Derleme
BibTex RIS Kaynak Göster

FACTORS AFFECTING THE BIOSYNTHESIS AND ACCUMULATION OF PLANT SECONDARY METABOLITES

Yıl 2024, Cilt: 48 Sayı: 3, 1248 - 1263, 10.09.2024
https://doi.org/10.33483/jfpau.1488042

Öz

Objective: While primary metabolites are directly effective in the basic vital functions of the plant, secondary metabolites are bioactive compounds that are not directly effective and have functions related to the survival and adaptation of the plant to its environment. In addition to their use in functional foods, cosmetic products, agricultural applications, aromatherapy, dyes, and other industrial products, many drugs and health products are also obtained from plant-derived secondary metabolites. Secondary metabolites, which are compounds formed by plants in response to environmental interactions, play a role in plant defense mechanisms, communication, and various biological processes. It is important to investigate the factors affecting the biosynthesis and accumulation of these compounds, which are benefiial for both plants themselves and humans.
Result and Discussion: Various genetic, ontogenic, morphogenetic and environmental factors affecting the biosynthesis and accumulation of plant secondary metabolites have been examined. Although all other factors remain constant, changes in only one factor can selectively alter the content and amount of secondary metabolites in plants. Additionally, further research is needed to understand the synergistic effects of various environmental factors at the molecular level using new methods such as metabolomics, proteomics and transcriptomics to increase plant growth and productivity, and subsequently secondary metabolite production.

