Araştırma Makalesi
BibTex RIS Kaynak Göster

IDENTIFICATION OF SIRTUIN-ACTIVATING BIOACTIVE FROM TARAXACUM OFFICINALE THROUGH VIRTUAL DISCOVERIES FOR ANTI-AGING AND STRESS RESISTANCE APPLICATIONS

Yıl 2025, Cilt: 49 Sayı: 3, 790 - 808, 19.09.2025
https://doi.org/10.33483/jfpau.1588979

Öz

Objective: This study aims to investigate the interactions between sirtuins, a class of NAD+-dependent deacetylases, and bioactive ligands derived from Taraxacum officinale, focusing on their potential to modulate pathways associated with aging and stress resistance.
Material and Method: A comprehensive dataset of ligands was compiled from Dr. Duke's Phytochemical and Ethnobotanical Databases, and assessed for ADMETox (absorption, distribution, metabolism, excretion, and toxicity) properties using SwissADME. For virtual screening, AutoDock Vina was employed to perform molecular docking between the active sites of Sirt1-7 enzymes and a library of 51 bioactive compounds from Taraxacum officinale. Finally, BIOVIA Discovery Studio 2024 was utilized for the visualization of protein-ligand interactions.
Result and Discussion: The observed protein-ligand interactions highlight the potential of Taraxacum officinale bioactive compounds to modulate sirtuins, which may lead to beneficial effects on metabolic health and cellular resilience. In particular, the compounds such as taraxerol, taraxasterol, and beta-amyrin, appear in top 10 highest having strong interaction to sirtuin protein (Sirt1-7), underscore the significance of Taraxacum officinale bioactive in therapeutic strategies aimed at targeting aging and stress-related conditions. This study serves as a valuable foundation for discovering novel therapeutic agents that target sirtuins to promote healthy aging and enhance stress resilience.

