Derleme
BibTex RIS Kaynak Göster

MUCOADHESIVE POLYMERS IN COLON TARGETED DRUG DELIVERY SYSTEMS: A COMPREHENSIVE REVIEW

Yıl 2024, Cilt: 48 Sayı: 2, 696 - 713, 20.05.2024
https://doi.org/10.33483/jfpau.1400920

Öz

Objective: Mucoadhesive polymers have emerged as crucial components in the realm of drug delivery systems, particularly in the context of targeted treatments within the colon. These polymers possess adhesive properties that enable them to form temporary bonds with mucosal surfaces, extending the contact time of drugs with the colonic mucosa. This review provides a comprehensive overview of mucoadhesive polymers for colon drug delivery systems. Natural polymers such as chitosan and alginate, along with synthetic counterparts like polyacrylic acid derivatives, find application in these systems. The advantages of mucoadhesive polymers lie in their ability to facilitate site-specific drug delivery, thereby minimizing systemic side effects, and in enabling controlled and sustained release of drugs for improved bioavailability. Despite these benefits, challenges including variability in mucosal conditions and the imperative need for biocompatibility must be addressed. The applications of mucoadhesive polymers span diverse medical conditions, including targeted delivery of anti-inflammatory drugs for inflammatory bowel diseases, localized administration of chemotherapeutic agents for colon cancer treatment, and precise delivery of antibiotics for colonic infections.
Result and Discussion: As a promising avenue for optimizing colon drug delivery, mucoadhesive polymers offer great potential for the development of effective and well-tolerated treatments for various colonic disorders.