Kaynakça

  • 1. Elshafie, H.S., Camele, I., Mohamed, A.A. (2023). A comprehensive review on the biological, agricultural and pharmaceutical properties of secondary metabolites based-plant origin. International Journal of Molecular Sciences, 24(4), 3266. [CrossRef]
  • 2. Twaij, B.M., Hasan, M.N. (2022). Bioactive secondary metabolites from plant sources: Types, synthesis, and their therapeutic uses. International Journal of Plant Biology, 13(1), 4-14. [CrossRef]
  • 3. Adhikary, S., Dasgupta, N. (2023). Role of secondary metabolites in plant homeostasis during biotic stress. Biocatalysis and Agricultural Biotechnology, 50, 102712. [CrossRef]
  • 4. Croteau, R., Kutchan, T.M., Lewis, N.G. (2000). Natural products (secondary metabolites). In: Buchanan, B., Gruissem, W., Jones, R. (Eds.), Biochemistry and Molecular Biology of Plants, (pp. 1250-1319). American Society of Plant Physiologists, Rockville, Maryland, USA.
  • 5. Ozay, C., Kılıncarslan, O., Mammadov, R. (2016). Interactions between heavy metals and glucosinolates as defense mechanisms in Brassicaceae. Turkish Journal of Scientific Reviews, 9(1), 12-22.
  • 6. Pagare, S., Bhatia, M., Tripathi, N., Pagare, S., Bansal, Y.K. (2015). Secondary metabolites of plants and their role: Overview. Current Trends in Biotechnology and Pharmacy, 9(3), 293-304.
  • 7. Salehi, B., Krochmal-Marczak, B., Skiba, D., Patra, J.K., Das, S.K., Das, G., Popovic-Djordjevic, J.B., Kostic, A.Z., Anil Kumar, N.V., Tripathi, A. (2020). Convolvulus plant-A comprehensive review from phytochemical composition to pharmacy. Phytotherapy Research, 34, 315-328. [CrossRef]
  • 8. Verma, N., Shukla, S. (2015). Impact of various factors responsible for fluctuation in plant secondary metabolites. Journal of Applied Research on Medicinal and Aromatic Plants, 2(4), 105-113. [CrossRef]
  • 9. Howes, M.J.R., Simmonds, M.S.J. (2014). The role of phytochemicals as micronutrients in health and disease. Current Opinion in Clinical Nutrition and Metabolic Care, 17(6), 558-566. [CrossRef]
  • 10. Ozay, C., Mammadov, R. (2017). Screening of some biological activities of Alyssum fulvescens var. fulvescens known as ege madwort. Acta Biologica Hungarica, 68(3), 310-320. [CrossRef]
  • 11. Adedeji, A.A., Babalola, O.O. (2020). Secondary metabolites as plant defensive strategy: A large role for small molecules in the near root region. Planta, 252(4), 61. [CrossRef]
  • 12. Jan, R., Asaf, S., Numan, M., Lubna., Kim, K.M. (2021). Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy, 11(5), 968. [CrossRef]
  • 13. Jamwal, K., Bhattacharya, S., Puri, S. (2018). Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. Journal of Applied Research on Medicinal and Aromatic Plants, 9, 26-38. [CrossRef]
  • 14. Ahuja, I., Kissen, R., Bones, A.M. (2012). Phytoalexins in defense against pathogens. Trends in Plant Science, 17(2), 73-90. [CrossRef]
  • 15. Maeda, H., Dudareva, N. (2012). The shikimate pathway and aromatic amino acid biosynthesis in plants. Annual Review of Plant Biology, 63, 73-105. [CrossRef]
  • 16. Wuyts, N., De Waele, D., Swennen, R. (2006). Extraction and partial characterization of polyphenol oxidase from banana (Musa acuminata Grande naine) roots. Plant Physiology and Biochemistry, 44(5-6), 308-314. [CrossRef]
  • 17. Gan, R.Y., Chan, C.L., Yang, Q.Q., Li, H.B., Zhang, D., Ge, Y.Y., Gunaratne, A., Ge, J., Corke, H. (2019). Bioactive compounds and beneficial functions of sprouted grains. In: Feng, H., Nemzer, B., DeVries, J.W. (Eds.), Sprouted Grains, (pp. 191-246). AACC International Press: St. Paul, MN, USA. [CrossRef]
  • 18. Walker, E.H., Pacold, M.E., Perisic, O., Stephens, L., Hawkins, P.T., Wymann, M.P., Williams, R.L. (2000). Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Molecular Cell, 6(4), 909-919. [CrossRef]
  • 19. Han, R.M., Tian, Y.X., Liu, Y., Chen, C.H., Ai, X.C., Zhang, J.P., Skibsted, L.H. (2009). Comparison of flavonoids and isoflavonoids as antioxidants. Journal of Agricultural Food Chemistry, 57(9), 3780-3785. [CrossRef]
  • 20. Sreevidya, V.S., Srinivasa Rao, C., Sullia, S.B., Ladha, J.K., Reddy, P.M. (2006). Metabolic engineering of rice with soybean isoflavone synthase for promoting nodulation gene expression in rhizobia. Journal of Experimental Botany, 57(9), 1957-1969. [CrossRef]
  • 21. Vranová, E., Coman, D., Gruissem, W. (2012). Structure and dynamics of the isoprenoid pathway network. Molecular Plant, 5(2), 318-333. [CrossRef]
  • 22. Boncan, D.A.T., Tsang, S.S.K., Li, C., Lee, I.H.T., Lam, H.M., Chan, T.F., Hui, J.H.L. (2020). Terpenes and terpenoids in plants: Interactions with environment and insects. International Journal of Molecular Sciences, 21(19), 7382. [CrossRef]
  • 23. Silpa, P., Roopa, K., Thomas, T.D. (2018). Production of plant secondary metabolites: Current status and future prospects. In: Kumar, N. (Ed.), Biotechnological approaches for medicinal and aromatic plants, (pp. 3-25). Springer Science and Business Media LLC: Cham, Switzerland. [CrossRef]
  • 24. Puri, S.K., Habbu, P.V., Kulkarni, P.V., Kulkarni, V.H., Shah, P., Bhalodia, D. (2018). Nitrogen containing secondary metabolites from endophytes of medicinal plants and their biological/pharmacological activities-a review. Systematic Reviews in Pharmacy, 9(1), 22-30. [CrossRef]
  • 25. Facchini, P.J. (2001). Alkaloid biosynthesis in plants: Biochemistry, cell biology, molecular regulation and metabolic engineering applications. Annual Review of Plant Biology, 52(1), 29-66. [CrossRef]
  • 26. Hafiz, I., Bhatti, H.N., Hanif, M.A., Shahid, M. (2018). In-vitro antibacterial and antioxidant potential of winged prickly ash, green tea and thyme. Journal of Biological Regulators and Homeostatic Agents, 32(1), 101-106.
  • 27. Vetter, J. (2000). Plant cyanogenic glycosides. Toxicon, 38(1), 11-36. [CrossRef]
  • 28. Divekar, P.A., Narayana, S., Divekar, B.A., Kumar, R., Gadratagi, B.G., Ray, A., Singh, A.K., Rani, V., Singh, V., Singh, A.K., Kumar, A., Singh, R.P., Meena, R.S., Behera, T.K. (2022). Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. International Journal of Molecular Sciences, 23(5), 2690. [CrossRef]
  • 29. Sharma, A., Sharma, S., Kumar, A., Kumar, V., Sharma, A.K. (2022). Plant secondary metabolites: An introduction of their chemistry and biological significance with physicochemical aspect. In: Sharma, A.K., Sharma, A. (Eds), Plant secondary metabolites, (pp. 1-45). Springer, Singapore. [CrossRef]
  • 30. Venditti, A., Bianco, A. (2020). Sulfur-containing secondary metabolites as neuroprotective agents. Current Medicinal Chemistry, 27(26), 4421-4436. [CrossRef]
  • 31. Mazid, M., Khan, T., Mohammad, F. (2011). Role of secondary metabolites in defense mechanisms of plants. Biology and Medicine, 3(2), 232-249.
  • 32. Akula, R., Ravishankar, G.A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling and Behavior, 6(11), 1720-1731. [CrossRef]
  • 33. Barton, K.E., Koricheva, J. (2010). The ontogeny of plant defense and herbivory: Characterizing general pattern using meta-analysis. The American Naturalist, 175(4), 481-493. [CrossRef]
  • 34. Gouvea, D.R., Gobbo-Neto, L., Sakamoto, H.T., Lopes, N.P., Lopes, J.L.C., Meloni, F., Amaral, J.G. (2012). Seasonal variation of the major secondary metabolites present in the extract of Eremanthus mattogrossensis Less (Asteraceae: Vernonieae) leaves. Quimica Nova, 35(11), 2139-2145. [CrossRef]
  • 35. Naghiloo, S., Movafeghi, A., Delazar, A., Nazemiyeh, H., Asnaashari, S., Dadpour, M.R. (2012). Ontogenetic variation of total phenolics and antioxidant activity in roots: Leaves and flowers of Astragalus compactus Lam. (Fabaceae). BioImpacts, 2(2), 105-109.
  • 36. Broun, P., Liu, Y., Queen, E., Schwarz, Y., Abenes, M.L., Leibman, M. (2006). Importance of transcription factors in the regulation of plant secondary metabolism and their relevance to the control of terpenoid accumulation. Phytochemistry Reviews, 5, 27-38. [CrossRef]