Kaynakça

  • 1. Tenchov, R., Sasso, J.M., Wang, X., Zhou, Q.A. (2024). Aging hallmarks and progression and age-related diseases: A landscape view of research advancement. ACS chemical Neuroscience, 15(1), 1-30. [CrossRef]
  • 2. Inci, N., Kamali, D., Akyildiz, E.O., Turanli, E.T., Bozaykut, P. (2022). Translation of cellular senescence to novel therapeutics: Insights from alternative tools and models. Frontiers in Aging, 3, 828058. [CrossRef]
  • 3. Sławińska, N., Krupa, R. (2021). Molecular aspects of senescence and organismal ageing-DNA damage response, telomeres, ınflammation and chromatin. International Journal of Molecular Sciences, 22(2), 590. [CrossRef]
  • 4. Hajam, Y.A., Rani, R., Ganie, S.Y., Sheikh, T.A., Javaid, D., Qadri, S.S., Pramodh, S., Alsulimani, A., Alkhanani, M.F., Harakeh, S., Hussain, A., Haque, S., Reshi, M.S. (2022). Oxidative stress in human pathology and aging: molecular mechanisms and perspectives. Cells, 11(3), 552. [CrossRef]
  • 5. Jiang, H., Ju, Z., Rudolph, K L. (2007). Telomere shortening and ageing. Zeitschrift Fur Gerontologie Und Geriatrie, 40(5), 314–324. [CrossRef]
  • 6. Somasundaram, I., Jain, S.M., Blot-Chabaud, M., Pathak, S., Banerjee, A., Rawat, S., Sharma, N., Duttaroy, A.K. (2024). Mitochondrial dysfunction and its association with age-related disorders. Frontiers in Physiology, 15. [CrossRef]
  • 7. Miwa, S., Kashyap, S., Chini, E., von Zglinicki, T. (2022). Mitochondrial dysfunction in cell senescence and aging. The Journal of Clinical Investigation, 132(13), e158447. [CrossRef]
  • 8. Yegorov, Y.E., Poznyak, A.V., Nikiforov, N.G., Sobenin, I.A., Orekhov, A.N. (2020). The link between chronic stress and accelerated aging. Biomedicines, 8(7), 198. [CrossRef]
  • 9. Dutta, N., Garcia, G., Higuchi-Sanabria, R. (2022). Hijacking cellular stress responses to promote lifespan. Frontiers in Aging, 3, 860404. [CrossRef]
  • 10. Maldonado, E., Morales-Pison, S., Urbina, F., Solari, A. (2023). Aging hallmarks and the role of oxidative stress. Antioxidants, 12(3), 651. [CrossRef]
  • 11. Li, Y., Tian, X., Luo, J., Bao, T., Wang, S., Wu, X. (2024). Molecular mechanisms of aging and anti-aging strategies. Cell Communication and Signaling, 22(1), 285. [CrossRef]
  • 12. Yang, Y., Liu, Y., Wang, Y., Chao, Y., Zhang, J., Jia, Y., Tie, J., Hu, D. (2022). Regulation of SIRT1 and ıts roles in ınflammation. Frontiers in Immunology, 13, 831168. [CrossRef]
  • 13. Xue, J., Hou, X., Fang, H. (2023). Structure, functions, and recent advances in the development of SIRT2 inhibitors. Pharmaceutical Science Advances, 1(2), 100010. [CrossRef]
  • 14. Trinh, D., Al Halabi, L., Brar, H., Kametani, M., Nash, J.E. (2024). The role of SIRT3 in homeostasis and cellular health. Frontiers in Cellular Neuroscience, 18, 1434459. [CrossRef]
  • 15. Wang, C., Liu, Y., Zhu, Y., Kong, C. (2020). Functions of mammalian SIRT4 in cellular metabolism and research progress in human cancer. Oncology Letters, 20(4), 11. [CrossRef]
  • 16. Xie, Y., Cai, N., Liu, X., He, L., Ma, Y., Yan, C., Liang, J., Ouyang, S.H., Luo, A., He, Y., Lu, J., Ao, D., Liu, J., Ye, Z., Liu, B., He, R.R., Li, W. (2025). SIRT5: A potential target for discovering bioactive natural products. Journal of Natural Medicines. [CrossRef]
  • 17. Korotkov, A., Seluanov, A., Gorbunova, V. (2021). Sirtuin 6: Linking longevity with genome and epigenome stability. Trends in Cell Biology, 31(12), 994-1006. [CrossRef]
  • 18. Iyer-Bierhoff, A., Krogh, N., Tessarz, P., Ruppert, T., Nielsen, H., Grummt, I. (2018). SIRT7-dependent deacetylation of fibrillarin controls histone H2A methylation and rRNA synthesis during the cell cycle. Cell Reports, 25(11), 2946-2954.e5. [CrossRef]
  • 19. Ji, Z., Liu, G.H., Qu, J. (2022). Mitochondrial sirtuins, metabolism, and aging. Journal of Genetics and Genomics, 49(4), 287-298. [CrossRef]
  • 20. Wu, Q.J., Zhang, T.N., Chen, H.H., Yu, X.F., Lv, J.L., Liu, Y.Y., Liu, Y.S., Zheng, G., Zhao, J.Q., Wei, Y.F., Guo, J.Y., Liu, F.H., Chang, Q., Zhang, Y.X., Liu, C.G., Zhao, Y.H. (2022). The sirtuin family in health and disease. Signal Transduction and Targeted Therapy, 7(1), 1-74. [CrossRef]