Kaynakça

  • 1. Anil, K.P., Betty, P., Philip, B. (2010). Colon targeted drug delivery systems: A review on primary and novel approaches. Oman Medical Journal, 4(2), 25. [CrossRef]
  • 2. Gazzaniga, A., Moutaharrik, S., Filippin, I., Foppoli, A., Palugan, L., Maroni, A., Cerea, M. (2022). Time-based formulation strategies for colon drug delivery. Pharmaceutics, 14(12), 2762. [CrossRef]
  • 3. Anita, S.A., Dabral. (2019). A review on colon-targeted drug delivery system. International Journal of Pharmaceutical Sciences and Research, 10(1), 47-56.
  • 4. Sangeetha, G., Begum, J.M., Reddemma, S., Rajendra, Y. (2011). Colon targeted drug delivery system: A review. International Journal of Pharmacy & Technology, 3(4), 1657-1672.
  • 5. Kumar, M., Ali, A., Kaldhone, P., Shirode, A., Kadam, V.J. (2010). Report on pharmaceutical approaches to colon-targeted drug delivery systems. Journal of Pharm Research, 3(3).
  • 6. Philip, A.K., Philip, B. (2010). Colon targeted drug delivery systems: A review on primary and novel approaches. Oman Medical Journal, 25(2), 79-87. [CrossRef]
  • 7. Leuva, V.R., Patel, B.G., Chaudhary, D.J., Patel, J.N. (2012). Oral colon-specific drug delivery system. Journal of Pharm Research, 5(4), 2293-2297.
  • 8. Choudhary, L., Jain, A., Agarwal, D. (2020). Colon-targeted oral drug delivery systems: a review. Asian Journal of Pharmaceutical Research and Development, 8(4), 186-193.
  • 9. Chen, S., Zhu, H., Luo, Y. (2022). Chitosan-based oral colon-specific delivery systems for polyphenols: recent advances and emerging trends. Journal of Materials Chemistry B, 10(37), 7328-7348. [CrossRef]
  • 10. Kolte, B.P., Tele, K.V., Mundhe, V.S., Lohoti, S.S. (2012). Colon targeted drug delivery system: A novel perspective. Asian Journal of Biomedical and Pharmaceutical Science, 2(14), 21-28.
  • 11. Herp, J., Deding, U., Buijs, M.M., Krøijer, R., Baatrup, G., Nadimi, E.S. (2021). Feature point tracking-based localization of colon capsule endoscope. Diagnostics, 11(2), 193. [CrossRef]
  • 12. Azehaf, H., Benzine, Y., Tagzirt, M., Skiba, M., Karrout, Y. (2023). Microbiota-sensitive drug delivery systems based on natural polysaccharides for colon targeting. Drug Discovery Today, 28(7), 103606. [CrossRef]
  • 13. Prathap, M., Gulshan, M.D., Rao, N.R. (2014). Colon: targeted drug delivery system-A review. International Journal of Research in Pharmaceutical and Nano Science, 3(5), 429-437.
  • 14. Amidon, S., Brown, J.E., Dave, V.S. (2015). Colon targeted oral drug delivery systems: Design trends and approaches. American Association of Pharmaceutical Scientists, 16(4), 731-741. [CrossRef]
  • 15. Kulkarni, N., Jain, P., Shindikar, A., Suryawanshi, P., Thorat, N. (2022). Advances in the colon-targeted chitosan based multiunit drug delivery systems for the treatment of inflammatory bowel disease. Carbohydrate Polymers, 288, 119351. [CrossRef]
  • 16. Sears, C.L., Garrett, W.S. (2014). Microbes, microbiota, and colon cancer. Cell Host & Microbe, 15(3), 317-328. [CrossRef]
  • 17. Nemade, M.S., Chaudhari, R.Y., Potil, V.R. (2014). Novel approaches to colon-targeted drug delivery system: A Review. Research and Reviews in Pharmacy and Pharmaceutical Science, 3(2), 63-69.
  • 18. McCoubrey, L.E., Favaron, A., Awad, A., Orlu, M., Gaisford, S., Basit, A.W. (2023). Colonic drug delivery: Formulating the next generation of colon-targeted therapeutics. Journal of Controlled Release, 353, 1107-1126. [CrossRef]
  • 19. Balvir, S., Patel, M.R., Patel, K.R., Patel, N.M. (2013). A review on colon-targeted drug delivery system. International Journal of Pharma and Bio Sciences, 2(1), 20-34.
  • 20. Gupta, A., Mittal, A., Gupta, A.K. (2011). Colon targeted drug delivery system: A review. Russian Journal of Biopharmaceutics, 3(4), 3-13.
  • 21. Ratnaparkhi, M.P., Somvanshi, F.S.U., Pawar, S.A., Chaudhari, S.P., Gupta, J.P., Budhavakant, K.A. (2013). Colon targeted drug delivery system. International Journal of Pharma Research and Review, 2(8), 33-42.
  • 22. Wang, K., Shen, R., Meng, T., Hu, F., Yuan, H. (2022). Nano-drug delivery systems based on different targeting mechanisms in the targeted therapy of colorectal cancer. Molecules, 27(9), 2981. [CrossRef]
  • 23. Chaudhari, P., Patil, S., Pawar, S., Rageeb, M., Usman, M. (2020). Colonic drug delivery system: A review. International Journal of Pharmaceutical Sciences Review and Research, 65, 116-123. [CrossRef]
  • 24. Saxena, S., Singh, C., Yadav, M., Samson, A.L. (2018). A review on novel approaches for colon targeted drug delivery systems. PharmaTutor, 6(7), 11-22.
  • 25. Kumar, K., Dhawan, N., Sharma, H., Vaidya, S., Vaidya, B. (2014). Bioadhesive polymers: Novel tool for drug delivery. Artificial Cells Nanomedicine Biotechnology, 42, 274-283. [CrossRef]
  • 26. Estrellas, K.M., Fiecas, M., Azagury, A., Laulicht, B., Cho, D.Y., Mancini, A., Reineke, J., Furtado, S., Mathiowitz, E. (2019). Time-dependent mucoadhesion of conjugated bioadhesive polymers. Colloids and Surfaces. B: Biointerfaces, 173, 454-469. [CrossRef]
  • 27. Laurén, P., Paukkonen, H., Lipiäinen, T., Dong, Y., Oksanen, T., Räikkönen, H., Ehlers, H., Laaksonen, P., Yliperttula, M., Laaksonen, T. (2018). Pectin and mucin enhance the bioadhesion of drug loaded nanofibrillated cellulose films. Pharmaceutical Research, 35, 145. [CrossRef]
  • 28. Khutoryanskiy, V.V. (2011). Advances in mucoadhesion and mucoadhesive polymers. Macromolecular Bioscience, 11, 748-764. [CrossRef]
  • 29. Bruschi, M.L., de Francisco, L.M.B., Borghi, F.B. (2015). An Overview of recent patents on composition of mucoadhesive drug delivery systems. Recent Patents on Drug Delivery & Formulation, 9, 79-87. [CrossRef]
  • 30. Shaikh, R., Singh, T.R.R., Garland, M.J., Woolfson, A.D., Donnelly, R.F. (2011). Mucoadhesive drug delivery systems. Journal of Pharmacy and Bioallied Sciences, 1, 89-100. [CrossRef]
  • 31. De Lima, C.S.A., Varca, J.P.R.O., Alves, V.M., Nogueira, K.M., Da Cruz, C.P., Rial-Hermida, M.I., Kadłubowski, S., Varca, G.H., Lugão, A. B. (2022). Mucoadhesive polymers and their applications in drug delivery systems for the treatment of bladder cancer. Gels, 8(9), 587. [CrossRef]
  • 32. Hua, S., Marks, E., Schneider, J., Keely, S. (2015). Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue. Nanomedicine: Nanotechnology, Biology and Medicine, 11(5), 1117-1132. [CrossRef]
  • 33. Koziolek, M., Grimm, M., Becker, D.E., Iordanov, V., Zou, H., Shimizu, J., Wanke, C., Garbacz, G., Weitschies, W. (2015). Investigation of pH and temperature profiles in the GI tract of fasted human subjects using the IntelliCap® system. Journal of Pharmaceutical Sciences, 104(9), 2855-2863. [CrossRef]
  • 34. Kim, J.H., Shin, D.H., Kim, J. (2018). Preparation, characterization, and pharmacokinetics of liposomal docetaxel for oral administration. Archives of Pharmacal Research, 41(7), 765-775. [CrossRef]
  • 35. Naeem, M., Awan, U.A., Subhan, F., Cao, J., Hlaing, S.P., Lee, J., Im, E., Jung, Y., Yoo, J. (2020). Advances in colon-targeted nano-drug delivery systems: challenges and solutions. Archives of Pharmacal Research, 43(1), 153-169. [CrossRef]
  • 36. Pelaseyed, T., Bergström, J.H., Gustafsson, J., Ermund, A., Birchenough, G., Schutte, A., Van Der Post, S., Svensson, F., Rodríguez-Piñeiro, A.M., Nyström, E., Wising, C., Johansson, M., Hansson, G.C. (2014). The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunological Reviews, 260(1), 8-20. [CrossRef]
  • 37. Rao, K.A. (2004). Objective evaluation of small bowel and colonic transit time using pH telemetry in athletes with gastrointestinal symptoms. British Journal of Sports Medicine, 38(4), 482-487. [CrossRef]
  • 38. Williams, B.A., Grant, L.J., Gidley, M.J., Mikkelsen, D. (2017). Gut fermentation of dietary fibres: Physico-chemistry of plant cell walls and implications for health. International Journal of Molecular Sciences, 18(10), 2203. [CrossRef]
  • 39. Qiao, H., Fang, D., Chen, J., Sun, Y., Chen, K., Di, L., Li, J., Chen, Z., Chen, J., Gao, Y. (2017). Orally delivered polycurcumin responsive to bacterial reduction for targeted therapy of inflammatory bowel disease. Drug Delivery, 24(1), 233-242. [CrossRef]
  • 40. Ramadan, A.A., Elbakry, A.M., Esmaeil, A.H., Khaleel, S.A. (2017). Pharmaceutical and pharmacokinetic evaluation of novel rectal mucoadhesive hydrogels containing tolmetin sodium. Journal of Pharmaceutical Investigation, 48(6), 673–683. [CrossRef]
  • 41. Ruttala, H.B., Ramasamy, T., Madeshwaran, T., Hiep, T.T., Umadevi, K., Oh, K.T., Choi, H., Yong, C.S., Kim, J.O. (2017). Emerging potential of stimulus-responsive nanosized anticancer drug delivery systems for systemic applications. Archives of Pharmacal Research, 41(2), 111-129. [CrossRef]
  • 42. Naeem, M., Oshi, M.A., Kim, J., Lee, J., Cao, J., Hasan, N., Im, E., Jung, Y., Yoo, J. (2018). pH-triggered surface charge-reversal nanoparticles alleviate experimental murine colitis via selective accumulation in inflamed colon regions. Nanomedicine: Nanotechnology, Biology and Medicine, 14(3), 823-834. [CrossRef]
  • 43. Frede, A., Neuhaus, B., Klopfleisch, R., Walker, C., Buer, J., Müller, W., Epple, M., Westendorf, A.M. (2016). Colonic gene silencing using siRNA-loaded calcium phosphate/PLGA nanoparticles ameliorates intestinal inflammation in vivo. Journal of Controlled Release, 222, 86-96. [CrossRef]