  • 37. Pichersky, E., Gang, D.R. (2000). Genetics and biochemistry of secondary metabolites in plants: An evolutionary perspective. Trends in Plant Science, 5(10), 439-445. [CrossRef]
  • 38. Pateraki, I., Kanellis, A.K. (2010). Stress and developmental response of terpenoid biosynthetic genes in Cistus creticus subsp. creticus. Plant Cell Reports, 29, 629-641. [CrossRef]
  • 39. Woldemariam, M.G., Dinh, S.T., Oh, Y., Gaquerel, E., Baldwin, I.T., Galis, I. (2013). NaMYC2 transcription factor regulates a subset of plant defense responses in Nicotiana attenuata. BMC Plant Biology, 13, 73. [CrossRef]
  • 40. Doan, A.T., Ervin, G., Felton, G. (2004). Temporal effects on jasmonate induction of anti-herbivore defense in Physalis angulata: Seasonal and ontogenetic gradients. Biochemical Systematics and Ecology, 32(2), 117-126. [CrossRef]
  • 41. Morariu, A., Caulet, P.R. (2011). Morphine content variation in Papaver somniferum L. during phenological development. Seria Agronomie, 54(1), 40-43.
  • 42. Naghiloo, S., Movafeghi, A., Delazar, A., Nazemiyeh, H., Asnaashari, S., Dadpour, M.R. (2012). Ontogenic variation of volatiles and antioxidant activity in leaves of Astragalus compactus Lam. (Fabaceae). EXCLI Journal, 11, 436-443. [CrossRef]
  • 43. Goldberg, R.B., Barker, S., Perez-Grau, L. (1989). Regulation of gene expression during plant embryogenesis. Cell, 56(2), 149-160. [CrossRef]
  • 44. Nutzmann, H.W., Osbourn, A. (2014). Gene clustering in plant specialized metabolism. Current Opinion in Biotechnology, 26, 91-99. [CrossRef]
  • 45. Bird, D.A., Franceschi, V.R., Facchini, P.J. (2003). A tale of three cell types: Alkaloid biosynthesis is localized to sieve elements in Opium poppy. The Plant Cell, 15(11), 2626-2635. [CrossRef]
  • 46. Radusiene, J., Karpaviciene, B., Stanius, Z. (2012). Effect of external and internal factors on secondary metabolites accumulation in St. John’s wort. Botanica Lithuanica, 18(2), 101-108. [CrossRef]
  • 47. Taiz, L., Zeiger, E. (2006). Secondary Metabolites and Plant Defense. In: Taiz, L., Zeiger, E. (Eds), Plant Physiology, (pp. 315-344). Fourth ed. Sinauer Associates, Sunderland, MA, USA.
  • 48. Wojakowska, A., Muth, D., Narozna, D., Madrzak, C., Stobiecki, M., Kachlicki, P. (2013). Changes of phenolic secondary metabolite profile in the reaction of narrow leaf lupin (Lupinus angustifolius) plants to infections with Colletotrichum lupini fungus or treatment with its toxin. Metabolomics, 9, 575-589. [CrossRef]
  • 49. Hönig, M., Roeber, V.M., Schmülling, T., Cortleven, A. (2023). Chemical priming of plant defense responses to pathogen attacks. Frontiers in Plant Science, 14, 1146577. [CrossRef]
  • 50. Lisar, S.Y.S., Motafakkerazad, R., Hossain, M.M., Rahman, I.M.M. (2012). Water Stress in Plants: Causes, Effects and Responses. In: Rahman, I.M.M. (Ed.), Water Stress, (pp. 1-14). InTech Publishers, Croatia. [CrossRef]
  • 51. Aimar, D., Calafat, M., Andrade, A.M., Carassay, L., Abdala, G.I., Molas, M.L. (2011). Drought Tolerance and Stress Hormones: From Model Organisms to Forage Crops. In: Hemanth, K.N., Kambiranda, D. (Eds.), Plants and Environment, (pp. 137-164). InTechPublishers, Croatia. [CrossRef]
  • 52. Valentovic, P., Luxova, M., Kolarovic, L., Gasparikova, O. (2006). Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant, Soil and Environment, 52(4), 186-191. [CrossRef]
  • 53. Katz, L., Baltz, R.H. (2016). Natural product discovery: Past, present, and future. Journal of Industrial Microbiology and Biotechnology, 43(2-3), 155-176 [CrossRef]
  • 54. Gao, S., Wang, Y., Yu, S., Huang, Y., Liu, H., Chen, W., He, X. (2020). Effects of drought stress on growth, physiology and secondary metabolites of Two Adonis species in Northeast China. Scientia Horticulturae, 259, 108795. [CrossRef]
  • 55. Razmjoo, K., Heydarizadeh, P., Sabzalian, M.R. (2008). Effect of salinity and drought stresses on growth parameters and essential oil content of Matricaria chamomilla. International Journal of Agriculture and Biology, 10(4), 451-454.
  • 56. Zobayed, S.M.A., Afreen, F., Kozai, T. (2007). Phytochemical and physiological changes in the leaves of St. John’s wort plants under a water stress condition. Environmental and Experimental Botany, 59(2), 109-116. [CrossRef]
  • 57. Khalid, K.A. (2006). Influence of water stress on growth essential oil, and chemical composition of herbs (Ocimum sp.). International Agrophysics, 20(4), 289-296.
  • 58. Hossain, M.S., Persicke, M., ElSayed, A.I., Kalinowski, J., Dietz, K.J. (2017). Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet. Journal of Experimental Botany, 68(21-22), 5961-5976. [CrossRef]
  • 59. Said-Al Ahl, H.A.H., Omer, E.A. (2011). Medicinal and aromatic plants production under salt stress. A review. Herba Polonica, 57(2), 72-87.
  • 60. Yadav, S.K. (2010). Cold stress tolerance mechanism in plants: A review. Agronomy for Sustainable Development, 30, 515-527. [CrossRef]
  • 61. Jochum, G.M., Mudge, K.W., Thomas, R.B. (2007). Elevated temperatures increase leaf senescence and root secondary metabolite concentrations in the understory herb Panax quinquefolius (Araliaceae). American Journal of Botany, 94(5), 819-826. [CrossRef]
  • 62. Chinnusamy, V., Zhu, J., Zhu, J.K. (2007). Cold stress regulation of gene expression in plants. Trends in Plant Science, 12(10), 444-451. [CrossRef]
  • 63. Cai, Z., Kastell, A., Speiser, C., Smetanska, I. (2013). Enhanced resveratrol production in Vitis vinifera cell suspension cultures by heavy metals without loss of cell viability. Applied Biochemistry and Biotechnology, 171, 330-340. [CrossRef]
  • 64. Nasim, S.A., Dhir, B. (2010). Heavy Metals Alter the Potency of Medicinal Plants. In: Whitacre, D. (Ed), Reviews of Environmental Contamination and Toxicology, (pp. 139-149). Springer: New York, NY, USA. [CrossRef]
  • 65. Singh, S., Sinha, S. (2005). Accumulation of metals and its effects in Brassica juncea (L.) Czern. (cv. Rohini) grown on various amendments of tannery waste. Ecotoxicology and Environmental Safety, 62(1), 118-127. [CrossRef]
  • 66. Castro, E.M., Pinto, J.E.B.P., Bertolucci, S.K.V., Malta, M.R., Cardoso, M.D.G., Silva, F.A.M. (2006). Coumarin contents in young Mikania glomerata plants (Guaco) under different radiation levels and photoperiod. Acta Farmaceutica Bonaerense, 25(3), 387-392.
  • 67. Shitole, S.M., Dhumal, K.N. (2012). Influence of foliar applications of micronutrients on photosynthetic pigments and organic constituents of medicinal plant Cassia angustifolia Vahl. Annals of Biological Research, 3(1), 520-526, from https://www.sid.ir/paper/676587/en. Erişim tarihi: 24.07.2024.
  • 68. Vidal, E.A., Gutierrez, R.A. (2008). A systems view of nitrogen nutrient and metabolite responses in Arabidopsis. Current Opinion in Plant Biology, 11(5), 521-529. [CrossRef]
  • 69. Nell, M., Votsch, M., Vierheilig, H., Steinkellner, S., Zitterl-Eglseer, K., Franz, C., Novak, J. (2009). Effect of phosphorous uptake on growth and secondary metabolites of garden sage (Salvia officinalis L.). Journal of the Science of Food and Agriculture, 89(6), 1090-1096. [CrossRef]
  • 70. Gobbo-Neto, L., Lopes, N.P. (2007). Medicinal plants: Factors influence on the content of secondary metabolites. Quimica Nova, 30(2), 374-381. [CrossRef]
  • 71. Gupta, S., Bhaskar, G., Andola, C.H. (2011). Altitudinal variation in essential oil content in leaves of Zanthoxylum alatum Roxb. A high value aromatic tree from Uttrakhand. Research Journal of Medicinal Plants, 5(3), 348-351. [CrossRef]
  • 72. Namdeo, A.G., Sharma, A., Fulzele, D.P., Mahadik, K.R. (2010). Influence of geographical and climatic conditions on camptothecin content of Nothapodytes nimmoniana. Records of National Products, 4(1), 64-71.
  • 73. Kumar, A., Singhal, K.C., Sharma, R.A., Vyas G.K., Kumar. V. (2013). Total phenolic and antioxidant activity of Catharanthus roseus in different geographical locations of Rajasthan. Asian Journal of Experimental Biological Sciences, 4(1), 155-158.