  • 21. Shen, H., Qi, X., Hu, Y., Wang, Y., Zhang, J., Liu, Z., Qin, Z. (2024). Targeting sirtuins for cancer therapy: Epigenetics modifications and beyond. Theranostics, 14(17), 6726-6767. [CrossRef]
  • 22. Fan, M., Zhang, X., Song, H., Zhang, Y. (2023). Dandelion (Taraxacum genus): A review of chemical constituents and pharmacological effects. Molecules, 28(13), 5022. [CrossRef]
  • 23. Olas, B. (2022). New perspectives on the effect of dandelion, ıts food products and other preparations on the cardiovascular system and ıts diseases. Nutrients, 14(7), 1350. [CrossRef]
  • 24. Bursch, K.L., Goetz, C.J., Smith, B.C. (2024). Current trends in sirtuin activator and inhibitor development. Molecules, 29(5), 1185. [CrossRef]
  • 25. Abbotto, E., Scarano, N., Piacente, F., Millo, E., Cichero, E., Bruzzone, S. (2022). Virtual screening in the ıdentification of sirtuins’ activity modulators. Molecules, 27(17), 5641. [CrossRef]
  • 26. Trott, O., Olson, A.J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461. [CrossRef]
  • 27. Duke, J.A. (2016). Dr. Duke’s phytochemical and ethnobotanical databases. U.S. Department of Agriculture. Ag Data Commons.
  • 28. Zhao, L., Cao, J., Hu, K., He, X., Yun, D., Tong, T., Han, L. (2020). Sirtuins and their biological relevance in aging and age-related diseases. Aging and Disease, 11(4), 927-945. [CrossRef]
  • 29. Zhao, X., Allison, D., Condon, B., Zhang, F., Gheyi, T., Zhang, A., Ashok, S., Russell, M., MacEwan, I., Qian, Y., Jamison, J.A., Luz, J.G. (2013). The 2.5 Å crystal structure of the SIRT1 catalytic domain bound to nicotinamide adenine dinucleotide (NAD+) and an ındole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition. Journal of Medicinal Chemistry, 56(3), 963-969. [CrossRef]
  • 30. Yang, J., Nicely, N.I., Weiser, B.P. (2023). Effects of dimerization on the deacylase activities of human SIRT2. Biochemistry, 62(23), 3383-3395. [CrossRef]
  • 31. Jin, L., Wei, W., Jiang, Y., Peng, H., Cai, J., Mao, C., Dai, H., Choy, W., Bemis, J.E., Jirousek, M.R., Milne, J.C., Westphal, C.H., Perni, R.B. (2009). Crystal structures of human SIRT3 displaying substrate-induced conformational changes. The Journal of Biological Chemistry, 284(36), 24394-24405. [CrossRef]
  • 32. Pannek, M., Simic, Z., Fuszard, M., Meleshin, M., Rotili, D., Mai, A., Schutkowski, M., Steegborn, C. (2017). Crystal structures of the mitochondrial deacylase Sirtuin 4 reveal isoform-specific acyl recognition and regulation features. Nature Communications, 8(1), 1513. [CrossRef]
  • 33. Schuetz, A., Min, J., Antoshenko, T., Wang, C.L., Allali-Hassani, A., Dong, A., Loppnau, P., Vedadi, M., Bochkarev, A., Sternglanz, R., Plotnikov, A.N. (2007). Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Structure, 15(3), 377-389. [CrossRef]
  • 34. Pan, P.W., Feldman, J.L., Devries, M.K., Dong, A., Edwards, A.M., Denu, J.M. (2011). Structure and biochemical functions of SIRT6. The Journal of Biological Chemistry, 286(16), 14575-14587. [CrossRef]
  • 35. Priyanka, A., Solanki, V., Parkesh, R., Thakur, K.G. (2016). Crystal structure of the N-terminal domain of human SIRT7 reveals a three-helical domain architecture. Proteins, 84(10), 1558-1563. [CrossRef]
  • 36. Zaki, K., Ouabane, M., Guendouzi, A., Sbai, A., Sekkate, C., Bouachrine, M., Lakhlifi, T. (2024). From farm to pharma: Investigation of the therapeutic potential of the dietary plants Apium graveolens L., Coriandrum sativum, and Mentha longifolia, as AhR modulators for Immunotherapy. Computers in Biology and Medicine, 181, 109051. [CrossRef]
  • 37. Jung, W., Goo, S., Hwang, T., Lee, H., Kim, Y.K., Chae, J., Yun, H., Jung, S. (2024). Absorption distribution metabolism excretion and toxicity property prediction utilizing a pre-trained natural language processing model and its applications in early-stage drug development. Pharmaceuticals, 17(3), 382. [CrossRef]
  • 38. Daina, A., Michielin, O., Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. [CrossRef]
  • 39. Dong, J., Wang, N.N., Yao, Z.J., Zhang, L., Cheng, Y., Ouyang, D., Lu, A.P., Cao, D.S. (2018). ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. Journal of Cheminformatics, 10(1), 29. [CrossRef]