  • 44. Kolawole, O.M., Lau, W.M., Mostafid, H., Khutoryanskiy, V.V. (2017). Advances in intravesical drug delivery systems to treat bladder cancer. International Journal of Pharmaceutics, 532, 105-117. [CrossRef]
  • 45. Hanafy, N.A.N., Leporatti, S., El-Kemary, M.A. (2019). Mucoadhesive hydrogel nanoparticles as smart biomedical drug delivery system. Applied Sciences, 9, 825. [CrossRef]
  • 46. Mohammadi, K., Sani, M.A., Azizi-Lalabadi, M., McClements, D.J. (2022). Recent progress in the application of plant-based colloidal drug delivery systems in the pharmaceutical sciences. Advances in Colloid and Interface Science, 102734. [CrossRef]
  • 47. Boddupalli, B.M., Mohammed, Z.N., Nath, R.A., Banji, D. (2010). Mucoadhesive drug delivery system: An overview. Journal of Advanced Pharmaceutical Technology & Research, 1(4), 381-387. [CrossRef]
  • 48. Khan, A.B., Mahamana, R., Pal, E. (2014). Review on mucoadhesive drug delivery system: novel approaches in modern era. RGUHS Journal of Pharmaceutical Sciences, 4, 128-141. [CrossRef]
  • 49. de Lima, C.S.A., Varca, J.P.R.O., Alves, V.M., Nogueira, K.M., Cruz, C.P.C., Rial-Hermida, M.I., Lugão, A.B. (2022). Mucoadhesive polymers and their applications in drug delivery systems for the treatment of bladder cancer. Gels, 8, 587. [CrossRef]
  • 50. Rinaudo, M. (2012). Physical properties of chitosan and derivatives in sol and gel states. In: Sarmento, B., Das Neves, J. (Eds.), Chitosan‐based systems for biopharmaceuticals: delivery, targeting and polymer therapeutics, (pp. 23-43). New York: John Wiley and Sons.
  • 51. Pu, Y., Fan, X., Zhang, Z., Guo, Z., Pan, Q., Gao, W., He, B. (2023). Harnessing polymer-derived drug delivery systems for combating inflammatory bowel disease. Journal of Controlled Release, 354, 1-18. [CrossRef]
  • 52. Kozma, M., Acharya, B., Bissessur, R. (2022). Chitin, chitosan, and nanochitin: extraction, synthesis, and applications. Polymers, 14(19), 3989. [CrossRef]
  • 53. Li, L., Zhang, X., Gu, X., Mao, S. (2015). Applications of natural polymeric materials in solid Oral modified-release dosage forms. Current Pharmaceutical Design, 21, 5854-5867. [CrossRef]
  • 54. Szymańska, E., Winnicka, K. (2015). Stability of chitosan-A challenge for pharmaceutical and biomedical applications. Marine Drugs, 13, 1819-1846. [CrossRef]
  • 55. Drechsler, M., Garbacz, G., Thomann, R., Schubert, R. (2014). Development and evaluation of chitosan and chitosan/Kollicoat® Smartseal 30 D film-coated tablets for colon targeting. European Journal of Pharmaceutics and Biopharmaceutics, 88, 807-815. [CrossRef]
  • 56. Nataraj, D., Sakkara, M., Meghwal, M., Reddy, N. (2018). Crosslinked chitosan films with controllable properties for commercial applications. International Journal of Biological Macromolecules, 120, 1256-1264. [CrossRef]
  • 57. Mittal, H., Ray, S.S., Kaith, B.S., Bhatia, J.K., Sukriti, Sharma, J. (2018). Recent progress in the structural modification of chitosan for applications in diversified biomedical fields. European Polymer Journal, 109, 402-434. [CrossRef]
  • 58. Sabra, R., Billa, N., Roberts, C.J. (2018). An augmented delivery of the anticancer agent, curcumin, to the colon. Reactive and Functional Polymers, 123, 54-60. [CrossRef]
  • 59. Shen, C., Zhao, L., Du, X., Tian, J., Yuan, Y., Jia, M., Li, C. (2021). Smart responsive quercetin-conjugated glycol chitosan prodrug micelles for treatment of inflammatory bowel diseases. Molecular Pharmaceutics, 18(3), 1419-1430. [CrossRef]
  • 60. Nalinbenjapun, S., Ovatlarnporn, C. (2020). Chitosan-5-aminosalicylic acid conjugates for colon-specific drug delivery: Methods of preparation and in vitro evaluations. Journal of Drug Delivery Science and Technology, 57, 101397. [CrossRef]
  • 61. Lopez-Sanchez, P., Fredriksson, N., Larsson, A., Altskär, A., Ström, A. (2018). High sugar content impacts microstructure, mechanics and release of calcium-alginate gels. Food Hydrocolloids, 84, 26-33. [CrossRef]
  • 62. Emami, Z., Ehsani, M., Zandi, M., Foudazi, R. (2018). Controlling alginate oxidation conditions for making alginate-gelatin hydrogels. Carbohydrate Polymers, 198, 509-517. [CrossRef]
  • 63. Shtenberg, Y., Goldfeder, M., Schroeder, A., Bianco-Peled, H., Kalifa-Boukhris, S. (2017). Alginate modified with maleimide-terminated PEG as drug carriers with enhanced mucoadhesion. Carbohydrate Polymers, 175, 337-346. [CrossRef]
  • 64. Rosiak, P., Latańska, I., Paul, P., Sujka, W., Kolesińska, B. (2021). Modification of alginates to modulate their physic-chemical properties and obtain biomaterials with different functional properties. Molecules, 26(23), 7264. [CrossRef]
  • 65. Zhang, C., Xu, Y., Wu, S., Zheng, W., Song, S., Ai, C. (2022). Fabrication of astaxanthin-enriched colon-targeted alginate microspheres and its beneficial effect on dextran sulfate sodium-induced ulcerative colitis in mice. International Journal of Biological Macromolecules, 205, 396-409. [CrossRef]
  • 66. Jain, A., Gupta, Y., Jain, S.K. (2007). Perspectives of biodegradable natural polysaccharides for site-specific drug delivery to the colon. Journal of Pharmacy and Pharmaceutical Sciences, 10, 86-128.
  • 67. Nordin, N.N., Aziz, N.K., Naharudin, I., Anuar, N.K. (2022). Effects of drug-free pectin hydrogel films on thermal burn wounds in streptozotocin-induced diabetic rats. Polymers, 14(14), 2873. [CrossRef]
  • 68. Dafe, A., Etemadi, H., Dilmaghani, A., Mahdavinia, G.R. (2017). Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria. Gels, 8, 587. [CrossRef]
  • 69. Sriamornsak, P., Wattanakorn, N., Takeuchi, H. (2010). Study on the mucoadhesion mechanism of pectin by atomic force microscopy and mucin-particle method. Carbohydrate Polymers, 79(1), 54-59. [CrossRef]
  • 70. Joergensen, L., Klösgen, B., Simonsen, A.C., Borch, J., Hagesaether, E. (2011). New insights into the mucoadhesion of pectins by AFM roughness parameters in combination with SPR. International Journal of Pharmaceutics, 411(1-2), 162-168. [CrossRef]
  • 71. Prezotti, F.G., Boni, F.I., Ferreira, N.N., Silva, D.S., Almeida, A., Vasconcelos, T., Cury, B.S.F. (2020). Oral nanoparticles based on gellan gum/pectin for colon-targeted delivery of resveratrol. Drug Development and Industrial Pharmacy, 46(2), 236-245. [CrossRef]
  • 72. Wang, S.Y., Meng, Y.J., Li, J., Liu, J.P., Liu, Z.Q., Li, D.Q. (2020). A novel and simple oral colon-specific drug delivery system based on the pectin/modified nano-carbon sphere nanocomposite gel films. International Journal of Biological Macromolecules, 157, 170-176. [CrossRef]
  • 73. Deshmukh, R., Harwansh, R.K., Das Paul, S., Shukla, R., Thakur, D. (2020). Controlled release of sulfasalazine loaded amidated pectin microparticles through Eudragit S 100 coated capsule for management of inflammatory bowel disease. Journal of Drug Delivery Science and Technology, 55, 101495. [CrossRef]
  • 74. Ford, J.L. (2014). Design and evaluation of hydroxypropyl methylcellulose matrix tablets for oral controlled release: a historical perspective. In: Timmins, P., Pygall, S., Melia, C. (Eds.), Hydrophilic matrix tablets for oral controlled release, (pp. 17-51). New York: Springer.
  • 75. Rojewska, M., Bartkowiak, A., Strzemiecka, B., Jamrozik, A., Voelkel, A. (2017). Surface properties and surface free energy of cellulosic mucoadhesive polymers. Carbohydrate Polymers, 171, 152-162. [CrossRef]
  • 76. Saurí, J., Zachariah, M., Macovez, R., Tamarit, J.L., Millán, D., Suñé-Pou, M., Suñé-Negre, J.M. (2017). Formulation and characterization of mucoadhesive controlled release matrix tablets of captopril. Journal of Drug Delivery Science and Technology, 42, 215-226. [CrossRef]
  • 77. Javanbakht, S., Shaabani, A. (2019). Carboxymethyl cellulose-based oral delivery systems. International Journal of Biological Macromolecules, 133, 21-29. [CrossRef]
  • 78. Kumar, R., Islam, T., Nurunnabi, M. (2022). Mucoadhesive carriers for oral drug delivery. Journal of Controlled Release, 351, 504-559. [CrossRef]
  • 79. Michaelis, J.U., Kiese, S., Amann, T., Folland, C., Asam, T., Eisner, P. (2023). Thickening properties of carboxymethyl cellulose in aqueous lubrication. Lubricants, 11(3), 112. [CrossRef]
  • 80. Nejabat, M., Mohammadi, M., Abnous, K., Taghdisi, S.M., Ramezani, M., Alibolandi, M. (2018). Fabrication of acetylated carboxymethylcellulose coated hollow mesoporous silica hybrid nanoparticles for nucleolin targeted delivery to colon adenocarcinoma. Carbohydrate Polymers, 197, 157-166. [CrossRef]
  • 81. Arkaban, H., Barani, M., Akbarizadeh, M.R., Chauhan, N.P.S., Jadoun, S., Soltani, M.D., Zarrintaj, P. (2022). Polyacrylic acid nanoplatforms: Antimicrobial, tissue engineering, and cancer theranostic applications. Polymers, 14(6), 1259. [CrossRef]
  • 82. Al-Fakeh, M.S., Alazmi, M.S., El-Ghoul, Y. (2023). Preparation and characterization of nano-sized CO(II), CU(II), MN(II) and NI(II) coordination PAA/Alginate biopolymers and study of their biological and anticancer performance. Crystals, 13(7), 1148. [CrossRef]
  • 83. Dey, K.P., Mishra, S., Chandra, N. (2017). Colon targeted drug release studies of 5-ASA using a novel pH-sensitive polyacrylic acid grafted barley. Polymer Bulletin, 74(11), 3431-3453. [CrossRef]