BİTKİ SEKONDER METABOLİTLERİNİN BİYOSENTEZİNİ VE AKÜMÜLASYONUNU ETKİLEYEN FAKTÖRLER

Yıl 2024, Cilt: 48 Sayı: 3, 1248 - 1263, 10.09.2024
https://doi.org/10.33483/jfpau.1488042

Öz

Amaç: Primer metabolitler, bitkinin temel yaşamsal işlevlerinde doğrudan etkiliyken, sekonder metabololitler ise doğrudan etkili olmayan, bitkinin hayatta kalması ve bulunduğu ortama uyum sağlaması ile ilgili görevleri olan biyoaktif bileşiklerdir. Fonksiyonel gıdalarda, kozmetik ürünlerde, tarım ve zirai uygulamalarda, aromaterapide, boyalar ve diğer endüstriyel ürünlerde kullanım alanlarının olmasının yanında birçok ilaç ve sağlık ürünü de bitkisel kaynaklı sekonder metabolitlerden elde edilir. Bitkilerin çevresel etkileşimlerine yanıt olarak oluşturdukları bileşikler olan sekonder metabolitler, bitkilerin savunma mekanizmalarında, iletişimde ve çeşitli biyolojik süreçlerde rol oynarlar. Hem bitkilerin kendileri, hem de insanlar açısından faydalı olan bu bileşiklerin biyosentezlerini ve akümülasyonlarını etkileyen faktörlerin araştırılması önemlidir.
Sonuç ve Tartışma: Bitki sekonder metabolitlerinin biyosentezi ve akümülasyonu üzerinde etkili olan çeşitli genetik, ontogenik, morfogenetik ve çevresel faktörler incelenmiştir. Diğer tüm faktörler sabit kalsa da sadece bir faktördeki değişiklik bitkilerde sekonder metabolitlerin içeriğini ve miktarını seçici olarak değiştirebilmektedir. Ayrıca, bitki büyümesini ve verimliliğini, bunun sonucunda da sekonder metabolit üretimini artırmak için, metabolomik, proteomik ve transkriptomik gibi yeni yöntemler kullanılarak çeşitli çevresel etkenlerin sinerjistik etkilerini moleküler seviyede anlamak amacıyla daha fazla araştırmaya ihtiyaç vardır.

