Derleme
BibTex RIS Kaynak Göster

POLİDOPAMİN TEMELLİ NANOSİSTEMLERİN İLAÇ TAŞIYICI SİSTEM OLARAK KULLANILMA VE TEDAVİ POTANSİYELLERİ

Yıl 2025, Cilt: 49 Sayı: 1, 155 - 170, 20.01.2025
https://doi.org/10.33483/jfpau.1464247

Öz

Amaç: Polidopamin (PDA), dopamin monomerinin oto-oksidasyon ve polimerizasyon sürecinin son ürünüdür. PDA, özellikle fototermal dönüşüm yeteneği, ilaç bağlama kapasitesi, çok yönlü adezyon ve biyoadezyon yeteneği, pH değişimine duyarlı olma özelliği ve yüksek biyouyumluluk ile biyomedikal alanlarda büyük potansiyel göstermiştir. Ayrıca taşıdığı üstün özellikler, PDA temelli nanopartikülleri ilaç taşıyıcı sistemler ve tedaviler için potansiyel hale getirmiştir. Bu derlemede, PDA'nın, polimerizasyon mekanizmalarının ve PDA temelli nano-sistemlerin çeşitli hastalıkların tanı ve tedavisindeki potansiyellerinin kapsamlı bir şekilde değerlendirilmesi, özellikle PDA'nın tıp ve eczacılık alanındaki rolünün belirgin hale getirilmesi amaçlanmaktadır.
Sonuç ve Tartışma: Yapılan literatür araştırmalarında; üstün özellikleriyle PDA temelli nanosistemlerin, birçok alanda tanı ve tedavi için umut vadedici sistemler olduğu görülmüştür. PDA nanopartiküllerin partikül büyüklüğü, stabilitesi, ilaç salım optimizasyonu, biyodağılım ve uzun vadeli toksisite analizi gibi konularda çalışmalar her geçen gün artmaktadır. PDA'nın metabolizma ve biyodegradasyon mekanizmalarının anlaşılması gibi tam olarak netleştirilememiş bilgilerin aydınlatılmasıyla bu sistemlerin tanı ve tedavide etkin olarak yer alabileceği düşünülmektedir.

