J., Xia, Q. (2022). Delivery of germacrone (GER) using macrophages-targeted polymeric nanoparticles and its application in rheumatoid arthritis. Drug Delivery, 29(1), 692-701. [CrossRef]
  • 60. Allen, T.M., Cullis, P.R. (2013). Liposomal drug delivery systems: from concept to clinical applications. Advanced Drug Delivery Reviews, 65(1), 36-48. [CrossRef]
  • 61. Verrico, C.D., Wesson, S., Konduri, V., Hofferek, C.J., Vazquez-Perez, J., Blair, E. (2020). A randomized, double-blind, placebo-controlled study of daily cannabidiol for the treatment of canine osteoarthritis pain. Pain, 161(9), 2191-2202.
  • 62. Shen, Q., Shu, H., Xu, X., Shu, G., Du, Y., Ying, X. (2020). Tofacitinib citrate-based liposomes for effective treatment of rheumatoid arthritis. Die Pharmazie, 75(4), 131-135.
  • 63. Zhou, X., Huang, D., Wang, R., Wu, M., Zhu, L., Peng, W. (2021). Targeted therapy of rheumatoid arthritis via macrophage repolarization. Drug Delivery, 28(1), 2447-2459. [CrossRef]
  • 64. Qindeel, M., Khan, D., Ahmed, N., Khan, S., Asim Ur, R. (2020). Surfactant-free, self-assembled nanomicelles-based transdermal hydrogel for safe and targeted delivery of methotrexate against rheumatoid arthritis. ACS Nano, 14(4), 4662-4681. [CrossRef]
  • 65. Li, C., Chen, X., Luo, X., Wang, H., Zhu, Y., Du, G., Chen, W., Chen, Z., Hao, X., Zhang, Z., Sun, X. (2021). Nanoemulsions target to ectopic lymphoids in inflamed joints to restore immune tolerance in rheumatoid arthritis. Nano Letters, 21(6), 2551-2561. [CrossRef]
  • 66. Yousefpoor, Y., Amani, A., Divsalar, A., Mousavi, S.E., Shakeri, A., Sabzevari, J.T. (2022). Anti-rheumatic activity of topical nanoemulsion containing bee venom in rats. European Journal of Pharmaceutics and Biopharmaceutics, 172, 168-176. [CrossRef]
  • 67. Bashir, M., Ahmad, J., Asif, M., Khan, S.U.D., Irfan, M., Asim, Y.I., Asghar, S., Khan, I.U., Iqbal, M.S., Haseeb, A., Khalid, S.H., Abourehab, M. (2021). Nanoemulgel, an innovative carrier for diflunisal topical delivery with profound anti-inflammatory effect: In vitro and in vivo evaluation. International Journal of Nanomedicine, 16, 1457-1472. [CrossRef]
  • 68. Vadlapudi, A.D., Mitra, A.K. (2013). Nanomicelles: An emerging platform for drug delivery to the eye. Therapeutic Delivery, 4(1), 1-3. [CrossRef]
  • 69. Magne, T.M., Helal-Neto, E., Correa, L.B., Rebelo Alencar, L.M., Gemini Piperni, S., Iram, S.H. (2021). Rheumatoid arthritis treatment using hydroxychloroquine and methotrexate co-loaded nanomicelles: In vivo results. Colloids and Surfaces B: Biointerfaces, 206, 111952. [CrossRef]
  • 70. Yu, C., Liu, H., Guo, C., Chen, Q., Su, Y., Guo, H. (2022). Dextran sulfate-based MMP-2 enzyme-sensitive SR-A receptor targeting nanomicelles for the treatment of rheumatoid arthritis. Drug Delivery, 29(1), 454-465. [CrossRef]
  • 71. Yu, M., Jie, X., Xu, L., Chen, C., Shen, W., Cao, Y., Lian, G., Qi, R. (2015). Recent advances in dendrimer research for cardiovascular diseases. Biomacromolecules, 16(9), 2588-2598. [CrossRef]
  • 72. Wu, L.P., Ficker, M., Christensen, J.B., Trohopoulos, P.N., Moghimi, S.M. (2015). Dendrimers in medicine: Therapeutic concepts and pharmaceutical challenges. Bioconjugate Chemistry, 26(7), 1198-1211. [CrossRef]
  • 73. Han, H., Xing, J., Chen, W., Jia, J., Li, Q. (2023). Fluorinated polyamidoamine dendrimer-mediated miR-23b delivery for the treatment of experimental rheumatoid arthritis in rats. Nature Communications, 14(1), 944. [CrossRef]
  • 74. Oliveira, I.M., Gonçalves, C., Oliveira, E.P., Simón-Vázquez, R., da Silva Morais, A., González-Fernández, Á., Reis, R.L., Oliveria, J.M. (2021). PAMAM dendrimers functionalised with an anti-TNF α antibody and chondroitin sulphate for treatment of rheumatoid arthritis. Material Science and Engineering:C, 121, 111845. [CrossRef]
  • 75. Oliveira, I.M., Carvalho, M.R., Fernandes, D.C., Abreu, C.M., Maia, F.R., Pereira, H., Caballero, D., Kundu, S.C., Reis, R.L., Oliveria, J.M. (2021). Modulation of inflammation by anti-TNF α mAb-dendrimer nanoparticles loaded in tyramine-modified gellan gum hydrogels in a cartilage-on-a-chip model. Journal of Materials Chemistry B, 9(20), 4211-4218. [CrossRef]