Kaynakça

  • 1. Elshafie, H.S., Camele, I., Mohamed, A.A. (2023). A comprehensive review on the biological, agricultural and pharmaceutical properties of secondary metabolites based-plant origin. International Journal of Molecular Sciences, 24(4), 3266. [CrossRef]
  • 2. Twaij, B.M., Hasan, M.N. (2022). Bioactive secondary metabolites from plant sources: Types, synthesis, and their therapeutic uses. International Journal of Plant Biology, 13(1), 4-14. [CrossRef]
  • 3. Adhikary, S., Dasgupta, N. (2023). Role of secondary metabolites in plant homeostasis during biotic stress. Biocatalysis and Agricultural Biotechnology, 50, 102712. [CrossRef]
  • 4. Croteau, R., Kutchan, T.M., Lewis, N.G. (2000). Natural products (secondary metabolites). In: Buchanan, B., Gruissem, W., Jones, R. (Eds.), Biochemistry and Molecular Biology of Plants, (pp. 1250-1319). American Society of Plant Physiologists, Rockville, Maryland, USA.
  • 5. Ozay, C., Kılıncarslan, O., Mammadov, R. (2016). Interactions between heavy metals and glucosinolates as defense mechanisms in Brassicaceae. Turkish Journal of Scientific Reviews, 9(1), 12-22.
  • 6. Pagare, S., Bhatia, M., Tripathi, N., Pagare, S., Bansal, Y.K. (2015). Secondary metabolites of plants and their role: Overview. Current Trends in Biotechnology and Pharmacy, 9(3), 293-304.
  • 7. Salehi, B., Krochmal-Marczak, B., Skiba, D., Patra, J.K., Das, S.K., Das, G., Popovic-Djordjevic, J.B., Kostic, A.Z., Anil Kumar, N.V., Tripathi, A. (2020). Convolvulus plant-A comprehensive review from phytochemical composition to pharmacy. Phytotherapy Research, 34, 315-328. [CrossRef]
  • 8. Verma, N., Shukla, S. (2015). Impact of various factors responsible for fluctuation in plant secondary metabolites. Journal of Applied Research on Medicinal and Aromatic Plants, 2(4), 105-113. [CrossRef]
  • 9. Howes, M.J.R., Simmonds, M.S.J. (2014). The role of phytochemicals as micronutrients in health and disease. Current Opinion in Clinical Nutrition and Metabolic Care, 17(6), 558-566. [CrossRef]
  • 10. Ozay, C., Mammadov, R. (2017). Screening of some biological activities of Alyssum fulvescens var. fulvescens known as ege madwort. Acta Biologica Hungarica, 68(3), 310-320. [CrossRef]
  • 11. Adedeji, A.A., Babalola, O.O. (2020). Secondary metabolites as plant defensive strategy: A large role for small molecules in the near root region. Planta, 252(4), 61. [CrossRef]
  • 12. Jan, R., Asaf, S., Numan, M., Lubna., Kim, K.M. (2021). Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy, 11(5), 968. [CrossRef]
  • 13. Jamwal, K., Bhattacharya, S., Puri, S. (2018). Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. Journal of Applied Research on Medicinal and Aromatic Plants, 9, 26-38. [CrossRef]
  • 14. Ahuja, I., Kissen, R., Bones, A.M. (2012). Phytoalexins in defense against pathogens. Trends in Plant Science, 17(2), 73-90. [CrossRef]
  • 15. Maeda, H., Dudareva, N. (2012). The shikimate pathway and aromatic amino acid biosynthesis in plants. Annual Review of Plant Biology, 63, 73-105. [CrossRef]
  • 16. Wuyts, N., De Waele, D., Swennen, R. (2006). Extraction and partial characterization of polyphenol oxidase from banana (Musa acuminata Grande naine) roots. Plant Physiology and Biochemistry, 44(5-6), 308-314. [CrossRef]
  • 17. Gan, R.Y., Chan, C.L., Yang, Q.Q., Li, H.B., Zhang, D., Ge, Y.Y., Gunaratne, A., Ge, J., Corke, H. (2019). Bioactive compounds and beneficial functions of sprouted grains. In: Feng, H., Nemzer, B., DeVries, J.W. (Eds.), Sprouted Grains, (pp. 191-246). AACC International Press: St. Paul, MN, USA. [CrossRef]
  • 18. Walker, E.H., Pacold, M.E., Perisic, O., Stephens, L., Hawkins, P.T., Wymann, M.P., Williams, R.L. (2000). Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Molecular Cell, 6(4), 909-919. [CrossRef]
  • 19. Han, R.M., Tian, Y.X., Liu, Y., Chen, C.H., Ai, X.C., Zhang, J.P., Skibsted, L.H. (2009). Comparison of flavonoids and isoflavonoids as antioxidants. Journal of Agricultural Food Chemistry, 57(9), 3780-3785. [CrossRef]
  • 20. Sreevidya, V.S., Srinivasa Rao, C., Sullia, S.B., Ladha, J.K., Reddy, P.M. (2006). Metabolic engineering of rice with soybean isoflavone synthase for promoting nodulation gene expression in rhizobia. Journal of Experimental Botany, 57(9), 1957-1969. [CrossRef]
  • 21. Vranová, E., Coman, D., Gruissem, W. (2012). Structure and dynamics of the isoprenoid pathway network. Molecular Plant, 5(2), 318-333. [CrossRef]
  • 22. Boncan, D.A.T., Tsang, S.S.K., Li, C., Lee, I.H.T., Lam, H.M., Chan, T.F., Hui, J.H.L. (2020). Terpenes and terpenoids in plants: Interactions with environment and insects. International Journal of Molecular Sciences, 21(19), 7382. [CrossRef]
  • 23. Silpa, P., Roopa, K., Thomas, T.D. (2018). Production of plant secondary metabolites: Current status and future prospects. In: Kumar, N. (Ed.), Biotechnological approaches for medicinal and aromatic plants, (pp. 3-25). Springer Science and Business Media LLC: Cham, Switzerland. [CrossRef]
  • 24. Puri, S.K., Habbu, P.V., Kulkarni, P.V., Kulkarni, V.H., Shah, P., Bhalodia, D. (2018). Nitrogen containing secondary metabolites from endophytes of medicinal plants and their biological/pharmacological activities-a review. Systematic Reviews in Pharmacy, 9(1), 22-30. [CrossRef]