Kaynakça

  • 1. Phan, H.T., Haes, A.J. (2019). What does nanoparticle stability mean. The Journal of Physical Chemistry C, 123(27), 16495-16507. [CrossRef]
  • 2. Rosli, N.A., Teow, Y.H., Mahmoudi, E. (2021). Current approaches for the exploration of antimicrobial activities of nanoparticles. Science and Technology of Advanced Materials, 22(1), 885-907. [CrossRef]
  • 3. Lee, H., Dellatore, S.M., Miller, W.M., Messersmith, P.B. (2007). Mussel-inspired surface chemistry for multifunctional coatings. Science, 318(5849), 426-430. [CrossRef]
  • 4. Li, H., Yin, D., Li, W., Tang, Q., Zou, L., Peng, Q. (2021). Polydopamine-based nanomaterials and their potentials in advanced drug delivery and therapy. Colloids and Surfaces B: Biointerfaces, 199, 111502. [CrossRef]
  • 5. Jin, A., Wang, Y., Lin, K., Jiang, L. (2020). Nanoparticles modified by polydopamine: Working as “drug” carriers. Bioactive Materials, 5(3), 522-541. [CrossRef]
  • 6. Hong, S., Na, Y.S., Choi, S., Song, I.T., Kim, W.Y., Lee, H. (2012). Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Advanced Functional Materials, 22(22), 4711-4717. [CrossRef]
  • 7. Yu, F., Chen, S., Chen, Y., Li, H., Yang, L., Chen, Y., Yin, Y. (2010). Experimental and theoretical analysis of polymerization reaction process on the polydopamine membranes and its corrosion protection properties for 304 Stainless Steel. Journal of Molecular Structure, 982(1-3), 152-161. [CrossRef]
  • 8. Chinchulkar, S.A., Patra, P., Dehariya, D., Yu, A., Rengan, A.K. (2022). Polydopamine nanocomposites and their biomedical applications: A review. Polymers for Advanced Technologies, 33(12), 3935-3956. [CrossRef]
  • 9. Batul, R., Tamanna, T., Khaliq, A., Yu, A. (2017). Recent progress in the biomedical applications of polydopamine nanostructures. Biomaterials Science, 5(7), 1204-1229. [CrossRef]
  • 10. Liebscher, J., Mrówczyński, R., Scheidt, H.A., Filip, C., Hădade, N.D., Turcu, R., Bende, A., Beck, S. (2013). Structure of polydopamine: A never-ending story?. Langmuir, 29(33), 10539-10548. [CrossRef]
  • 11. Dreyer, D.R., Miller, D.J., Freeman, B.D., Paul, D.R., Bielawski, C.W. (2012). Elucidating the structure of poly (dopamine). Langmuir, 28(15), 6428-6435. [CrossRef]
  • 12. Ding, Y.H., Floren, M., Tan, W. (2016). Mussel-inspired polydopamine for bio-surface functionalization. Biosurface and Biotribology, 2(4), 121-136. [CrossRef]
  • 13. Delparastan, P., Malollari, K.G., Lee, H., Messersmith, P.B. (2019). Direct evidence for the polymeric nature of polydopamine. Angewandte Chemie International Edition, 58(4), 1077-1082. [CrossRef]
  • 14. Singh, I., Dhawan, G., Gupta, S., Kumar, P. (2021). Recent advances in a polydopamine-mediated antimicrobial adhesion system. Frontiers in Microbiology, 11, 607099. [CrossRef]
  • 15. Liu, Y., Ai, K., Lu, L. (2014). Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chemical Reviews, 114(9), 5057-5115. [CrossRef]
  • 16. Zhao, X., Zhao, J., Lin, Z.Y.W., Pan, G., Zhu, Y., Cheng, Y., Cui, W. (2015). Self-coated interfacial layer at organic/inorganic phase for temporally controlling dual-drug delivery from electrospun fibers. Colloids and Surfaces B: Biointerfaces, 130(1), 1-9. [CrossRef]
  • 17. Lu, J., Cai, L., Dai, Y., Liu, Y., Zuo, F., Ni, C., Shi, M., Li, J. (2021). Polydopamine‐based nanoparticles for photothermal therapy/chemotherapy and their synergistic therapy with autophagy inhibitor to promote antitumor treatment. The Chemical Record, 21(4), 781-796. [CrossRef]
  • 18. Mrówczyński, R., Jurga-Stopa, J., Markiewicz, R., Coy, E.L., Jurga, S., Woźniak, A. (2016). Assessment of polydopamine coated magnetic nanoparticles in doxorubicin delivery. Royal Society of Chemistry Advances, 6(7), 5936-5943. [CrossRef]
  • 19. Xue, P., Sun, L., Li, Q., Zhang, L., Guo, J., Xu, Z., Kang, Y. (2017). PEGylated polydopamine-coated magnetic nanoparticles for combined targeted chemotherapy and photothermal ablation of tumour cells. Colloids and Surfaces B: Biointerfaces, 160, 11-21. [CrossRef]
  • 20. Black, K.C., Yi, J., Rivera, J.G., Zelasko-Leon, D.C., Messersmith, P.B. (2012). Polydopamine-enabled surface functionalization of gold nanorods for cancer cell-targeted imaging and photothermal therapy. Nanomedicine, 8(1), 17-28. [CrossRef]
  • 21. Chaturvedi, M., Patel, M., Bisht, N., Shruti-Das Mukherjee, M., Tiwari, A., Mondal, D.P., Srivastava, A.K., Dwivedi, N., Dhand, C. (2023). Reduced graphene oxide-polydopamine-gold nanoparticles: A ternary nanocomposite-based electrochemical genosensor for rapid and early Mycobacterium tuberculosis detection. Biosensors, 13(3), 342. [CrossRef]
  • 22. Li, W., Cao, Z., Yu, L., Huang, Q., Zhu, D., Lu, C., Lu, A., Liu, Y. (2021). Hierarchical drug release designed Au@ PDA-PEG-MTX NPs for targeted delivery to breast cancer with combined photothermal-chemotherapy. Journal of Nanobiotechnology, 19(1), 1-15. [CrossRef]
  • 23. Chiozzi, V., Rossi, F. (2020). Inorganic-organic core/shell nanoparticles: Progress and applications. Nanoscale Advances, 2(11), 5090-5105. [CrossRef]
  • 24. Duo, Y., Li, Y., Chen, C., Liu, B., Wang, X., Zeng, X., Chen, H. (2017). DOX-loaded pH-sensitive mesoporous silica nanoparticles coated with PDA and PEG induce pro-death autophagy in breast cancer. Royal Society of Chemistry Advances, 7(63), 39641-39650. [CrossRef]
  • 25. Kim, S.M., Patel, M., Patel, R. (2021). PLGA core-shell nano/microparticle delivery system for biomedical application. Polymers, 13(20), 3471. [CrossRef]
  • 26. Zhou, J., Wang, P., Wang, C., Goh, Y.T., Fang, Z., Messersmith, P.B., Duan, H. (2015). Versatile core-shell nanoparticle@ metal-organic framework nanohybrids: Exploiting mussel-inspired polydopamine for tailored structural integration. American Chemistry Society Nano, 9(7), 6951-6960. [CrossRef]
  • 27. Tran, H.Q., Batul, R., Bhave, M., Yu, A. (2019). Current advances in the utilization of polydopamine nanostructures in biomedical therapy. Biotechnology Journal, 14(12), 1900080. [CrossRef]
  • 28. Black, K.C., Sileika, T.S., Yi, J., Zhang, R., Rivera, J.G., Messersmith, P.B. (2014). Bacterial killing by light‐triggered release of silver from biomimetic metal nanorods. Small, 10(1), 169-178. [CrossRef]
  • 29. Chen, C., Tang, W., Jiang, D., Yang, G., Wang, X., Zhou, L., Zhang, W., Wang, P. (2019). Hyaluronic acid conjugated polydopamine functionalized mesoporous silica nanoparticles for synergistic targeted chemo-photothermal therapy. Nanoscale, 11(22), 11012-11024. [CrossRef]
  • 30. Hou, J., Guo, C., Shi, Y., Liu, E., Dong, W., Yu, B., Liu, S., Gong, J. (2017). A novel high drug loading mussel-inspired polydopamine hybrid nanoparticle as a pH-sensitive vehicle for drug delivery. International Journal of Pharmaceutics, 533(1), 73-83. [CrossRef]
  • 31. Mandriota, G., Di Corato, R., Benedetti, M., De Castro, F., Fanizzi, F.P., Rinaldi, R. (2018). Design and application of cisplatin-loaded magnetic nanoparticle clusters for smart chemotherapy. American Chemical Society Applied Materials & Interfaces, 11(2), 1864-1875. [CrossRef]
  • 32. Heris, N.N., Baghani, L., Khonsari, F., Varshochian, R., Dinarvand, R., Atyabi, F. (2023). Delivery of EGFR-siRNA to prostatic cancerous cells based on polydopamine coated gold nanoparticles. Journal of Drug Delivery Science and Technology, 87, 104869. [CrossRef]
