Araştırma Makalesi
BibTex RIS Kaynak Göster

UNVEILING THERAPEUTIC TARGETS THROUGH PATHWAY ANALYSIS AND IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES IN ULCERATIVE COLITIS

Yıl 2024, Cilt: 48 Sayı: 3, 890 - 902, 10.09.2024
https://doi.org/10.33483/jfpau.1439430

Öz

Objective: This study utilizes integrated bioinformatics to investigate Differentially Expressed Genes (DEGs) and pathways related to ulcerative colitis (UC).
Material and Method: Differentially Expressed Genes were identified from UC patients' colonic mucosal samples and controls using GSE13367 and GSE134025 datasets. Differentially Expressed Genes selection utilized GEO2R and Venn diagrams, followed by functional annotation, pathway analysis, PPI determination via the STRING database, and GO/KEGG enrichment analysis using Metascape.
Result and Discussion: Analysis unveiled 197 DEGs, with 76 up-regulated and 121 down-regulated genes. Up-regulated genes were enriched in humoral immune response, peptidoglycan binding, and NADPH oxidase complex, while down-regulated genes were linked to inorganic anion transport, transmitter-gated ion channel activity, and integral plasma membrane components. In the PPI network, up-regulated DEGs formed a dense network (75 nodes, 190 edges), indicating significant interactions, whereas down-regulated DEGs formed a less dense network (114 nodes, 63 edges). Five hub genes (CXCR4, CXCL13, CXCL1, MMP3) were identified among the 197 DEGs. These findings provide new insights into UC's causes and offer promise for more effective therapeutic approaches.