MUKOADEZİF POLİMERLERİN KOLON HEDEFLİ İLAÇ TAŞIYICI SİSTEMLERDE KULLANIMI: DETAYLI BİR İNCELEME

Yıl 2024, Cilt: 48 Sayı: 2, 696 - 713, 20.05.2024
https://doi.org/10.33483/jfpau.1400920

Öz

Amaç: Mukoadezif polimerler, özellikle kolon bölgesinde hedefe yönelik tedaviler bağlamında, ilaç taşıyıcı sistemler alanında çok önemli bileşenler olarak ortaya çıkmıştır. Bu polimerler, mukozal yüzeylerle geçici bağlar oluşturmalarını sağlayan ve ilaçların kolon mukozası ile temas süresini uzatan yapışkan özelliklere sahiptir. Bu derleme, kolon ilaç taşıyıcı sistemleri için mukoadezif polimerlere kapsamlı bir genel bakış sunmaktadır. Kitosan ve aljinat gibi doğal polimerlerin yanı sıra poliakrilik asit türevleri gibi sentetik muadilleri de bu sistemlerde uygulama alanı bulmaktadır. Mukoadhezif polimerlerin avantajları, bölgeye özgü ilaç dağıtımını kolaylaştırma, böylece sistemik yan etkileri en aza indirme ve gelişmiş biyoyararlanım için ilaçların kontrollü ve sürekli salınımını sağlama yeteneklerinde yatmaktadır. Bu avantajlara rağmen, mukozal koşullardaki değişkenlik ve biyouyumluluk için zorunlu ihtiyaç gibi zorluklar ele alınmalıdır. Mukoadezif polimerlerin uygulamaları, enflamatuar bağırsak hastalıkları için anti-enflamatuar ilaçların hedefe yönelik olarak verilmesi, kolon kanseri tedavisi için kemoterapötik ajanların lokalize olarak verilmesi ve kolon enfeksiyonları için antibiyotiklerin hassas bir şekilde verilmesi dahil olmak üzere çeşitli tıbbi koşulları kapsamaktadır.
Sonuç ve Tartışma: Kolon ilaç dağıtımını optimize etmek için umut verici bir yol olan mukoadezif polimerler, çeşitli kolonik hastalıklar için etkili ve iyi tolere edilen tedavilerin geliştirilmesi için büyük bir potansiyel sunmaktadır.