  • 33. Mu, X., Zhang, F., Kong, C., Zhang, H., Zhang, W., Ge, R., Liu, Y., Jiang, J. (2017). EGFR-targeted delivery of DOX-loaded Fe3O4@ polydopamine multifunctional nanocomposites for MRI and antitumor chemo-photothermal therapy. International Journal of Nanomedicine, 12, 2899-2911. [CrossRef]
  • 34. Sezgin, S.N. (2022). Yüksek Lisans Tezi. Polidopamin Bazlı Teranöstik Taşıyıcıların Geliştirilmesi. Kimya Mühendisliği Anabilim Dalı, Mühendislik Fakültesi, Hacettepe Üniversitesi, Ankara, Türkiye.
  • 35. Singh, I., Priyam, A., Jha, D., Dhawan, G., Gautam, H.K., Kumar, P. (2020). Polydopamine-aminoglycoside nanoconjugates: Synthesis, characterization, antimicrobial evaluation and cytocompatibility. Materials Science and Engineering: C, 107, 110284. [CrossRef]
  • 36. Taşdemir, D. (2020). Yüksek Lisans Tezi. Hedefli fototermal ve fotodinamik terapi: DNA aptamer fonksiyonlaşırılmış indosiyanin yeşili katkılı polidopaminin sentezlenmesi ve metisilin dirençli Staphylococcus aureus’un yok edilmesi için kullanımı. Analitik Kimya Anabilim Dalı, Eczacılık Fakültesi, Erciyes Üniversitesi, Kayseri, Türkiye.
  • 37. Hu, D., Zou, L., Li, B., Hu, M., Ye, W., Ji, J. (2019). Photothermal killing of methicillin-resistant Staphylococcus aureus by bacteria-targeted polydopamine nanoparticles with nano-localized hyperpyrexia. American Chemical Society Biomaterials Science & Engineering, 5(10), 5169-5179. [CrossRef]
  • 38. Zhang, M., Huang, Y., Pan, W., Tong, X., Zeng, Q., Su, T., Qi, X., Shen, J. (2021). Polydopamine-incorporated dextran hydrogel drug carrier with tailorable structure for wound healing. Carbohydrate Polymers, 253, 117213. [CrossRef]
  • 39. Lim, K., Chua, R.R.Y., Ho, B., Tambyah, P.A., Hadinoto, K., Leong, S.S.J. (2015). Development of a catheter functionalized by a polydopamine peptide coating with antimicrobial and antibiofilm properties. Acta Biomaterialia, 15, 127-138. [CrossRef]
  • 40. Wang, L., Wang, Z., Pan, Y., Chen, S., Fan, X., Li, X., Chen, G., Ma, Y., Cai, Y., Zhang, J., Yang, H., Xiao, W., Yu, M. (2022). Polycatechol-derived mesoporous polydopamine nanoparticles for combined ROS scavenging and gene interference therapy in inflammatory bowel disease. American Chemical Society Applied Materials & Interfaces, 14(17), 19975-19987. [CrossRef]
  • 41. Hu, J., Yang, L., Yang, P., Jiang, S., Liu, X., Li, Y. (2020). Polydopamine free radical scavengers. Biomaterials Science, 8(18), 4940-4950. [CrossRef]
  • 42. Bao, X., Zhao, J., Sun, J., Hu, M., Yang, X. (2018). Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease. American Chemical Society Nano, 12(9), 8882-8892. [CrossRef]
  • 43. Oroujeni, M., Kaboudin, B., Xia, W., Jönsson, P., Ossipov, D.A. (2018). Conjugation of cyclodextrin to magnetic Fe3O4 nanoparticles via polydopamine coating for drug delivery. Progress in Organic Coatings, 114, 154-161. [CrossRef]
  • 44. Acter, S., Moreau, M., Ivkov, R., Viswanathan, A., Ngwa, W. (2023). Polydopamine nanomaterials for overcoming current challenges in cancer treatment. Nanomaterials, 13(10), 1656. [CrossRef]
  • 45. Du, Z., Ma, R., Chen, S., Fan, H., Heng, Y., Yan, T., Alimu, G., Zhu, L., Zhan, X., Alifu, N., Ma, C. (2022). A highly efficient polydopamine encapsulated clinical ICG theranostic nanoplatform for enhanced photothermal therapy of cervical cancer. Nanoscale Advances, 4(18), 4016-4024. [CrossRef]
  • 46. Wang, L., Liu, S., Ren, C., Xiang, S., Li, D., Hao, X., Ni, S., Chen, Y., Zhang, K., Sun, H. (2021). Construction of hollow polydopamine nanoparticle based drug sustainable release system and its application in bone regeneration. International Journal of Oral Science, 13(1), 27. [CrossRef]
  • 47. Wang, H., Lin, C., Zhang, X., Lin, K., Wang, X., Shen, S.G. (2019). Mussel-inspired polydopamine coating: A general strategy to enhance osteogenic differentiation and osseointegration for diverse implants. American Chemical Society Applied Materials and Interfaces, 11(7), 7615-7625. [CrossRef]
  • 48. Liu, S., Zheng, Z., Wang, S., Chen, S., Ma, J., Liu, G., Wang, B., Li, J. (2019). Polydopamine-coated chitosan/calcium pyrophosphate hybrid microflowers as an effective hemostatic agent. Carbohydrate Polymers, 224, 115175. [CrossRef]
  • 49. Sy, K.H.S., Ho, L.W.C., Lau, W.C.Y., Ko, H., Choi, C.H.J. (2018). Morphological diversity, protein adsorption, and cellular uptake of polydopamine-coated gold nanoparticles. Langmuir, 34(46), 14033-14045. [CrossRef]
  • 50. Lu, J., Cai, L., Dai, Y., Liu, Y., Zuo, F., Ni, C., Shi, M., Li, J. (2021). Polydopamine‐based nanoparticles for photothermal therapy/chemotherapy and their synergistic therapy with autophagy inhibitor to promote antitumor treatment. The Chemical Record, 21(4), 781-796. [CrossRef]
  • 51. Ho, C.C., Ding, S.J. (2014). Structure, properties and applications of mussel-inspired polydopamine. Journal of Biomedical Nanotechnology, 10(10), 3063-3084. [CrossRef]
  • 52. Xiong, Y., Xu, Z., Li, Z. (2019). Polydopamine-based nanocarriers for photosensitizer delivery. Frontiers in Chemistry, 7, 471. [CrossRef]
  • 53. Brubaker, C.E., Kissler, H., Wang, L.J., Kaufman, D.B., Messersmith, P.B. (2010). Biological performance of mussel-inspired adhesive in extrahepatic islet transplantation. Biomaterials, 31(3), 420-427. [CrossRef]
  • 54. Hong, S., Kim, K.Y., Wook, H.J., Park, S.Y., Lee, K.D., Lee, D.Y., Lee, H. (2011). Attenuation of the in vivo toxicity of biomaterials by polydopamine surface modification. Nanomedicine, 6(5), 793-801. [CrossRef]
  • 55. Liu, X., Cao, J., Li, H., Li, J., Jin, Q., Ren, K., Ji, J. (2013). Mussel-inspired polydopamine: A biocompatible and ultrastable coating for nanoparticles in vivo. ACS Nano, 7(10), 9384-9395. [CrossRef]
  • 56. Nieto, C., Vega, M.A., Enrique, J., Marcelo, G., Martin del Valle, E.M. (2019). Size matters in the cytotoxicity of polydopamine nanoparticles in different types of tumors. Cancers, 11(11), 1679. [CrossRef]
  • 57. He, X., Obeng, E., Sun, X., Kwon, N., Shen, J., Yoon, J. (2022). Polydopamine, harness of the antibacterial potentials-A review. Materials Today Bio, 15, 100329. [CrossRef]
  • 58. Kim, W.J., Kim, J., Lee, H., Hong, S. (2017). Method of preparing coating film containing nitrogen monoxide on surface of material using catecholamine. US9623156B2.
  • 59. Jianhui, L., Shuhan, W., Long, X., Yue, W. (2023). Polydopamine nanoparticle solution for lymph node tracing and preparation method and application thereof. CN115554422A.
  • 60. Liangke, Z., Huan, C. (2022). Drug-loaded hyaluronic acid polydopamine-coated mesoporous polydopamine nanoparticle and preparation method thereof. CN111110652B.
  • 61. Hailing, Z., Xigang, L., Xiaoli, W., Ning, W., Ying, Y. (2023). Tumor antigen-loaded polydopamine nanoparticle and preparation method and application thereof. CN111346236B.
  • 62. Chen, W., Jiang, M., Yu, W., Xu, Z., Liu, X., Jia, Q., Guan, X., Zhang, W. (2021). CpG-based nanovaccines for cancer immunotherapy. International Journal of Nanomedicine, 16, 5281-5299. [CrossRef]
  • 63. Xiujun, C., Dong, C., Xiang, L., Junjie, X. (2021). Composite Fiber with pH and near-infrared light response drug release and preparation method and application thereof. CN111375060B.