Etik Beyan

None

Destekleyen Kurum

None

Kaynakça

  • 1. Moncada, S., Palmer, R.M.J., Higgs, E.A. (1989). Biosynthesis of nitric oxide from L-arginine. A pathway for the regulation of cell function and communication. Biochemistry and Pharmacology, 38(11), 1709-1715. [CrossRef]
  • 2. Macedo, T., Ribeiro, V., Oliveira, A.P., Pereira, D.M., Fernandes, F., Gomes, N.G.M., Andrade, P.B. (2020). Anti-inflammatory properties of Xylopia aethiopica leaves: Interference with pro-inflammatory cytokines in THP-1-derived macrophages and flavonoid profiling. Journal of Ethnopharmacology, 248, 112312. [CrossRef]
  • 3. Du, L., Ha, C. (2020). Epidemiology and pathogenesis of ulcerative colitis. Gastroenterology Clinics of North America, 49(4), 643-654. [CrossRef]
  • 4. Gajendran, M., Loganathan, P., Jimenez, G., Catinella, A.P., Ng, N., Umapathy, C., Ziade, N., Hashash, J.G. (2019). A comprehensive review and update on ulcerative colitis. Disease-a-Month, 65(12), 100851. [CrossRef]
  • 5. Sæterstad, S., Østvik, A.E., Røyset, E.S., Bakke, I., Sandvik, A.K., Granlund, A. van B. (2022). Profound gene expression changes in the epithelial monolayer of active ulcerative colitis and Crohn’s disease. Plos One, 17(3), e0265189. [CrossRef]
  • 6. Huang, Y., Dalal, S., Antonopoulos, D., Hubert, N., Raffals, L.H., Dolan, K., Weber, C., Messer, J.S., Jabri, B., Bendelac, A., Eren, A.M., Rubin, D.T., Sogin, M., Chang, E.B. (2017). Early transcriptomic changes in the ileal pouch provide insight into the molecular pathogenesis of pouchitis and ulcerative colitis. Inflammatory Bowel Diseases, 23(3), 366-378. [CrossRef]
  • 7. Pomaznoy, M., Ha, B., Peters, B. (2018). GOnet: A tool for interactive gene ontology analysis. BMC Bioinformatics, 19(1), 470.[CrossRef]
  • 8. Lin, G., Chai, J., Yuan, S., Mai, C., Cai, L., Murphy, R.W., Zhou, W., Luo, J. (2016). VennPainter: A tool for the comparison and identification of candidate genes based on venn diagrams. Plos One, 11(4), e0154315. [CrossRef]
  • 9. Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O., Benner, C., Chanda, S.K. (2019). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature Communications, 10(1), 1523. [CrossRef]
  • 10. Huckvale, E., Moseley, H.N.B. (2023). Kegg pull: A software package for the RESTful access and pulling from the Kyoto Encyclopedia of Gene and Genomes. BMC Bioinformatics, 24(1), 78. [CrossRef]
  • 11. Perez Hernandez, C., Elkattawy, S., Younes, I., Fanous, P., Gonzalez Aponte, D., Makanay, O., Naik, A. (2022). A rare presentation of recurrent diverticulitis in a patient with ulcerative colitis. European Journal of Case Reports in Internal Medicine. [CrossRef]
  • 12. Ng, S.C., Shi, H.Y., Hamidi, N., Underwood, F.E., Tang, W., Benchimol, E.I., Panaccione, R., Ghosh, S., Wu, J.C.Y., Chan, F.K.L., Sung, J.J.Y., Kaplan, G.G. (2017). Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. The Lancet, 390(10114), 2769-2778. [CrossRef]
  • 13. Cheng, C., Hua, J., Tan, J., Qian, W., Zhang, L., Hou, X. (2019). Identification of differentially expressed genes, associated functional terms pathways, and candidate diagnostic biomarkers in inflammatory bowel diseases by bioinformatics analysis. Experimental and Therapeutic Medicine, 278-288. [CrossRef]
  • 14. Pan, W., Wang, Q., Chen, Q. (2019). The cytokine network involved in the host immune response to periodontitis. International Journal of Oral Science, 11(3), 30. [CrossRef]
  • 15. Cao, Y., Jiao, N., Sun, T., Ma, Y., Zhang, X., Chen, H., Hong, J., Zhang, Y. (2021). CXCL11 Correlates with antitumor immunity and an improved prognosis in colon cancer. Frontiers in Cell and Developmental Biology, 9, 646252. [CrossRef]
  • 16. Bianchi, M.E., Mezzapelle, R. (2020). The chemokine receptor cxcr4 in cell proliferation and tissue regeneration. Frontiers in Immunology, 11. [CrossRef]
  • 17. Sivina, M., Xiao, L., Kim, E., Vaca, A., Chen, S.S., Keating, M.J., Ferrajoli, A., Estrov, Z., Jain, N., Wierda, W.G., Huang, X., Chiorazzi, N., Burger, J.A. (2021). CXCL13 plasma levels function as a biomarker for disease activity in patients with chronic lymphocytic leukemia. Leukemia, 35(6), 1610-1620. [CrossRef]
  • 18. Korbecki, J., Barczak, K., Gutowska, I., Chlubek, D., Baranowska-Bosiacka, I. (2022). CXCL1: Gene, promoter, regulation of expression, mrna stability, regulation of activity in the intercellular space. International Journal of Molecular Sciences, 23(2), 792. [CrossRef]
  • 19. Cabral-Pacheco, G.A., Garza-Veloz, I., Castruita-De la Rosa, C., Ramirez-Acuña, J.M., Perez-Romero, B.A., Guerrero-Rodriguez, J.F., Martinez-Avila, N., Martinez-Fierro, M.L. (2020). The roles of matrix metalloproteinases and their inhibitors in human diseases. International Journal of Molecular Sciences, 21(24), 9739. [CrossRef]
  • 20. Korbecki, J., Szatkowska, I., Kupnicka, P., Żwierełło, W., Barczak, K., Poziomkowska-Gęsicka, I., Wójcik, J., Chlubek, D., Baranowska-Bosiacka, I. (2022). The importance of CXCL1 in the physiological state and in noncancer diseases of the oral cavity and abdominal organs. International Journal of Molecular Sciences, 23(13), 7151. [CrossRef]
  • 21. Sun, Z., Huang, W., Zheng, Y., Liu, P., Yang, W., Guo, Z., Kong, D., Lv, Q., Zhou, X., Du, Z., Jiang, H., Jiang, Y. (2021). Fpr2/CXCL1/2 controls rapid neutrophil infiltration to inhibit streptococcus agalactiae infection. Frontiers in Immunology, 12, 786602. [CrossRef]
  • 22. Liu, T., Liu, Y., Liu, C., Jiang, Y. (2022). CXCL13 is elevated in inflammatory bowel disease in mice and humans and is implicated in disease pathogenesis. Frontiers in Immunology, 13, 997862. [CrossRef]
  • 23. Zhiming, W., Luman, W., Tingting, Q., Yiwei, C. (2018). Chemokines and receptors in intestinal B lymphocytes. Journal of Leukocyte Biology, 103(5), 807-819. [CrossRef]
  • 24. Pan, Z., Zhu, T., Liu, Y., Zhang, N. (2022). Role of the CXCL13/CXCR5 axis in autoimmune diseases. Frontiers in Immunology, 13, 850998. [CrossRef]
  • 25. Karimabad, M.N., Kounis, N.G., Hassanshahi, G., Hassanshahi, F., Mplani, V., Koniari, I., Hung, M.Y., Nadimi, A.E. (2021). The involvement of cxc motif chemokine ligand 10 (CXCL10) and its related chemokines in the pathogenesis of coronary artery disease and in the covıd-19 vaccination: A narrative review. Vaccines, 9(11), 1224. [CrossRef]
  • 26. Lu, C., Zhang, X., Luo, Y., Huang, J., Yu, M. (2022). Identification of CXCL10 and CXCL11 as the candidate genes involving the development of colitis-associated colorectal cancer. Frontiers in Genetics, 13. [CrossRef]
  • 27. Lin, X., Wang, H., Li, Y., Yang, J., Yang, R., Wei, D., Zhang, J., Yang, D., Wang, B., Ren, X., Cheng, G. (2017). Functional characterization of CXCR4 in mediating the expression of protein C system in experimental ulcerative colitis. American Journal of Translational Research, 9(11), 4821-4835.
  • 28. Meng, G., Monaghan, T.M., Duggal, N.A., Tighe, P., Peerani, F. (2023). Microbial-immune crosstalk in elderly-onset inflammatory bowel disease: Unchartered territory. Journal of Crohn’s and Colitis, 17(8), 1309-1325. [CrossRef]
  • 29. Herszenyi, L. (2007). Alterations of glutathione S-transferase and matrix metalloproteinase-9 expressions are early events in esophageal carcinogenesis. World Journal of Gastroenterology, 13(5), 676. [CrossRef]
  • 30. Marônek, M., Marafini, I., Gardlík, R., Link, R., Troncone, E., Monteleone, G. (2021). Metalloproteinases in inflammatory bowel diseases. Journal of Inflammation Research, 14, 1029-1041. [CrossRef]