Kaynakça

  • 1. Anil, K.P., Betty, P., Philip, B. (2010). Colon targeted drug delivery systems: A review on primary and novel approaches. Oman Medical Journal, 4(2), 25. [CrossRef]
  • 2. Gazzaniga, A., Moutaharrik, S., Filippin, I., Foppoli, A., Palugan, L., Maroni, A., Cerea, M. (2022). Time-based formulation strategies for colon drug delivery. Pharmaceutics, 14(12), 2762. [CrossRef]
  • 3. Anita, S.A., Dabral. (2019). A review on colon-targeted drug delivery system. International Journal of Pharmaceutical Sciences and Research, 10(1), 47-56.
  • 4. Sangeetha, G., Begum, J.M., Reddemma, S., Rajendra, Y. (2011). Colon targeted drug delivery system: A review. International Journal of Pharmacy & Technology, 3(4), 1657-1672.
  • 5. Kumar, M., Ali, A., Kaldhone, P., Shirode, A., Kadam, V.J. (2010). Report on pharmaceutical approaches to colon-targeted drug delivery systems. Journal of Pharm Research, 3(3).
  • 6. Philip, A.K., Philip, B. (2010). Colon targeted drug delivery systems: A review on primary and novel approaches. Oman Medical Journal, 25(2), 79-87. [CrossRef]
  • 7. Leuva, V.R., Patel, B.G., Chaudhary, D.J., Patel, J.N. (2012). Oral colon-specific drug delivery system. Journal of Pharm Research, 5(4), 2293-2297.
  • 8. Choudhary, L., Jain, A., Agarwal, D. (2020). Colon-targeted oral drug delivery systems: a review. Asian Journal of Pharmaceutical Research and Development, 8(4), 186-193.
  • 9. Chen, S., Zhu, H., Luo, Y. (2022). Chitosan-based oral colon-specific delivery systems for polyphenols: recent advances and emerging trends. Journal of Materials Chemistry B, 10(37), 7328-7348. [CrossRef]
  • 10. Kolte, B.P., Tele, K.V., Mundhe, V.S., Lohoti, S.S. (2012). Colon targeted drug delivery system: A novel perspective. Asian Journal of Biomedical and Pharmaceutical Science, 2(14), 21-28.
  • 11. Herp, J., Deding, U., Buijs, M.M., Krøijer, R., Baatrup, G., Nadimi, E.S. (2021). Feature point tracking-based localization of colon capsule endoscope. Diagnostics, 11(2), 193. [CrossRef]
  • 12. Azehaf, H., Benzine, Y., Tagzirt, M., Skiba, M., Karrout, Y. (2023). Microbiota-sensitive drug delivery systems based on natural polysaccharides for colon targeting. Drug Discovery Today, 28(7), 103606. [CrossRef]
  • 13. Prathap, M., Gulshan, M.D., Rao, N.R. (2014). Colon: targeted drug delivery system-A review. International Journal of Research in Pharmaceutical and Nano Science, 3(5), 429-437.
  • 14. Amidon, S., Brown, J.E., Dave, V.S. (2015). Colon targeted oral drug delivery systems: Design trends and approaches. American Association of Pharmaceutical Scientists, 16(4), 731-741. [CrossRef]
  • 15. Kulkarni, N., Jain, P., Shindikar, A., Suryawanshi, P., Thorat, N. (2022). Advances in the colon-targeted chitosan based multiunit drug delivery systems for the treatment of inflammatory bowel disease. Carbohydrate Polymers, 288, 119351. [CrossRef]
  • 16. Sears, C.L., Garrett, W.S. (2014). Microbes, microbiota, and colon cancer. Cell Host & Microbe, 15(3), 317-328. [CrossRef]
  • 17. Nemade, M.S., Chaudhari, R.Y., Potil, V.R. (2014). Novel approaches to colon-targeted drug delivery system: A Review. Research and Reviews in Pharmacy and Pharmaceutical Science, 3(2), 63-69.
  • 18. McCoubrey, L.E., Favaron, A., Awad, A., Orlu, M., Gaisford, S., Basit, A.W. (2023). Colonic drug delivery: Formulating the next generation of colon-targeted therapeutics. Journal of Controlled Release, 353, 1107-1126. [CrossRef]
  • 19. Balvir, S., Patel, M.R., Patel, K.R., Patel, N.M. (2013). A review on colon-targeted drug delivery system. International Journal of Pharma and Bio Sciences, 2(1), 20-34.
  • 20. Gupta, A., Mittal, A., Gupta, A.K. (2011). Colon targeted drug delivery system: A review. Russian Journal of Biopharmaceutics, 3(4), 3-13.
  • 21. Ratnaparkhi, M.P., Somvanshi, F.S.U., Pawar, S.A., Chaudhari, S.P., Gupta, J.P., Budhavakant, K.A. (2013). Colon targeted drug delivery system. International Journal of Pharma Research and Review, 2(8), 33-42.
  • 22. Wang, K., Shen, R., Meng, T., Hu, F., Yuan, H. (2022). Nano-drug delivery systems based on different targeting mechanisms in the targeted therapy of colorectal cancer. Molecules, 27(9), 2981. [CrossRef]
  • 23. Chaudhari, P., Patil, S., Pawar, S., Rageeb, M., Usman, M. (2020). Colonic drug delivery system: A review. International Journal of Pharmaceutical Sciences Review and Research, 65, 116-123. [CrossRef]
  • 24. Saxena, S., Singh, C., Yadav, M., Samson, A.L. (2018). A review on novel approaches for colon targeted drug delivery systems. PharmaTutor, 6(7), 11-22.
  • 25. Kumar, K., Dhawan, N., Sharma, H., Vaidya, S., Vaidya, B. (2014). Bioadhesive polymers: Novel tool for drug delivery. Artificial Cells Nanomedicine Biotechnology, 42, 274-283. [CrossRef]
  • 26. Estrellas, K.M., Fiecas, M., Azagury, A., Laulicht, B., Cho, D.Y., Mancini, A., Reineke, J., Furtado, S., Mathiowitz, E. (2019). Time-dependent mucoadhesion of conjugated bioadhesive polymers. Colloids and Surfaces. B: Biointerfaces, 173, 454-469. [CrossRef]
  • 27. Laurén, P., Paukkonen, H., Lipiäinen, T., Dong, Y., Oksanen, T., Räikkönen, H., Ehlers, H., Laaksonen, P., Yliperttula, M., Laaksonen, T. (2018). Pectin and mucin enhance the bioadhesion of drug loaded nanofibrillated cellulose films. Pharmaceutical Research, 35, 145. [CrossRef]
  • 28. Khutoryanskiy, V.V. (2011). Advances in mucoadhesion and mucoadhesive polymers. Macromolecular Bioscience, 11, 748-764. [CrossRef]
  • 29. Bruschi, M.L., de Francisco, L.M.B., Borghi, F.B. (2015). An Overview of recent patents on composition of mucoadhesive drug delivery systems. Recent Patents on Drug Delivery & Formulation, 9, 79-87. [CrossRef]
  • 30. Shaikh, R., Singh, T.R.R., Garland, M.J., Woolfson, A.D., Donnelly, R.F. (2011). Mucoadhesive drug delivery systems. Journal of Pharmacy and Bioallied Sciences, 1, 89-100. [CrossRef]
  • 31. De Lima, C.S.A., Varca, J.P.R.O., Alves, V.M., Nogueira, K.M., Da Cruz, C.P., Rial-Hermida, M.I., Kadłubowski, S., Varca, G.H., Lugão, A. B. (2022). Mucoadhesive polymers and their applications in drug delivery systems for the treatment of bladder cancer. Gels, 8(9), 587. [CrossRef]