UTILIZATION OF POLYDOPAMINE-BASED NANOSYSTEMS AS DRUG DELIVERY SYSTEMS AND THEIR THERAPEUTIC POTENTIALS

Yıl 2025, Cilt: 49 Sayı: 1, 155 - 170, 20.01.2025
https://doi.org/10.33483/jfpau.1464247

Öz

Objective: Polydopamine (PDA) is the end product of the auto-oxidation and polymerization process of dopamine monomers. PDA has demonstrated significant potential in biomedical fields, particularly due to its photothermal conversion ability, drug binding capacity, versatile adhesion and bioadhesion capabilities, sensitivity to pH changes, and high biocompatibility. Moreover, its superior features have made PDA-based nanoparticles promising for drug delivery systems and treatments. In this review, a comprehensive evaluation of the potential roles of PDA, polymerization mechanisms, and PDA-based nanosystems in the diagnosis and treatment of various diseases is aimed, with a specific emphasis on highlighting the role of PDA in the medical and pharmaceutical fields.
Results and Discussion: In literature research, PDA-based nanosystems have been recognized as promising systems for diagnosis and treatment in various fields due to their superior properties. Studies on topics such as particle size, stability, drug release optimization, biodistribution and long-term toxicity analysis of PDA nanoparticles are increasing day by day. It is believed that with the clarification of unresolved and understanding of PDA metabolism and biodegradation mechanisms, these systems can effectively contribute to diagnosis and treatment.