ÜLSERATİF KOLİTTE YOLAK ANALİZİ VE FARKLI İFADE EDİLEN GENLERİN BELİRLENMESİ YOLUYLA TERAPÖTİK HEDEFLERİN AÇIĞA ÇIKARILMASI

Yıl 2024, Cilt: 48 Sayı: 3, 890 - 902, 10.09.2024
https://doi.org/10.33483/jfpau.1439430

Öz

vAmaç: Bu çalışma, ülseratif kolit (ÜK) ile ilişkili DEG'leri ve yolları araştırmak için entegre biyoinformatik kullanır.
Gereç ve Yöntem: DEG'ler, GSE13367 ve GSE134025 veri kümelerini kullanarak ÜK hastalarının kolonik mukozal örneklerinden ve kontrollerden belirlendi. DEG seçimi için GEO2R ve Venn diyagramları kullanıldı, ardından fonksiyonel anotasyon ve yol analizi yapıldı. Protein-protein etkileşimleri (PPI'ler) STRING veritabanı kullanılarak belirlendi ve Metascape, Gen Ontolojisi (GO) ve Kyoto Genler ve Genomlar Ansiklopedisi (KEGG) zenginleştirme analizi için kullanıldı.
Sonuç ve Tartışma: Analiz, 197 DEG ortaya koydu, bunların 76'sı yukarı regüle edilmiş ve 121'i aşağı regüle edilmiş genlerdi. Yukarı regüle edilmiş genler, humoral immün yanıt, peptidoglikan bağlanma ve NADPH oksidaz kompleksi gibi süreçlerde zenginleşmişti. Aşağı regüle edilmiş genler, inorganik anyon taşıma, alıcı-gated iyon kanal aktivitesi ve integral plazma membran bileşenleri ile ilişkilendirildi. PPI ağındaki yukarı regüle edilmiş DEG'ler, 75 düğüm ve 190 kenarla yoğun bir ağ oluşturdu, önemli etkileşimleri gösterirken, aşağı regüle edilmiş DEG'ler, 114 düğüm ve 63 kenarla daha az yoğun bir ağ oluşturdu. 197 DEG arasında beş merkezi gen (CXCR4, CXCL13, CXCL1, MMP3) tanımlandı. Bu bulgular, ÜK'nin nedenleri hakkında yeni içgörüler sunmakta ve daha etkili tedavi yaklaşımları için umut vaat etmektedir.