  • 40. Lipinski, C.A. (2004). Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337-341. [CrossRef]
  • 41. Kralj, S., Jukič, M., Bren, U. (2023). Molecular filters in medicinal chemistry. Encyclopedia, 3(2), 501-511. [CrossRef]
  • 42. Pathania, S., Singh, P.K. (2021). Analyzing FDA-approved drugs for compliance of pharmacokinetic principles: should there be a critical screening parameter in drug designing protocols? Expert Opinion on Drug Metabolism Toxicology, 17(4), 351-354. [CrossRef]
  • 43. Badaoui, H., Ouabane, M., Alaqarbeh, M., Elbouhi, M., Choukrad, M., Lakhlifi, T., Bouachrine, M. (2025). The main chemical constituents responsible for the antidiabetic properties of the datura metel l plant. decryption and in-silico investigations. Physical Chemistry Research, 13(2), 241-254. [CrossRef]
  • 44. Ouabane, M., Tabti, K., Hajji, H., Elbouhi, M., Khaldan, A., Elkamel, K., Sbai, A., Ajana, A.M., Sekkate, C., Bouachrine, M., Lakhlifi, T. (2023). Structure-odor relationship in pyrazines and derivatives: A physicochemical study using 3D-QSPR, HQSPR, Monte Carlo, molecular docking, ADME-Tox and molecular dynamics. Arabian Journal of Chemistry, 16(11), 105207. [CrossRef]
  • 45. Dankwa, B., Broni, E., Enninful, K.S., Kwofie, S.K., Wilson, M.D. (2022). Consensus docking and MM-PBSA computations identify putative furin protease inhibitors for developing potential therapeutics against COVID-19. Structural Chemistry, 33(6), 2221-2241. [CrossRef]
  • 46. Daina, A., Zoete, V. (2016). A BOILED‐Egg to predict gastrointestinal absorption and brain penetration of small molecules. Chemmedchem, 11(11), 1117-1121. [CrossRef]
  • 47. Naanaai, L., Ouabane, M., El Aissouq, A., Guendouzi, A., Zaitan, H., Bouachrine, M., Khalil, F. (2025). Indole-pyridine carbonitriles as potential anti-diabetic agents: A computational study using 3D-QSAR, molecular docking, ADME-Tox and molecular dynamics simulations. Chemistry Africa. [CrossRef]
  • 48. Ouabane, M., Zaki, K., Tabti, K., Alaqarbeh, M., Sbai, A., Sekkate, C., Bouachrine, M., Lakhlifi, T. (2024). Molecular toxicity of nitrobenzene derivatives to tetrahymena pyriformis based on SMILES descriptors using Monte Carlo, docking, and MD simulations. Computers in Biology and Medicine, 169, 107880. [CrossRef]
  • 49. Czub, N., Szlęk, J., Pacławski, A., Klimończyk, K., Puccetti, M., Mendyk, A. (2023). Artificial intelligence-based quantitative structure–property relationship model for predicting human intestinal absorption of compounds with serotonergic activity. Molecular Pharmaceutics, 20(5), 2545-2555. [CrossRef]
  • 50. Sun, Y., Zabihi, M., Li, Q., Li, X., Kim, B.J., Ubogu, E.E., Raja, S.N., Wesselmann, U., Zhao, C. (2023). Drug permeability: From the blood-brain barrier to the peripheral nerve barriers. Advanced Therapeutics, 6(4), 2200150. [CrossRef]
  • 51. Quintás, G., Castell, J.V., Moreno-Torres, M. (2023). The assessment of the potential hepatotoxicity of new drugs by in vitro metabolomics. Frontiers in Pharmacology, 14, 1155271. [CrossRef]
  • 52. Crofton, K.M., Bassan, A., Behl, M., Chushak, Y.G., Fritsche, E., Gearhart, J.M., Marty, M. S., Mumtaz, M., Pavan, M., Ruiz, P., Sachana, M., Selvam, R., Shafer, T.J., Stavitskaya, L., Szabo, D.T., Szabo, S.T., Tice, R.R., Wilson, D., Woolley, D., Myatt, G.J. (2022). Current status and future directions for a neurotoxicity hazard assessment framework that integrates in silico approaches. Computational Toxicology, 22, 100223. [CrossRef]
  • 53. Khalak, Y., Tresadern, G., Aldeghi, M.M., Baumann, H.L. Mobley, D., Groot, B.L. de, Gapsys, V. (2021). Alchemical absolute protein–ligand binding free energies for drug design. Chemical Science, 12(41), 13958-13971. [CrossRef]
  • 54. Lambona, C., Zwergel, C., Valente, S., Mai, A. (2024). SIRT3 activation a promise in drug development? new insights into SIRT3 biology and its implications on the drug discovery process. Journal of Medicinal Chemistry, 67(3), 1662-1689. [CrossRef]
  • 55. Kane, A.E., Sinclair, D.A. (2018). Sirtuins and NAD+ in the development and treatment of metabolic and cardiovascular diseases. Circulation Research, 123(7), 868. [CrossRef]