Kaynakça

  • 1. Phan, H.T., Haes, A.J. (2019). What does nanoparticle stability mean. The Journal of Physical Chemistry C, 123(27), 16495-16507. [CrossRef]
  • 2. Rosli, N.A., Teow, Y.H., Mahmoudi, E. (2021). Current approaches for the exploration of antimicrobial activities of nanoparticles. Science and Technology of Advanced Materials, 22(1), 885-907. [CrossRef]
  • 3. Lee, H., Dellatore, S.M., Miller, W.M., Messersmith, P.B. (2007). Mussel-inspired surface chemistry for multifunctional coatings. Science, 318(5849), 426-430. [CrossRef]
  • 4. Li, H., Yin, D., Li, W., Tang, Q., Zou, L., Peng, Q. (2021). Polydopamine-based nanomaterials and their potentials in advanced drug delivery and therapy. Colloids and Surfaces B: Biointerfaces, 199, 111502. [CrossRef]
  • 5. Jin, A., Wang, Y., Lin, K., Jiang, L. (2020). Nanoparticles modified by polydopamine: Working as “drug” carriers. Bioactive Materials, 5(3), 522-541. [CrossRef]
  • 6. Hong, S., Na, Y.S., Choi, S., Song, I.T., Kim, W.Y., Lee, H. (2012). Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Advanced Functional Materials, 22(22), 4711-4717. [CrossRef]
  • 7. Yu, F., Chen, S., Chen, Y., Li, H., Yang, L., Chen, Y., Yin, Y. (2010). Experimental and theoretical analysis of polymerization reaction process on the polydopamine membranes and its corrosion protection properties for 304 Stainless Steel. Journal of Molecular Structure, 982(1-3), 152-161. [CrossRef]
  • 8. Chinchulkar, S.A., Patra, P., Dehariya, D., Yu, A., Rengan, A.K. (2022). Polydopamine nanocomposites and their biomedical applications: A review. Polymers for Advanced Technologies, 33(12), 3935-3956. [CrossRef]
  • 9. Batul, R., Tamanna, T., Khaliq, A., Yu, A. (2017). Recent progress in the biomedical applications of polydopamine nanostructures. Biomaterials Science, 5(7), 1204-1229. [CrossRef]
  • 10. Liebscher, J., Mrówczyński, R., Scheidt, H.A., Filip, C., Hădade, N.D., Turcu, R., Bende, A., Beck, S. (2013). Structure of polydopamine: A never-ending story?. Langmuir, 29(33), 10539-10548. [CrossRef]
  • 11. Dreyer, D.R., Miller, D.J., Freeman, B.D., Paul, D.R., Bielawski, C.W. (2012). Elucidating the structure of poly (dopamine). Langmuir, 28(15), 6428-6435. [CrossRef]
  • 12. Ding, Y.H., Floren, M., Tan, W. (2016). Mussel-inspired polydopamine for bio-surface functionalization. Biosurface and Biotribology, 2(4), 121-136. [CrossRef]
  • 13. Delparastan, P., Malollari, K.G., Lee, H., Messersmith, P.B. (2019). Direct evidence for the polymeric nature of polydopamine. Angewandte Chemie International Edition, 58(4), 1077-1082. [CrossRef]
  • 14. Singh, I., Dhawan, G., Gupta, S., Kumar, P. (2021). Recent advances in a polydopamine-mediated antimicrobial adhesion system. Frontiers in Microbiology, 11, 607099. [CrossRef]
  • 15. Liu, Y., Ai, K., Lu, L. (2014). Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chemical Reviews, 114(9), 5057-5115. [CrossRef]
  • 16. Zhao, X., Zhao, J., Lin, Z.Y.W., Pan, G., Zhu, Y., Cheng, Y., Cui, W. (2015). Self-coated interfacial layer at organic/inorganic phase for temporally controlling dual-drug delivery from electrospun fibers. Colloids and Surfaces B: Biointerfaces, 130(1), 1-9. [CrossRef]
  • 17. Lu, J., Cai, L., Dai, Y., Liu, Y., Zuo, F., Ni, C., Shi, M., Li, J. (2021). Polydopamine‐based nanoparticles for photothermal therapy/chemotherapy and their synergistic therapy with autophagy inhibitor to promote antitumor treatment. The Chemical Record, 21(4), 781-796. [CrossRef]
  • 18. Mrówczyński, R., Jurga-Stopa, J., Markiewicz, R., Coy, E.L., Jurga, S., Woźniak, A. (2016). Assessment of polydopamine coated magnetic nanoparticles in doxorubicin delivery. Royal Society of Chemistry Advances, 6(7), 5936-5943. [CrossRef]
  • 19. Xue, P., Sun, L., Li, Q., Zhang, L., Guo, J., Xu, Z., Kang, Y. (2017). PEGylated polydopamine-coated magnetic nanoparticles for combined targeted chemotherapy and photothermal ablation of tumour cells. Colloids and Surfaces B: Biointerfaces, 160, 11-21. [CrossRef]
  • 20. Black, K.C., Yi, J., Rivera, J.G., Zelasko-Leon, D.C., Messersmith, P.B. (2012). Polydopamine-enabled surface functionalization of gold nanorods for cancer cell-targeted imaging and photothermal therapy. Nanomedicine, 8(1), 17-28. [CrossRef]
  • 21. Chaturvedi, M., Patel, M., Bisht, N., Shruti-Das Mukherjee, M., Tiwari, A., Mondal, D.P., Srivastava, A.K., Dwivedi, N., Dhand, C. (2023). Reduced graphene oxide-polydopamine-gold nanoparticles: A ternary nanocomposite-based electrochemical genosensor for rapid and early Mycobacterium tuberculosis detection. Biosensors, 13(3), 342. [CrossRef]
  • 22. Li, W., Cao, Z., Yu, L., Huang, Q., Zhu, D., Lu, C., Lu, A., Liu, Y. (2021). Hierarchical drug release designed Au@ PDA-PEG-MTX NPs for targeted delivery to breast cancer with combined photothermal-chemotherapy. Journal of Nanobiotechnology, 19(1), 1-15. [CrossRef]