Kaynakça

  • 1. Moncada, S., Palmer, R.M.J., Higgs, E.A. (1989). Biosynthesis of nitric oxide from L-arginine. A pathway for the regulation of cell function and communication. Biochemistry and Pharmacology, 38(11), 1709-1715. [CrossRef]
  • 2. Macedo, T., Ribeiro, V., Oliveira, A.P., Pereira, D.M., Fernandes, F., Gomes, N.G.M., Andrade, P.B. (2020). Anti-inflammatory properties of Xylopia aethiopica leaves: Interference with pro-inflammatory cytokines in THP-1-derived macrophages and flavonoid profiling. Journal of Ethnopharmacology, 248, 112312. [CrossRef]
  • 3. Du, L., Ha, C. (2020). Epidemiology and pathogenesis of ulcerative colitis. Gastroenterology Clinics of North America, 49(4), 643-654. [CrossRef]
  • 4. Gajendran, M., Loganathan, P., Jimenez, G., Catinella, A.P., Ng, N., Umapathy, C., Ziade, N., Hashash, J.G. (2019). A comprehensive review and update on ulcerative colitis. Disease-a-Month, 65(12), 100851. [CrossRef]
  • 5. Sæterstad, S., Østvik, A.E., Røyset, E.S., Bakke, I., Sandvik, A.K., Granlund, A. van B. (2022). Profound gene expression changes in the epithelial monolayer of active ulcerative colitis and Crohn’s disease. Plos One, 17(3), e0265189. [CrossRef]
  • 6. Huang, Y., Dalal, S., Antonopoulos, D., Hubert, N., Raffals, L.H., Dolan, K., Weber, C., Messer, J.S., Jabri, B., Bendelac, A., Eren, A.M., Rubin, D.T., Sogin, M., Chang, E.B. (2017). Early transcriptomic changes in the ileal pouch provide insight into the molecular pathogenesis of pouchitis and ulcerative colitis. Inflammatory Bowel Diseases, 23(3), 366-378. [CrossRef]
  • 7. Pomaznoy, M., Ha, B., Peters, B. (2018). GOnet: A tool for interactive gene ontology analysis. BMC Bioinformatics, 19(1), 470.[CrossRef]
  • 8. Lin, G., Chai, J., Yuan, S., Mai, C., Cai, L., Murphy, R.W., Zhou, W., Luo, J. (2016). VennPainter: A tool for the comparison and identification of candidate genes based on venn diagrams. Plos One, 11(4), e0154315. [CrossRef]
  • 9. Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O., Benner, C., Chanda, S.K. (2019). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature Communications, 10(1), 1523. [CrossRef]
  • 10. Huckvale, E., Moseley, H.N.B. (2023). Kegg pull: A software package for the RESTful access and pulling from the Kyoto Encyclopedia of Gene and Genomes. BMC Bioinformatics, 24(1), 78. [CrossRef]
  • 11. Perez Hernandez, C., Elkattawy, S., Younes, I., Fanous, P., Gonzalez Aponte, D., Makanay, O., Naik, A. (2022). A rare presentation of recurrent diverticulitis in a patient with ulcerative colitis. European Journal of Case Reports in Internal Medicine. [CrossRef]
  • 12. Ng, S.C., Shi, H.Y., Hamidi, N., Underwood, F.E., Tang, W., Benchimol, E.I., Panaccione, R., Ghosh, S., Wu, J.C.Y., Chan, F.K.L., Sung, J.J.Y., Kaplan, G.G. (2017). Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. The Lancet, 390(10114), 2769-2778. [CrossRef]
  • 13. Cheng, C., Hua, J., Tan, J., Qian, W., Zhang, L., Hou, X. (2019). Identification of differentially expressed genes, associated functional terms pathways, and candidate diagnostic biomarkers in inflammatory bowel diseases by bioinformatics analysis. Experimental and Therapeutic Medicine, 278-288. [CrossRef]
  • 14. Pan, W., Wang, Q., Chen, Q. (2019). The cytokine network involved in the host immune response to periodontitis. International Journal of Oral Science, 11(3), 30. [CrossRef]
  • 15. Cao, Y., Jiao, N., Sun, T., Ma, Y., Zhang, X., Chen, H., Hong, J., Zhang, Y. (2021). CXCL11 Correlates with antitumor immunity and an improved prognosis in colon cancer. Frontiers in Cell and Developmental Biology, 9, 646252. [CrossRef]
  • 16. Bianchi, M.E., Mezzapelle, R. (2020). The chemokine receptor cxcr4 in cell proliferation and tissue regeneration. Frontiers in Immunology, 11. [CrossRef]