  • 32. Hua, S., Marks, E., Schneider, J., Keely, S. (2015). Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue. Nanomedicine: Nanotechnology, Biology and Medicine, 11(5), 1117-1132. [CrossRef]
  • 33. Koziolek, M., Grimm, M., Becker, D.E., Iordanov, V., Zou, H., Shimizu, J., Wanke, C., Garbacz, G., Weitschies, W. (2015). Investigation of pH and temperature profiles in the GI tract of fasted human subjects using the IntelliCap® system. Journal of Pharmaceutical Sciences, 104(9), 2855-2863. [CrossRef]
  • 34. Kim, J.H., Shin, D.H., Kim, J. (2018). Preparation, characterization, and pharmacokinetics of liposomal docetaxel for oral administration. Archives of Pharmacal Research, 41(7), 765-775. [CrossRef]
  • 35. Naeem, M., Awan, U.A., Subhan, F., Cao, J., Hlaing, S.P., Lee, J., Im, E., Jung, Y., Yoo, J. (2020). Advances in colon-targeted nano-drug delivery systems: challenges and solutions. Archives of Pharmacal Research, 43(1), 153-169. [CrossRef]
  • 36. Pelaseyed, T., Bergström, J.H., Gustafsson, J., Ermund, A., Birchenough, G., Schutte, A., Van Der Post, S., Svensson, F., Rodríguez-Piñeiro, A.M., Nyström, E., Wising, C., Johansson, M., Hansson, G.C. (2014). The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunological Reviews, 260(1), 8-20. [CrossRef]
  • 37. Rao, K.A. (2004). Objective evaluation of small bowel and colonic transit time using pH telemetry in athletes with gastrointestinal symptoms. British Journal of Sports Medicine, 38(4), 482-487. [CrossRef]
  • 38. Williams, B.A., Grant, L.J., Gidley, M.J., Mikkelsen, D. (2017). Gut fermentation of dietary fibres: Physico-chemistry of plant cell walls and implications for health. International Journal of Molecular Sciences, 18(10), 2203. [CrossRef]
  • 39. Qiao, H., Fang, D., Chen, J., Sun, Y., Chen, K., Di, L., Li, J., Chen, Z., Chen, J., Gao, Y. (2017). Orally delivered polycurcumin responsive to bacterial reduction for targeted therapy of inflammatory bowel disease. Drug Delivery, 24(1), 233-242. [CrossRef]
  • 40. Ramadan, A.A., Elbakry, A.M., Esmaeil, A.H., Khaleel, S.A. (2017). Pharmaceutical and pharmacokinetic evaluation of novel rectal mucoadhesive hydrogels containing tolmetin sodium. Journal of Pharmaceutical Investigation, 48(6), 673–683. [CrossRef]
  • 41. Ruttala, H.B., Ramasamy, T., Madeshwaran, T., Hiep, T.T., Umadevi, K., Oh, K.T., Choi, H., Yong, C.S., Kim, J.O. (2017). Emerging potential of stimulus-responsive nanosized anticancer drug delivery systems for systemic applications. Archives of Pharmacal Research, 41(2), 111-129. [CrossRef]
  • 42. Naeem, M., Oshi, M.A., Kim, J., Lee, J., Cao, J., Hasan, N., Im, E., Jung, Y., Yoo, J. (2018). pH-triggered surface charge-reversal nanoparticles alleviate experimental murine colitis via selective accumulation in inflamed colon regions. Nanomedicine: Nanotechnology, Biology and Medicine, 14(3), 823-834. [CrossRef]
  • 43. Frede, A., Neuhaus, B., Klopfleisch, R., Walker, C., Buer, J., Müller, W., Epple, M., Westendorf, A.M. (2016). Colonic gene silencing using siRNA-loaded calcium phosphate/PLGA nanoparticles ameliorates intestinal inflammation in vivo. Journal of Controlled Release, 222, 86-96. [CrossRef]
  • 44. Kolawole, O.M., Lau, W.M., Mostafid, H., Khutoryanskiy, V.V. (2017). Advances in intravesical drug delivery systems to treat bladder cancer. International Journal of Pharmaceutics, 532, 105-117. [CrossRef]
  • 45. Hanafy, N.A.N., Leporatti, S., El-Kemary, M.A. (2019). Mucoadhesive hydrogel nanoparticles as smart biomedical drug delivery system. Applied Sciences, 9, 825. [CrossRef]
  • 46. Mohammadi, K., Sani, M.A., Azizi-Lalabadi, M., McClements, D.J. (2022). Recent progress in the application of plant-based colloidal drug delivery systems in the pharmaceutical sciences. Advances in Colloid and Interface Science, 102734. [CrossRef]
  • 47. Boddupalli, B.M., Mohammed, Z.N., Nath, R.A., Banji, D. (2010). Mucoadhesive drug delivery system: An overview. Journal of Advanced Pharmaceutical Technology & Research, 1(4), 381-387. [CrossRef]
  • 48. Khan, A.B., Mahamana, R., Pal, E. (2014). Review on mucoadhesive drug delivery system: novel approaches in modern era. RGUHS Journal of Pharmaceutical Sciences, 4, 128-141. [CrossRef]
  • 49. de Lima, C.S.A., Varca, J.P.R.O., Alves, V.M., Nogueira, K.M., Cruz, C.P.C., Rial-Hermida, M.I., Lugão, A.B. (2022). Mucoadhesive polymers and their applications in drug delivery systems for the treatment of bladder cancer. Gels, 8, 587. [CrossRef]
  • 50. Rinaudo, M. (2012). Physical properties of chitosan and derivatives in sol and gel states. In: Sarmento, B., Das Neves, J. (Eds.), Chitosan‐based systems for biopharmaceuticals: delivery, targeting and polymer therapeutics, (pp. 23-43). New York: John Wiley and Sons.
  • 51. Pu, Y., Fan, X., Zhang, Z., Guo, Z., Pan, Q., Gao, W., He, B. (2023). Harnessing polymer-derived drug delivery systems for combating inflammatory bowel disease. Journal of Controlled Release, 354, 1-18. [CrossRef]
  • 52. Kozma, M., Acharya, B., Bissessur, R. (2022). Chitin, chitosan, and nanochitin: extraction, synthesis, and applications. Polymers, 14(19), 3989. [CrossRef]
  • 53. Li, L., Zhang, X., Gu, X., Mao, S. (2015). Applications of natural polymeric materials in solid Oral modified-release dosage forms. Current Pharmaceutical Design, 21, 5854-5867. [CrossRef]
  • 54. Szymańska, E., Winnicka, K. (2015). Stability of chitosan-A challenge for pharmaceutical and biomedical applications. Marine Drugs, 13, 1819-1846. [CrossRef]
  • 55. Drechsler, M., Garbacz, G., Thomann, R., Schubert, R. (2014). Development and evaluation of chitosan and chitosan/Kollicoat® Smartseal 30 D film-coated tablets for colon targeting. European Journal of Pharmaceutics and Biopharmaceutics, 88, 807-815. [CrossRef]
  • 56. Nataraj, D., Sakkara, M., Meghwal, M., Reddy, N. (2018). Crosslinked chitosan films with controllable properties for commercial applications. International Journal of Biological Macromolecules, 120, 1256-1264. [CrossRef]
  • 57. Mittal, H., Ray, S.S., Kaith, B.S., Bhatia, J.K., Sukriti, Sharma, J. (2018). Recent progress in the structural modification of chitosan for applications in diversified biomedical fields. European Polymer Journal, 109, 402-434. [CrossRef]