  • 23. Chiozzi, V., Rossi, F. (2020). Inorganic-organic core/shell nanoparticles: Progress and applications. Nanoscale Advances, 2(11), 5090-5105. [CrossRef]
  • 24. Duo, Y., Li, Y., Chen, C., Liu, B., Wang, X., Zeng, X., Chen, H. (2017). DOX-loaded pH-sensitive mesoporous silica nanoparticles coated with PDA and PEG induce pro-death autophagy in breast cancer. Royal Society of Chemistry Advances, 7(63), 39641-39650. [CrossRef]
  • 25. Kim, S.M., Patel, M., Patel, R. (2021). PLGA core-shell nano/microparticle delivery system for biomedical application. Polymers, 13(20), 3471. [CrossRef]
  • 26. Zhou, J., Wang, P., Wang, C., Goh, Y.T., Fang, Z., Messersmith, P.B., Duan, H. (2015). Versatile core-shell nanoparticle@ metal-organic framework nanohybrids: Exploiting mussel-inspired polydopamine for tailored structural integration. American Chemistry Society Nano, 9(7), 6951-6960. [CrossRef]
  • 27. Tran, H.Q., Batul, R., Bhave, M., Yu, A. (2019). Current advances in the utilization of polydopamine nanostructures in biomedical therapy. Biotechnology Journal, 14(12), 1900080. [CrossRef]
  • 28. Black, K.C., Sileika, T.S., Yi, J., Zhang, R., Rivera, J.G., Messersmith, P.B. (2014). Bacterial killing by light‐triggered release of silver from biomimetic metal nanorods. Small, 10(1), 169-178. [CrossRef]
  • 29. Chen, C., Tang, W., Jiang, D., Yang, G., Wang, X., Zhou, L., Zhang, W., Wang, P. (2019). Hyaluronic acid conjugated polydopamine functionalized mesoporous silica nanoparticles for synergistic targeted chemo-photothermal therapy. Nanoscale, 11(22), 11012-11024. [CrossRef]
  • 30. Hou, J., Guo, C., Shi, Y., Liu, E., Dong, W., Yu, B., Liu, S., Gong, J. (2017). A novel high drug loading mussel-inspired polydopamine hybrid nanoparticle as a pH-sensitive vehicle for drug delivery. International Journal of Pharmaceutics, 533(1), 73-83. [CrossRef]
  • 31. Mandriota, G., Di Corato, R., Benedetti, M., De Castro, F., Fanizzi, F.P., Rinaldi, R. (2018). Design and application of cisplatin-loaded magnetic nanoparticle clusters for smart chemotherapy. American Chemical Society Applied Materials & Interfaces, 11(2), 1864-1875. [CrossRef]
  • 32. Heris, N.N., Baghani, L., Khonsari, F., Varshochian, R., Dinarvand, R., Atyabi, F. (2023). Delivery of EGFR-siRNA to prostatic cancerous cells based on polydopamine coated gold nanoparticles. Journal of Drug Delivery Science and Technology, 87, 104869. [CrossRef]
  • 33. Mu, X., Zhang, F., Kong, C., Zhang, H., Zhang, W., Ge, R., Liu, Y., Jiang, J. (2017). EGFR-targeted delivery of DOX-loaded Fe3O4@ polydopamine multifunctional nanocomposites for MRI and antitumor chemo-photothermal therapy. International Journal of Nanomedicine, 12, 2899-2911. [CrossRef]
  • 34. Sezgin, S.N. (2022). Yüksek Lisans Tezi. Polidopamin Bazlı Teranöstik Taşıyıcıların Geliştirilmesi. Kimya Mühendisliği Anabilim Dalı, Mühendislik Fakültesi, Hacettepe Üniversitesi, Ankara, Türkiye.
  • 35. Singh, I., Priyam, A., Jha, D., Dhawan, G., Gautam, H.K., Kumar, P. (2020). Polydopamine-aminoglycoside nanoconjugates: Synthesis, characterization, antimicrobial evaluation and cytocompatibility. Materials Science and Engineering: C, 107, 110284. [CrossRef]
  • 36. Taşdemir, D. (2020). Yüksek Lisans Tezi. Hedefli fototermal ve fotodinamik terapi: DNA aptamer fonksiyonlaşırılmış indosiyanin yeşili katkılı polidopaminin sentezlenmesi ve metisilin dirençli Staphylococcus aureus’un yok edilmesi için kullanımı. Analitik Kimya Anabilim Dalı, Eczacılık Fakültesi, Erciyes Üniversitesi, Kayseri, Türkiye.
  • 37. Hu, D., Zou, L., Li, B., Hu, M., Ye, W., Ji, J. (2019). Photothermal killing of methicillin-resistant Staphylococcus aureus by bacteria-targeted polydopamine nanoparticles with nano-localized hyperpyrexia. American Chemical Society Biomaterials Science & Engineering, 5(10), 5169-5179. [CrossRef]
  • 38. Zhang, M., Huang, Y., Pan, W., Tong, X., Zeng, Q., Su, T., Qi, X., Shen, J. (2021). Polydopamine-incorporated dextran hydrogel drug carrier with tailorable structure for wound healing. Carbohydrate Polymers, 253, 117213. [CrossRef]
  • 39. Lim, K., Chua, R.R.Y., Ho, B., Tambyah, P.A., Hadinoto, K., Leong, S.S.J. (2015). Development of a catheter functionalized by a polydopamine peptide coating with antimicrobial and antibiofilm properties. Acta Biomaterialia, 15, 127-138. [CrossRef]
  • 40. Wang, L., Wang, Z., Pan, Y., Chen, S., Fan, X., Li, X., Chen, G., Ma, Y., Cai, Y., Zhang, J., Yang, H., Xiao, W., Yu, M. (2022). Polycatechol-derived mesoporous polydopamine nanoparticles for combined ROS scavenging and gene interference therapy in inflammatory bowel disease. American Chemical Society Applied Materials & Interfaces, 14(17), 19975-19987. [CrossRef]
  • 41. Hu, J., Yang, L., Yang, P., Jiang, S., Liu, X., Li, Y. (2020). Polydopamine free radical scavengers. Biomaterials Science, 8(18), 4940-4950. [CrossRef]