  • 17. Sivina, M., Xiao, L., Kim, E., Vaca, A., Chen, S.S., Keating, M.J., Ferrajoli, A., Estrov, Z., Jain, N., Wierda, W.G., Huang, X., Chiorazzi, N., Burger, J.A. (2021). CXCL13 plasma levels function as a biomarker for disease activity in patients with chronic lymphocytic leukemia. Leukemia, 35(6), 1610-1620. [CrossRef]
  • 18. Korbecki, J., Barczak, K., Gutowska, I., Chlubek, D., Baranowska-Bosiacka, I. (2022). CXCL1: Gene, promoter, regulation of expression, mrna stability, regulation of activity in the intercellular space. International Journal of Molecular Sciences, 23(2), 792. [CrossRef]
  • 19. Cabral-Pacheco, G.A., Garza-Veloz, I., Castruita-De la Rosa, C., Ramirez-Acuña, J.M., Perez-Romero, B.A., Guerrero-Rodriguez, J.F., Martinez-Avila, N., Martinez-Fierro, M.L. (2020). The roles of matrix metalloproteinases and their inhibitors in human diseases. International Journal of Molecular Sciences, 21(24), 9739. [CrossRef]
  • 20. Korbecki, J., Szatkowska, I., Kupnicka, P., Żwierełło, W., Barczak, K., Poziomkowska-Gęsicka, I., Wójcik, J., Chlubek, D., Baranowska-Bosiacka, I. (2022). The importance of CXCL1 in the physiological state and in noncancer diseases of the oral cavity and abdominal organs. International Journal of Molecular Sciences, 23(13), 7151. [CrossRef]
  • 21. Sun, Z., Huang, W., Zheng, Y., Liu, P., Yang, W., Guo, Z., Kong, D., Lv, Q., Zhou, X., Du, Z., Jiang, H., Jiang, Y. (2021). Fpr2/CXCL1/2 controls rapid neutrophil infiltration to inhibit streptococcus agalactiae infection. Frontiers in Immunology, 12, 786602. [CrossRef]
  • 22. Liu, T., Liu, Y., Liu, C., Jiang, Y. (2022). CXCL13 is elevated in inflammatory bowel disease in mice and humans and is implicated in disease pathogenesis. Frontiers in Immunology, 13, 997862. [CrossRef]
  • 23. Zhiming, W., Luman, W., Tingting, Q., Yiwei, C. (2018). Chemokines and receptors in intestinal B lymphocytes. Journal of Leukocyte Biology, 103(5), 807-819. [CrossRef]
  • 24. Pan, Z., Zhu, T., Liu, Y., Zhang, N. (2022). Role of the CXCL13/CXCR5 axis in autoimmune diseases. Frontiers in Immunology, 13, 850998. [CrossRef]
  • 25. Karimabad, M.N., Kounis, N.G., Hassanshahi, G., Hassanshahi, F., Mplani, V., Koniari, I., Hung, M.Y., Nadimi, A.E. (2021). The involvement of cxc motif chemokine ligand 10 (CXCL10) and its related chemokines in the pathogenesis of coronary artery disease and in the covıd-19 vaccination: A narrative review. Vaccines, 9(11), 1224. [CrossRef]
  • 26. Lu, C., Zhang, X., Luo, Y., Huang, J., Yu, M. (2022). Identification of CXCL10 and CXCL11 as the candidate genes involving the development of colitis-associated colorectal cancer. Frontiers in Genetics, 13. [CrossRef]
  • 27. Lin, X., Wang, H., Li, Y., Yang, J., Yang, R., Wei, D., Zhang, J., Yang, D., Wang, B., Ren, X., Cheng, G. (2017). Functional characterization of CXCR4 in mediating the expression of protein C system in experimental ulcerative colitis. American Journal of Translational Research, 9(11), 4821-4835.
  • 28. Meng, G., Monaghan, T.M., Duggal, N.A., Tighe, P., Peerani, F. (2023). Microbial-immune crosstalk in elderly-onset inflammatory bowel disease: Unchartered territory. Journal of Crohn’s and Colitis, 17(8), 1309-1325. [CrossRef]
  • 29. Herszenyi, L. (2007). Alterations of glutathione S-transferase and matrix metalloproteinase-9 expressions are early events in esophageal carcinogenesis. World Journal of Gastroenterology, 13(5), 676. [CrossRef]
  • 30. Marônek, M., Marafini, I., Gardlík, R., Link, R., Troncone, E., Monteleone, G. (2021). Metalloproteinases in inflammatory bowel diseases. Journal of Inflammation Research, 14, 1029-1041. [CrossRef]
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık Biyokimyası, Farmasotik Biyoteknoloji, Farmasotik Kimya
Bölüm Araştırma Makalesi
Yazarlar