  • 58. Sabra, R., Billa, N., Roberts, C.J. (2018). An augmented delivery of the anticancer agent, curcumin, to the colon. Reactive and Functional Polymers, 123, 54-60. [CrossRef]
  • 59. Shen, C., Zhao, L., Du, X., Tian, J., Yuan, Y., Jia, M., Li, C. (2021). Smart responsive quercetin-conjugated glycol chitosan prodrug micelles for treatment of inflammatory bowel diseases. Molecular Pharmaceutics, 18(3), 1419-1430. [CrossRef]
  • 60. Nalinbenjapun, S., Ovatlarnporn, C. (2020). Chitosan-5-aminosalicylic acid conjugates for colon-specific drug delivery: Methods of preparation and in vitro evaluations. Journal of Drug Delivery Science and Technology, 57, 101397. [CrossRef]
  • 61. Lopez-Sanchez, P., Fredriksson, N., Larsson, A., Altskär, A., Ström, A. (2018). High sugar content impacts microstructure, mechanics and release of calcium-alginate gels. Food Hydrocolloids, 84, 26-33. [CrossRef]
  • 62. Emami, Z., Ehsani, M., Zandi, M., Foudazi, R. (2018). Controlling alginate oxidation conditions for making alginate-gelatin hydrogels. Carbohydrate Polymers, 198, 509-517. [CrossRef]
  • 63. Shtenberg, Y., Goldfeder, M., Schroeder, A., Bianco-Peled, H., Kalifa-Boukhris, S. (2017). Alginate modified with maleimide-terminated PEG as drug carriers with enhanced mucoadhesion. Carbohydrate Polymers, 175, 337-346. [CrossRef]
  • 64. Rosiak, P., Latańska, I., Paul, P., Sujka, W., Kolesińska, B. (2021). Modification of alginates to modulate their physic-chemical properties and obtain biomaterials with different functional properties. Molecules, 26(23), 7264. [CrossRef]
  • 65. Zhang, C., Xu, Y., Wu, S., Zheng, W., Song, S., Ai, C. (2022). Fabrication of astaxanthin-enriched colon-targeted alginate microspheres and its beneficial effect on dextran sulfate sodium-induced ulcerative colitis in mice. International Journal of Biological Macromolecules, 205, 396-409. [CrossRef]
  • 66. Jain, A., Gupta, Y., Jain, S.K. (2007). Perspectives of biodegradable natural polysaccharides for site-specific drug delivery to the colon. Journal of Pharmacy and Pharmaceutical Sciences, 10, 86-128.
  • 67. Nordin, N.N., Aziz, N.K., Naharudin, I., Anuar, N.K. (2022). Effects of drug-free pectin hydrogel films on thermal burn wounds in streptozotocin-induced diabetic rats. Polymers, 14(14), 2873. [CrossRef]
  • 68. Dafe, A., Etemadi, H., Dilmaghani, A., Mahdavinia, G.R. (2017). Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria. Gels, 8, 587. [CrossRef]
  • 69. Sriamornsak, P., Wattanakorn, N., Takeuchi, H. (2010). Study on the mucoadhesion mechanism of pectin by atomic force microscopy and mucin-particle method. Carbohydrate Polymers, 79(1), 54-59. [CrossRef]
  • 70. Joergensen, L., Klösgen, B., Simonsen, A.C., Borch, J., Hagesaether, E. (2011). New insights into the mucoadhesion of pectins by AFM roughness parameters in combination with SPR. International Journal of Pharmaceutics, 411(1-2), 162-168. [CrossRef]
  • 71. Prezotti, F.G., Boni, F.I., Ferreira, N.N., Silva, D.S., Almeida, A., Vasconcelos, T., Cury, B.S.F. (2020). Oral nanoparticles based on gellan gum/pectin for colon-targeted delivery of resveratrol. Drug Development and Industrial Pharmacy, 46(2), 236-245. [CrossRef]
  • 72. Wang, S.Y., Meng, Y.J., Li, J., Liu, J.P., Liu, Z.Q., Li, D.Q. (2020). A novel and simple oral colon-specific drug delivery system based on the pectin/modified nano-carbon sphere nanocomposite gel films. International Journal of Biological Macromolecules, 157, 170-176. [CrossRef]
  • 73. Deshmukh, R., Harwansh, R.K., Das Paul, S., Shukla, R., Thakur, D. (2020). Controlled release of sulfasalazine loaded amidated pectin microparticles through Eudragit S 100 coated capsule for management of inflammatory bowel disease. Journal of Drug Delivery Science and Technology, 55, 101495. [CrossRef]
  • 74. Ford, J.L. (2014). Design and evaluation of hydroxypropyl methylcellulose matrix tablets for oral controlled release: a historical perspective. In: Timmins, P., Pygall, S., Melia, C. (Eds.), Hydrophilic matrix tablets for oral controlled release, (pp. 17-51). New York: Springer.
  • 75. Rojewska, M., Bartkowiak, A., Strzemiecka, B., Jamrozik, A., Voelkel, A. (2017). Surface properties and surface free energy of cellulosic mucoadhesive polymers. Carbohydrate Polymers, 171, 152-162. [CrossRef]
  • 76. Saurí, J., Zachariah, M., Macovez, R., Tamarit, J.L., Millán, D., Suñé-Pou, M., Suñé-Negre, J.M. (2017). Formulation and characterization of mucoadhesive controlled release matrix tablets of captopril. Journal of Drug Delivery Science and Technology, 42, 215-226. [CrossRef]
  • 77. Javanbakht, S., Shaabani, A. (2019). Carboxymethyl cellulose-based oral delivery systems. International Journal of Biological Macromolecules, 133, 21-29. [CrossRef]
  • 78. Kumar, R., Islam, T., Nurunnabi, M. (2022). Mucoadhesive carriers for oral drug delivery. Journal of Controlled Release, 351, 504-559. [CrossRef]
  • 79. Michaelis, J.U., Kiese, S., Amann, T., Folland, C., Asam, T., Eisner, P. (2023). Thickening properties of carboxymethyl cellulose in aqueous lubrication. Lubricants, 11(3), 112. [CrossRef]
  • 80. Nejabat, M., Mohammadi, M., Abnous, K., Taghdisi, S.M., Ramezani, M., Alibolandi, M. (2018). Fabrication of acetylated carboxymethylcellulose coated hollow mesoporous silica hybrid nanoparticles for nucleolin targeted delivery to colon adenocarcinoma. Carbohydrate Polymers, 197, 157-166. [CrossRef]
  • 81. Arkaban, H., Barani, M., Akbarizadeh, M.R., Chauhan, N.P.S., Jadoun, S., Soltani, M.D., Zarrintaj, P. (2022). Polyacrylic acid nanoplatforms: Antimicrobial, tissue engineering, and cancer theranostic applications. Polymers, 14(6), 1259. [CrossRef]
  • 82. Al-Fakeh, M.S., Alazmi, M.S., El-Ghoul, Y. (2023). Preparation and characterization of nano-sized CO(II), CU(II), MN(II) and NI(II) coordination PAA/Alginate biopolymers and study of their biological and anticancer performance. Crystals, 13(7), 1148. [CrossRef]
  • 83. Dey, K.P., Mishra, S., Chandra, N. (2017). Colon targeted drug release studies of 5-ASA using a novel pH-sensitive polyacrylic acid grafted barley. Polymer Bulletin, 74(11), 3431-3453. [CrossRef]
Toplam 83 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İlaç Dağıtım Teknolojileri
Bölüm Derleme
Yazarlar