  • 42. Bao, X., Zhao, J., Sun, J., Hu, M., Yang, X. (2018). Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease. American Chemical Society Nano, 12(9), 8882-8892. [CrossRef]
  • 43. Oroujeni, M., Kaboudin, B., Xia, W., Jönsson, P., Ossipov, D.A. (2018). Conjugation of cyclodextrin to magnetic Fe3O4 nanoparticles via polydopamine coating for drug delivery. Progress in Organic Coatings, 114, 154-161. [CrossRef]
  • 44. Acter, S., Moreau, M., Ivkov, R., Viswanathan, A., Ngwa, W. (2023). Polydopamine nanomaterials for overcoming current challenges in cancer treatment. Nanomaterials, 13(10), 1656. [CrossRef]
  • 45. Du, Z., Ma, R., Chen, S., Fan, H., Heng, Y., Yan, T., Alimu, G., Zhu, L., Zhan, X., Alifu, N., Ma, C. (2022). A highly efficient polydopamine encapsulated clinical ICG theranostic nanoplatform for enhanced photothermal therapy of cervical cancer. Nanoscale Advances, 4(18), 4016-4024. [CrossRef]
  • 46. Wang, L., Liu, S., Ren, C., Xiang, S., Li, D., Hao, X., Ni, S., Chen, Y., Zhang, K., Sun, H. (2021). Construction of hollow polydopamine nanoparticle based drug sustainable release system and its application in bone regeneration. International Journal of Oral Science, 13(1), 27. [CrossRef]
  • 47. Wang, H., Lin, C., Zhang, X., Lin, K., Wang, X., Shen, S.G. (2019). Mussel-inspired polydopamine coating: A general strategy to enhance osteogenic differentiation and osseointegration for diverse implants. American Chemical Society Applied Materials and Interfaces, 11(7), 7615-7625. [CrossRef]
  • 48. Liu, S., Zheng, Z., Wang, S., Chen, S., Ma, J., Liu, G., Wang, B., Li, J. (2019). Polydopamine-coated chitosan/calcium pyrophosphate hybrid microflowers as an effective hemostatic agent. Carbohydrate Polymers, 224, 115175. [CrossRef]
  • 49. Sy, K.H.S., Ho, L.W.C., Lau, W.C.Y., Ko, H., Choi, C.H.J. (2018). Morphological diversity, protein adsorption, and cellular uptake of polydopamine-coated gold nanoparticles. Langmuir, 34(46), 14033-14045. [CrossRef]
  • 50. Lu, J., Cai, L., Dai, Y., Liu, Y., Zuo, F., Ni, C., Shi, M., Li, J. (2021). Polydopamine‐based nanoparticles for photothermal therapy/chemotherapy and their synergistic therapy with autophagy inhibitor to promote antitumor treatment. The Chemical Record, 21(4), 781-796. [CrossRef]
  • 51. Ho, C.C., Ding, S.J. (2014). Structure, properties and applications of mussel-inspired polydopamine. Journal of Biomedical Nanotechnology, 10(10), 3063-3084. [CrossRef]
  • 52. Xiong, Y., Xu, Z., Li, Z. (2019). Polydopamine-based nanocarriers for photosensitizer delivery. Frontiers in Chemistry, 7, 471. [CrossRef]
  • 53. Brubaker, C.E., Kissler, H., Wang, L.J., Kaufman, D.B., Messersmith, P.B. (2010). Biological performance of mussel-inspired adhesive in extrahepatic islet transplantation. Biomaterials, 31(3), 420-427. [CrossRef]
  • 54. Hong, S., Kim, K.Y., Wook, H.J., Park, S.Y., Lee, K.D., Lee, D.Y., Lee, H. (2011). Attenuation of the in vivo toxicity of biomaterials by polydopamine surface modification. Nanomedicine, 6(5), 793-801. [CrossRef]
  • 55. Liu, X., Cao, J., Li, H., Li, J., Jin, Q., Ren, K., Ji, J. (2013). Mussel-inspired polydopamine: A biocompatible and ultrastable coating for nanoparticles in vivo. ACS Nano, 7(10), 9384-9395. [CrossRef]
  • 56. Nieto, C., Vega, M.A., Enrique, J., Marcelo, G., Martin del Valle, E.M. (2019). Size matters in the cytotoxicity of polydopamine nanoparticles in different types of tumors. Cancers, 11(11), 1679. [CrossRef]
  • 57. He, X., Obeng, E., Sun, X., Kwon, N., Shen, J., Yoon, J. (2022). Polydopamine, harness of the antibacterial potentials-A review. Materials Today Bio, 15, 100329. [CrossRef]
  • 58. Kim, W.J., Kim, J., Lee, H., Hong, S. (2017). Method of preparing coating film containing nitrogen monoxide on surface of material using catecholamine. US9623156B2.
  • 59. Jianhui, L., Shuhan, W., Long, X., Yue, W. (2023). Polydopamine nanoparticle solution for lymph node tracing and preparation method and application thereof. CN115554422A.
  • 60. Liangke, Z., Huan, C. (2022). Drug-loaded hyaluronic acid polydopamine-coated mesoporous polydopamine nanoparticle and preparation method thereof. CN111110652B.
  • 61. Hailing, Z., Xigang, L., Xiaoli, W., Ning, W., Ying, Y. (2023). Tumor antigen-loaded polydopamine nanoparticle and preparation method and application thereof. CN111346236B.
  • 62. Chen, W., Jiang, M., Yu, W., Xu, Z., Liu, X., Jia, Q., Guan, X., Zhang, W. (2021). CpG-based nanovaccines for cancer immunotherapy. International Journal of Nanomedicine, 16, 5281-5299. [CrossRef]
  • 63. Xiujun, C., Dong, C., Xiang, L., Junjie, X. (2021). Composite Fiber with pH and near-infrared light response drug release and preparation method and application thereof. CN111375060B.
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Eczacılık Bilimleri, İlaç Dağıtım Teknolojileri
Bölüm Derleme
Yazarlar