Omnia Amir Osman Abdelrazig 0009-0002-2639-6958

Fadilah Fadilah 0000-0002-8120-3138

Linda Erlina 0000-0003-1108-0600

Badriul Hegar 0000-0002-5924-1664

Erken Görünüm Tarihi 11 Ağustos 2024
Yayımlanma Tarihi 10 Eylül 2024
Gönderilme Tarihi 19 Şubat 2024
Kabul Tarihi 15 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 48 Sayı: 3

Kaynak Göster

APA Abdelrazig, O. A. O., Fadilah, F., Erlina, L., Hegar, B. (2024). UNVEILING THERAPEUTIC TARGETS THROUGH PATHWAY ANALYSIS AND IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES IN ULCERATIVE COLITIS. Journal of Faculty of Pharmacy of Ankara University, 48(3), 890-902. https://doi.org/10.33483/jfpau.1439430
AMA Abdelrazig OAO, Fadilah F, Erlina L, Hegar B. UNVEILING THERAPEUTIC TARGETS THROUGH PATHWAY ANALYSIS AND IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES IN ULCERATIVE COLITIS. Ankara Ecz. Fak. Derg. Eylül 2024;48(3):890-902. doi:10.33483/jfpau.1439430
Chicago Abdelrazig, Omnia Amir Osman, Fadilah Fadilah, Linda Erlina, ve Badriul Hegar. “UNVEILING THERAPEUTIC TARGETS THROUGH PATHWAY ANALYSIS AND IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES IN ULCERATIVE COLITIS”. Journal of Faculty of Pharmacy of Ankara University 48, sy. 3 (Eylül 2024): 890-902. https://doi.org/10.33483/jfpau.1439430.
EndNote Abdelrazig OAO, Fadilah F, Erlina L, Hegar B (01 Eylül 2024) UNVEILING THERAPEUTIC TARGETS THROUGH PATHWAY ANALYSIS AND IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES IN ULCERATIVE COLITIS. Journal of Faculty of Pharmacy of Ankara University 48 3 890–902.
IEEE O. A. O. Abdelrazig, F. Fadilah, L. Erlina, ve B. Hegar, “UNVEILING THERAPEUTIC TARGETS THROUGH PATHWAY ANALYSIS AND IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES IN ULCERATIVE COLITIS”, Ankara Ecz. Fak. Derg., c. 48, sy. 3, ss. 890–902, 2024, doi: 10.33483/jfpau.1439430.
ISNAD Abdelrazig, Omnia Amir Osman vd. “UNVEILING THERAPEUTIC TARGETS THROUGH PATHWAY ANALYSIS AND IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES IN ULCERATIVE COLITIS”. Journal of Faculty of Pharmacy of Ankara University 48/3 (Eylül 2024), 890-902. https://doi.org/10.33483/jfpau.1439430.
JAMA Abdelrazig OAO, Fadilah F, Erlina L, Hegar B. UNVEILING THERAPEUTIC TARGETS THROUGH PATHWAY ANALYSIS AND IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES IN ULCERATIVE COLITIS. Ankara Ecz. Fak. Derg. 2024;48:890–902.
MLA Abdelrazig, Omnia Amir Osman vd. “UNVEILING THERAPEUTIC TARGETS THROUGH PATHWAY ANALYSIS AND IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES IN ULCERATIVE COLITIS”. Journal of Faculty of Pharmacy of Ankara University, c. 48, sy. 3, 2024, ss. 890-02, doi:10.33483/jfpau.1439430.
Vancouver Abdelrazig OAO, Fadilah F, Erlina L, Hegar B. UNVEILING THERAPEUTIC TARGETS THROUGH PATHWAY ANALYSIS AND IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES IN ULCERATIVE COLITIS. Ankara Ecz. Fak. Derg. 2024;48(3):890-902.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.