  • 25. Facchini, P.J. (2001). Alkaloid biosynthesis in plants: Biochemistry, cell biology, molecular regulation and metabolic engineering applications. Annual Review of Plant Biology, 52(1), 29-66. [CrossRef]
  • 26. Hafiz, I., Bhatti, H.N., Hanif, M.A., Shahid, M. (2018). In-vitro antibacterial and antioxidant potential of winged prickly ash, green tea and thyme. Journal of Biological Regulators and Homeostatic Agents, 32(1), 101-106.
  • 27. Vetter, J. (2000). Plant cyanogenic glycosides. Toxicon, 38(1), 11-36. [CrossRef]
  • 28. Divekar, P.A., Narayana, S., Divekar, B.A., Kumar, R., Gadratagi, B.G., Ray, A., Singh, A.K., Rani, V., Singh, V., Singh, A.K., Kumar, A., Singh, R.P., Meena, R.S., Behera, T.K. (2022). Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. International Journal of Molecular Sciences, 23(5), 2690. [CrossRef]
  • 29. Sharma, A., Sharma, S., Kumar, A., Kumar, V., Sharma, A.K. (2022). Plant secondary metabolites: An introduction of their chemistry and biological significance with physicochemical aspect. In: Sharma, A.K., Sharma, A. (Eds), Plant secondary metabolites, (pp. 1-45). Springer, Singapore. [CrossRef]
  • 30. Venditti, A., Bianco, A. (2020). Sulfur-containing secondary metabolites as neuroprotective agents. Current Medicinal Chemistry, 27(26), 4421-4436. [CrossRef]
  • 31. Mazid, M., Khan, T., Mohammad, F. (2011). Role of secondary metabolites in defense mechanisms of plants. Biology and Medicine, 3(2), 232-249.
  • 32. Akula, R., Ravishankar, G.A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling and Behavior, 6(11), 1720-1731. [CrossRef]
  • 33. Barton, K.E., Koricheva, J. (2010). The ontogeny of plant defense and herbivory: Characterizing general pattern using meta-analysis. The American Naturalist, 175(4), 481-493. [CrossRef]
  • 34. Gouvea, D.R., Gobbo-Neto, L., Sakamoto, H.T., Lopes, N.P., Lopes, J.L.C., Meloni, F., Amaral, J.G. (2012). Seasonal variation of the major secondary metabolites present in the extract of Eremanthus mattogrossensis Less (Asteraceae: Vernonieae) leaves. Quimica Nova, 35(11), 2139-2145. [CrossRef]
  • 35. Naghiloo, S., Movafeghi, A., Delazar, A., Nazemiyeh, H., Asnaashari, S., Dadpour, M.R. (2012). Ontogenetic variation of total phenolics and antioxidant activity in roots: Leaves and flowers of Astragalus compactus Lam. (Fabaceae). BioImpacts, 2(2), 105-109.
  • 36. Broun, P., Liu, Y., Queen, E., Schwarz, Y., Abenes, M.L., Leibman, M. (2006). Importance of transcription factors in the regulation of plant secondary metabolism and their relevance to the control of terpenoid accumulation. Phytochemistry Reviews, 5, 27-38. [CrossRef]
  • 37. Pichersky, E., Gang, D.R. (2000). Genetics and biochemistry of secondary metabolites in plants: An evolutionary perspective. Trends in Plant Science, 5(10), 439-445. [CrossRef]
  • 38. Pateraki, I., Kanellis, A.K. (2010). Stress and developmental response of terpenoid biosynthetic genes in Cistus creticus subsp. creticus. Plant Cell Reports, 29, 629-641. [CrossRef]
  • 39. Woldemariam, M.G., Dinh, S.T., Oh, Y., Gaquerel, E., Baldwin, I.T., Galis, I. (2013). NaMYC2 transcription factor regulates a subset of plant defense responses in Nicotiana attenuata. BMC Plant Biology, 13, 73. [CrossRef]
  • 40. Doan, A.T., Ervin, G., Felton, G. (2004). Temporal effects on jasmonate induction of anti-herbivore defense in Physalis angulata: Seasonal and ontogenetic gradients. Biochemical Systematics and Ecology, 32(2), 117-126. [CrossRef]
  • 41. Morariu, A., Caulet, P.R. (2011). Morphine content variation in Papaver somniferum L. during phenological development. Seria Agronomie, 54(1), 40-43.
  • 42. Naghiloo, S., Movafeghi, A., Delazar, A., Nazemiyeh, H., Asnaashari, S., Dadpour, M.R. (2012). Ontogenic variation of volatiles and antioxidant activity in leaves of Astragalus compactus Lam. (Fabaceae). EXCLI Journal, 11, 436-443. [CrossRef]
  • 43. Goldberg, R.B., Barker, S., Perez-Grau, L. (1989). Regulation of gene expression during plant embryogenesis. Cell, 56(2), 149-160. [CrossRef]
  • 44. Nutzmann, H.W., Osbourn, A. (2014). Gene clustering in plant specialized metabolism. Current Opinion in Biotechnology, 26, 91-99. [CrossRef]
  • 45. Bird, D.A., Franceschi, V.R., Facchini, P.J. (2003). A tale of three cell types: Alkaloid biosynthesis is localized to sieve elements in Opium poppy. The Plant Cell, 15(11), 2626-2635. [CrossRef]
  • 46. Radusiene, J., Karpaviciene, B., Stanius, Z. (2012). Effect of external and internal factors on secondary metabolites accumulation in St. John’s wort. Botanica Lithuanica, 18(2), 101-108. [CrossRef]
  • 47. Taiz, L., Zeiger, E. (2006). Secondary Metabolites and Plant Defense. In: Taiz, L., Zeiger, E. (Eds), Plant Physiology, (pp. 315-344). Fourth ed. Sinauer Associates, Sunderland, MA, USA.
  • 48. Wojakowska, A., Muth, D., Narozna, D., Madrzak, C., Stobiecki, M., Kachlicki, P. (2013). Changes of phenolic secondary metabolite profile in the reaction of narrow leaf lupin (Lupinus angustifolius) plants to infections with Colletotrichum lupini fungus or treatment with its toxin. Metabolomics, 9, 575-589. [CrossRef]
  • 49. Hönig, M., Roeber, V.M., Schmülling, T., Cortleven, A. (2023). Chemical priming of plant defense responses to pathogen attacks. Frontiers in Plant Science, 14, 1146577. [CrossRef]