Aylin Deljavan Ghodratı 0009-0009-2918-1451

Tansel Çomoğlu 0000-0002-4221-5814

Erken Görünüm Tarihi 12 Mart 2024
Yayımlanma Tarihi 20 Mayıs 2024
Gönderilme Tarihi 6 Aralık 2023
Kabul Tarihi 24 Ocak 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 48 Sayı: 2

Kaynak Göster

APA Deljavan Ghodratı, A., & Çomoğlu, T. (2024). MUCOADHESIVE POLYMERS IN COLON TARGETED DRUG DELIVERY SYSTEMS: A COMPREHENSIVE REVIEW. Journal of Faculty of Pharmacy of Ankara University, 48(2), 696-713. https://doi.org/10.33483/jfpau.1400920
AMA Deljavan Ghodratı A, Çomoğlu T. MUCOADHESIVE POLYMERS IN COLON TARGETED DRUG DELIVERY SYSTEMS: A COMPREHENSIVE REVIEW. Ankara Ecz. Fak. Derg. Mayıs 2024;48(2):696-713. doi:10.33483/jfpau.1400920
Chicago Deljavan Ghodratı, Aylin, ve Tansel Çomoğlu. “MUCOADHESIVE POLYMERS IN COLON TARGETED DRUG DELIVERY SYSTEMS: A COMPREHENSIVE REVIEW”. Journal of Faculty of Pharmacy of Ankara University 48, sy. 2 (Mayıs 2024): 696-713. https://doi.org/10.33483/jfpau.1400920.
EndNote Deljavan Ghodratı A, Çomoğlu T (01 Mayıs 2024) MUCOADHESIVE POLYMERS IN COLON TARGETED DRUG DELIVERY SYSTEMS: A COMPREHENSIVE REVIEW. Journal of Faculty of Pharmacy of Ankara University 48 2 696–713.
IEEE A. Deljavan Ghodratı ve T. Çomoğlu, “MUCOADHESIVE POLYMERS IN COLON TARGETED DRUG DELIVERY SYSTEMS: A COMPREHENSIVE REVIEW”, Ankara Ecz. Fak. Derg., c. 48, sy. 2, ss. 696–713, 2024, doi: 10.33483/jfpau.1400920.
ISNAD Deljavan Ghodratı, Aylin - Çomoğlu, Tansel. “MUCOADHESIVE POLYMERS IN COLON TARGETED DRUG DELIVERY SYSTEMS: A COMPREHENSIVE REVIEW”. Journal of Faculty of Pharmacy of Ankara University 48/2 (Mayıs 2024), 696-713. https://doi.org/10.33483/jfpau.1400920.
JAMA Deljavan Ghodratı A, Çomoğlu T. MUCOADHESIVE POLYMERS IN COLON TARGETED DRUG DELIVERY SYSTEMS: A COMPREHENSIVE REVIEW. Ankara Ecz. Fak. Derg. 2024;48:696–713.
MLA Deljavan Ghodratı, Aylin ve Tansel Çomoğlu. “MUCOADHESIVE POLYMERS IN COLON TARGETED DRUG DELIVERY SYSTEMS: A COMPREHENSIVE REVIEW”. Journal of Faculty of Pharmacy of Ankara University, c. 48, sy. 2, 2024, ss. 696-13, doi:10.33483/jfpau.1400920.
Vancouver Deljavan Ghodratı A, Çomoğlu T. MUCOADHESIVE POLYMERS IN COLON TARGETED DRUG DELIVERY SYSTEMS: A COMPREHENSIVE REVIEW. Ankara Ecz. Fak. Derg. 2024;48(2):696-713.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.