Eda Turan Ayhan 0000-0002-1381-3196

Sibel İlbasmış Tamer 0000-0003-0361-7105

Erken Görünüm Tarihi 30 Aralık 2024
Yayımlanma Tarihi 20 Ocak 2025
Gönderilme Tarihi 4 Nisan 2024
Kabul Tarihi 26 Eylül 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 49 Sayı: 1

Kaynak Göster

APA Turan Ayhan, E., & İlbasmış Tamer, S. (2025). POLİDOPAMİN TEMELLİ NANOSİSTEMLERİN İLAÇ TAŞIYICI SİSTEM OLARAK KULLANILMA VE TEDAVİ POTANSİYELLERİ. Journal of Faculty of Pharmacy of Ankara University, 49(1), 155-170. https://doi.org/10.33483/jfpau.1464247
AMA Turan Ayhan E, İlbasmış Tamer S. POLİDOPAMİN TEMELLİ NANOSİSTEMLERİN İLAÇ TAŞIYICI SİSTEM OLARAK KULLANILMA VE TEDAVİ POTANSİYELLERİ. Ankara Ecz. Fak. Derg. Ocak 2025;49(1):155-170. doi:10.33483/jfpau.1464247
Chicago Turan Ayhan, Eda, ve Sibel İlbasmış Tamer. “POLİDOPAMİN TEMELLİ NANOSİSTEMLERİN İLAÇ TAŞIYICI SİSTEM OLARAK KULLANILMA VE TEDAVİ POTANSİYELLERİ”. Journal of Faculty of Pharmacy of Ankara University 49, sy. 1 (Ocak 2025): 155-70. https://doi.org/10.33483/jfpau.1464247.
EndNote Turan Ayhan E, İlbasmış Tamer S (01 Ocak 2025) POLİDOPAMİN TEMELLİ NANOSİSTEMLERİN İLAÇ TAŞIYICI SİSTEM OLARAK KULLANILMA VE TEDAVİ POTANSİYELLERİ. Journal of Faculty of Pharmacy of Ankara University 49 1 155–170.
IEEE E. Turan Ayhan ve S. İlbasmış Tamer, “POLİDOPAMİN TEMELLİ NANOSİSTEMLERİN İLAÇ TAŞIYICI SİSTEM OLARAK KULLANILMA VE TEDAVİ POTANSİYELLERİ”, Ankara Ecz. Fak. Derg., c. 49, sy. 1, ss. 155–170, 2025, doi: 10.33483/jfpau.1464247.
ISNAD Turan Ayhan, Eda - İlbasmış Tamer, Sibel. “POLİDOPAMİN TEMELLİ NANOSİSTEMLERİN İLAÇ TAŞIYICI SİSTEM OLARAK KULLANILMA VE TEDAVİ POTANSİYELLERİ”. Journal of Faculty of Pharmacy of Ankara University 49/1 (Ocak 2025), 155-170. https://doi.org/10.33483/jfpau.1464247.
JAMA Turan Ayhan E, İlbasmış Tamer S. POLİDOPAMİN TEMELLİ NANOSİSTEMLERİN İLAÇ TAŞIYICI SİSTEM OLARAK KULLANILMA VE TEDAVİ POTANSİYELLERİ. Ankara Ecz. Fak. Derg. 2025;49:155–170.
MLA Turan Ayhan, Eda ve Sibel İlbasmış Tamer. “POLİDOPAMİN TEMELLİ NANOSİSTEMLERİN İLAÇ TAŞIYICI SİSTEM OLARAK KULLANILMA VE TEDAVİ POTANSİYELLERİ”. Journal of Faculty of Pharmacy of Ankara University, c. 49, sy. 1, 2025, ss. 155-70, doi:10.33483/jfpau.1464247.
Vancouver Turan Ayhan E, İlbasmış Tamer S. POLİDOPAMİN TEMELLİ NANOSİSTEMLERİN İLAÇ TAŞIYICI SİSTEM OLARAK KULLANILMA VE TEDAVİ POTANSİYELLERİ. Ankara Ecz. Fak. Derg. 2025;49(1):155-70.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.