  • 50. Lisar, S.Y.S., Motafakkerazad, R., Hossain, M.M., Rahman, I.M.M. (2012). Water Stress in Plants: Causes, Effects and Responses. In: Rahman, I.M.M. (Ed.), Water Stress, (pp. 1-14). InTech Publishers, Croatia. [CrossRef]
  • 51. Aimar, D., Calafat, M., Andrade, A.M., Carassay, L., Abdala, G.I., Molas, M.L. (2011). Drought Tolerance and Stress Hormones: From Model Organisms to Forage Crops. In: Hemanth, K.N., Kambiranda, D. (Eds.), Plants and Environment, (pp. 137-164). InTechPublishers, Croatia. [CrossRef]
  • 52. Valentovic, P., Luxova, M., Kolarovic, L., Gasparikova, O. (2006). Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant, Soil and Environment, 52(4), 186-191. [CrossRef]
  • 53. Katz, L., Baltz, R.H. (2016). Natural product discovery: Past, present, and future. Journal of Industrial Microbiology and Biotechnology, 43(2-3), 155-176 [CrossRef]
  • 54. Gao, S., Wang, Y., Yu, S., Huang, Y., Liu, H., Chen, W., He, X. (2020). Effects of drought stress on growth, physiology and secondary metabolites of Two Adonis species in Northeast China. Scientia Horticulturae, 259, 108795. [CrossRef]
  • 55. Razmjoo, K., Heydarizadeh, P., Sabzalian, M.R. (2008). Effect of salinity and drought stresses on growth parameters and essential oil content of Matricaria chamomilla. International Journal of Agriculture and Biology, 10(4), 451-454.
  • 56. Zobayed, S.M.A., Afreen, F., Kozai, T. (2007). Phytochemical and physiological changes in the leaves of St. John’s wort plants under a water stress condition. Environmental and Experimental Botany, 59(2), 109-116. [CrossRef]
  • 57. Khalid, K.A. (2006). Influence of water stress on growth essential oil, and chemical composition of herbs (Ocimum sp.). International Agrophysics, 20(4), 289-296.
  • 58. Hossain, M.S., Persicke, M., ElSayed, A.I., Kalinowski, J., Dietz, K.J. (2017). Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet. Journal of Experimental Botany, 68(21-22), 5961-5976. [CrossRef]
  • 59. Said-Al Ahl, H.A.H., Omer, E.A. (2011). Medicinal and aromatic plants production under salt stress. A review. Herba Polonica, 57(2), 72-87.
  • 60. Yadav, S.K. (2010). Cold stress tolerance mechanism in plants: A review. Agronomy for Sustainable Development, 30, 515-527. [CrossRef]
  • 61. Jochum, G.M., Mudge, K.W., Thomas, R.B. (2007). Elevated temperatures increase leaf senescence and root secondary metabolite concentrations in the understory herb Panax quinquefolius (Araliaceae). American Journal of Botany, 94(5), 819-826. [CrossRef]
  • 62. Chinnusamy, V., Zhu, J., Zhu, J.K. (2007). Cold stress regulation of gene expression in plants. Trends in Plant Science, 12(10), 444-451. [CrossRef]
  • 63. Cai, Z., Kastell, A., Speiser, C., Smetanska, I. (2013). Enhanced resveratrol production in Vitis vinifera cell suspension cultures by heavy metals without loss of cell viability. Applied Biochemistry and Biotechnology, 171, 330-340. [CrossRef]
  • 64. Nasim, S.A., Dhir, B. (2010). Heavy Metals Alter the Potency of Medicinal Plants. In: Whitacre, D. (Ed), Reviews of Environmental Contamination and Toxicology, (pp. 139-149). Springer: New York, NY, USA. [CrossRef]
  • 65. Singh, S., Sinha, S. (2005). Accumulation of metals and its effects in Brassica juncea (L.) Czern. (cv. Rohini) grown on various amendments of tannery waste. Ecotoxicology and Environmental Safety, 62(1), 118-127. [CrossRef]
  • 66. Castro, E.M., Pinto, J.E.B.P., Bertolucci, S.K.V., Malta, M.R., Cardoso, M.D.G., Silva, F.A.M. (2006). Coumarin contents in young Mikania glomerata plants (Guaco) under different radiation levels and photoperiod. Acta Farmaceutica Bonaerense, 25(3), 387-392.
  • 67. Shitole, S.M., Dhumal, K.N. (2012). Influence of foliar applications of micronutrients on photosynthetic pigments and organic constituents of medicinal plant Cassia angustifolia Vahl. Annals of Biological Research, 3(1), 520-526, from https://www.sid.ir/paper/676587/en. Erişim tarihi: 24.07.2024.
  • 68. Vidal, E.A., Gutierrez, R.A. (2008). A systems view of nitrogen nutrient and metabolite responses in Arabidopsis. Current Opinion in Plant Biology, 11(5), 521-529. [CrossRef]
  • 69. Nell, M., Votsch, M., Vierheilig, H., Steinkellner, S., Zitterl-Eglseer, K., Franz, C., Novak, J. (2009). Effect of phosphorous uptake on growth and secondary metabolites of garden sage (Salvia officinalis L.). Journal of the Science of Food and Agriculture, 89(6), 1090-1096. [CrossRef]
  • 70. Gobbo-Neto, L., Lopes, N.P. (2007). Medicinal plants: Factors influence on the content of secondary metabolites. Quimica Nova, 30(2), 374-381. [CrossRef]
  • 71. Gupta, S., Bhaskar, G., Andola, C.H. (2011). Altitudinal variation in essential oil content in leaves of Zanthoxylum alatum Roxb. A high value aromatic tree from Uttrakhand. Research Journal of Medicinal Plants, 5(3), 348-351. [CrossRef]
  • 72. Namdeo, A.G., Sharma, A., Fulzele, D.P., Mahadik, K.R. (2010). Influence of geographical and climatic conditions on camptothecin content of Nothapodytes nimmoniana. Records of National Products, 4(1), 64-71.
  • 73. Kumar, A., Singhal, K.C., Sharma, R.A., Vyas G.K., Kumar. V. (2013). Total phenolic and antioxidant activity of Catharanthus roseus in different geographical locations of Rajasthan. Asian Journal of Experimental Biological Sciences, 4(1), 155-158.
Toplam 73 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Farmakognozi
Bölüm Derleme
Yazarlar