Ayrıntılar

Birincil Dil Türkçe
Konular Eczacılık ve İlaç Bilimleri
Bölüm Derleme
Yazarlar

Nebahat DURMAZ 0000-0002-1459-2575

Necibe Başaran MUTLU AĞARDAN 0000-0002-4882-3124

Proje Numarası -
Erken Görünüm Tarihi 19 Kasım 2023
Yayımlanma Tarihi 20 Ocak 2024
Gönderilme Tarihi 23 Mayıs 2023
Kabul Tarihi 21 Eylül 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 48 Sayı: 1

Kaynak Göster

APA DURMAZ, N., & MUTLU AĞARDAN, N. B. (2024). ROMATOİD ARTRİT TEDAVİSİNDE HEDEFLENDİRİLMİŞ İLAÇ TAŞIYICI SİSTEMLERE GENEL BAKIŞ. Journal of Faculty of Pharmacy of Ankara University, 48(1), 259-273. https://doi.org/10.33483/jfpau.1300942
AMA DURMAZ N, MUTLU AĞARDAN NB. ROMATOİD ARTRİT TEDAVİSİNDE HEDEFLENDİRİLMİŞ İLAÇ TAŞIYICI SİSTEMLERE GENEL BAKIŞ. Ankara Ecz. Fak. Derg. Ocak 2024;48(1):259-273. doi:10.33483/jfpau.1300942
Chicago DURMAZ, Nebahat, ve Necibe Başaran MUTLU AĞARDAN. “ROMATOİD ARTRİT TEDAVİSİNDE HEDEFLENDİRİLMİŞ İLAÇ TAŞIYICI SİSTEMLERE GENEL BAKIŞ”. Journal of Faculty of Pharmacy of Ankara University 48, sy. 1 (Ocak 2024): 259-73. https://doi.org/10.33483/jfpau.1300942.
EndNote DURMAZ N, MUTLU AĞARDAN NB (01 Ocak 2024) ROMATOİD ARTRİT TEDAVİSİNDE HEDEFLENDİRİLMİŞ İLAÇ TAŞIYICI SİSTEMLERE GENEL BAKIŞ. Journal of Faculty of Pharmacy of Ankara University 48 1 259–273.
IEEE N. DURMAZ ve N. B. MUTLU AĞARDAN, “ROMATOİD ARTRİT TEDAVİSİNDE HEDEFLENDİRİLMİŞ İLAÇ TAŞIYICI SİSTEMLERE GENEL BAKIŞ”, Ankara Ecz. Fak. Derg., c. 48, sy. 1, ss. 259–273, 2024, doi: 10.33483/jfpau.1300942.
ISNAD DURMAZ, Nebahat - MUTLU AĞARDAN, Necibe Başaran. “ROMATOİD ARTRİT TEDAVİSİNDE HEDEFLENDİRİLMİŞ İLAÇ TAŞIYICI SİSTEMLERE GENEL BAKIŞ”. Journal of Faculty of Pharmacy of Ankara University 48/1 (Ocak 2024), 259-273. https://doi.org/10.33483/jfpau.1300942.
JAMA DURMAZ N, MUTLU AĞARDAN NB. ROMATOİD ARTRİT TEDAVİSİNDE HEDEFLENDİRİLMİŞ İLAÇ TAŞIYICI SİSTEMLERE GENEL BAKIŞ. Ankara Ecz. Fak. Derg. 2024;48:259–273.
MLA DURMAZ, Nebahat ve Necibe Başaran MUTLU AĞARDAN. “ROMATOİD ARTRİT TEDAVİSİNDE HEDEFLENDİRİLMİŞ İLAÇ TAŞIYICI SİSTEMLERE GENEL BAKIŞ”. Journal of Faculty of Pharmacy of Ankara University, c. 48, sy. 1, 2024, ss. 259-73, doi:10.33483/jfpau.1300942.
Vancouver DURMAZ N, MUTLU AĞARDAN NB. ROMATOİD ARTRİT TEDAVİSİNDE HEDEFLENDİRİLMİŞ İLAÇ TAŞIYICI SİSTEMLERE GENEL BAKIŞ. Ankara Ecz. Fak. Derg. 2024;48(1):259-73.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.