Cennet Özay 0000-0002-1120-6122

Ecenur Pehlivan 0009-0005-4713-4107

Erken Görünüm Tarihi 17 Ağustos 2024
Yayımlanma Tarihi 10 Eylül 2024
Gönderilme Tarihi 22 Mayıs 2024
Kabul Tarihi 8 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 48 Sayı: 3

Kaynak Göster

APA Özay, C., & Pehlivan, E. (2024). BİTKİ SEKONDER METABOLİTLERİNİN BİYOSENTEZİNİ VE AKÜMÜLASYONUNU ETKİLEYEN FAKTÖRLER. Journal of Faculty of Pharmacy of Ankara University, 48(3), 1248-1263. https://doi.org/10.33483/jfpau.1488042
AMA Özay C, Pehlivan E. BİTKİ SEKONDER METABOLİTLERİNİN BİYOSENTEZİNİ VE AKÜMÜLASYONUNU ETKİLEYEN FAKTÖRLER. Ankara Ecz. Fak. Derg. Eylül 2024;48(3):1248-1263. doi:10.33483/jfpau.1488042
Chicago Özay, Cennet, ve Ecenur Pehlivan. “BİTKİ SEKONDER METABOLİTLERİNİN BİYOSENTEZİNİ VE AKÜMÜLASYONUNU ETKİLEYEN FAKTÖRLER”. Journal of Faculty of Pharmacy of Ankara University 48, sy. 3 (Eylül 2024): 1248-63. https://doi.org/10.33483/jfpau.1488042.
EndNote Özay C, Pehlivan E (01 Eylül 2024) BİTKİ SEKONDER METABOLİTLERİNİN BİYOSENTEZİNİ VE AKÜMÜLASYONUNU ETKİLEYEN FAKTÖRLER. Journal of Faculty of Pharmacy of Ankara University 48 3 1248–1263.
IEEE C. Özay ve E. Pehlivan, “BİTKİ SEKONDER METABOLİTLERİNİN BİYOSENTEZİNİ VE AKÜMÜLASYONUNU ETKİLEYEN FAKTÖRLER”, Ankara Ecz. Fak. Derg., c. 48, sy. 3, ss. 1248–1263, 2024, doi: 10.33483/jfpau.1488042.
ISNAD Özay, Cennet - Pehlivan, Ecenur. “BİTKİ SEKONDER METABOLİTLERİNİN BİYOSENTEZİNİ VE AKÜMÜLASYONUNU ETKİLEYEN FAKTÖRLER”. Journal of Faculty of Pharmacy of Ankara University 48/3 (Eylül 2024), 1248-1263. https://doi.org/10.33483/jfpau.1488042.
JAMA Özay C, Pehlivan E. BİTKİ SEKONDER METABOLİTLERİNİN BİYOSENTEZİNİ VE AKÜMÜLASYONUNU ETKİLEYEN FAKTÖRLER. Ankara Ecz. Fak. Derg. 2024;48:1248–1263.
MLA Özay, Cennet ve Ecenur Pehlivan. “BİTKİ SEKONDER METABOLİTLERİNİN BİYOSENTEZİNİ VE AKÜMÜLASYONUNU ETKİLEYEN FAKTÖRLER”. Journal of Faculty of Pharmacy of Ankara University, c. 48, sy. 3, 2024, ss. 1248-63, doi:10.33483/jfpau.1488042.
Vancouver Özay C, Pehlivan E. BİTKİ SEKONDER METABOLİTLERİNİN BİYOSENTEZİNİ VE AKÜMÜLASYONUNU ETKİLEYEN FAKTÖRLER. Ankara Ecz. Fak. Derg. 2024;48(3):1248-63.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.