  • 56. Zhang, M., Tang, Z. (2023). Therapeutic potential of natural molecules against Alzheimer’s disease via SIRT1 modulation. Biomedicine Pharmacotherapy, 161, 114474. [CrossRef]
  • 57. Ouabane, M., Dichane, Z., Alaqarbeh, M., Alnajjar, R., Sekkate, C., Lakhlifi, T., Bouachrine, M. (2025). The use of combined machine learning and in-silico molecular approaches for the study and the prediction of anti-HIV activity. Current Chemistry Letters, 14(1), 205-232. [CrossRef]
  • 58. Du, X., Li, Y., Xia, Y.L., Ai, S.M., Liang, J., Sang, P., Ji, X.L., Liu, S.Q. (2016). Insights into protein–ligand interactions: Mechanisms, models, and methods. International Journal of Molecular Sciences, 17(2), 144. [CrossRef]
  • 59. Kratz, E.M., Sołkiewicz, K., Kubis-Kubiak, A., Piwowar, A. (2021). Sirtuins as important factors in pathological states and the role of their molecular activity modulators. International Journal of Molecular Sciences, 22(2), 630. [CrossRef]
  • 60. Ziętara, P., Dziewięcka, M., Augustyniak, M. (2023). Why ıs longevity still a scientific mystery? Sirtuins-past, present and future. International Journal of Molecular Sciences, 24(1), 728. [CrossRef]
  • 61. Leite, J.A., Ghirotto, B., Targhetta, V.P., de Lima, J., Câmara, N.O.S. (2022). Sirtuins as pharmacological targets in neurodegenerative and neuropsychiatric disorders. British Journal of Pharmacology, 179(8), 1496-1511. [CrossRef]
  • 62. Yao, X., Li, G., Bai, Q., Xu, H., Lü, C. (2013). Taraxerol inhibits LPS-induced inflammatory responses through suppression of TAK1 and Akt activation. International Immunopharmacology, 15(2), 316-324. [CrossRef]
  • 63. Lu, J., Yi, S., Wang, S., Shang, Y., Yang, S., Cui, K. (2024). The effect of taraxerol acetate extracted from dandelion on alleviating oxidative stress responses in vitro. Free Radical Research, 58(12), 811-825. [CrossRef]
  • 64. Xie, J., Ou, Y., Fu, Q., Ye, Z., Chen, Y., Yang, Z., Lin, L., Wu, Q., Wu, D., Gan, R., Wang, J., Luo, Q., Zeng, K., Miao, H. (2024). Taraxasterol exhibits dual biological effects on anti-aging and anti-cancer in lung cells. American Journal of Cancer Research, 14(6), 2755-2769. [CrossRef]
  • 65. Movahhed, M., Pazhouhi, M., Ghaleh, H.E.G., Kondori, B.J. (2023). Anti-metastatic effect of taraxasterol on prostate cancer cell lines. Research in Pharmaceutical Sciences, 18(4), 439-448. [CrossRef]
  • 66. Vitor, C., Figueiredo, C., Hara, D., Bento, A., Mazzuco, T., Calixto, J. (2009). Therapeutic action and underlying mechanisms of a combination of two pentacyclic triterpenes, α- and β-amyrin, in a mouse model of colitis. British Journal of Pharmacology, 157(6), 1034-1044. [CrossRef]
  • 67. Thirupathi, A., Silveira, P., Nesi, R., Pinho, R. (2017). β-Amyrin, a pentacyclic triterpene, exhibits anti-fibrotic, anti-inflammatory, and anti-apoptotic effects on dimethyl nitrosamine–induced hepatic fibrosis in male rats. Human Experimental Toxicology, 36(2), 113-122. [CrossRef]
  • 68. Medoro, A., Jafar, T.H., Ali, S., Trung, T.T., Sorrenti, V., Intrieri, M., Scapagnini, G., Davinelli, S. (2023). In silico evaluation of geroprotective phytochemicals as potential sirtuin 1 interactors. Biomedicine Pharmacotherapy, 161, 114425. [CrossRef]
  • 69. Peluso, P., Chankvetadze, B. (2024). Recent developments in molecular modeling tools and applications related to pharmaceutical and biomedical research. Journal of Pharmaceutical and Biomedical Analysis, 238, 115836. [CrossRef]
  • 70. Jarmoskaite, I., AlSadhan, I., Vaidyanathan, P.P., Herschlag, D. (2020). How to measure and evaluate binding affinities. eLife, 9, e57264. [CrossRef]

TARAXACUM OFFICINALE'DEN SİRTUİN AKTİVE EDEN BİYOAKTİFİN ANTİ-YAŞLANMA VE STRES DİRENCİ UYGULAMALARI İÇİN SANAL KEŞİFLER YOLUYLA TANIMLANMASI

Yıl 2025, Cilt: 49 Sayı: 3, 790 - 808, 19.09.2025
https://doi.org/10.33483/jfpau.1588979

Öz

Amaç: Bu çalışma, NAD+-bağımlı deasetilazlar sınıfı olan sirtuinler ile Taraxacum officinale'den türetilen biyolojik aktif liganlar arasındaki etkileşimleri incelemeyi amaçlamaktadır. Çalışma, bu etkileşimlerin yaşlanma ve stres direnci ile ilişkili yolları modüle etme potansiyeline odaklanmaktadır.
Gereç ve Yöntem: Dr. Duke'un Fitokimyasal ve Etnobotanik Veritabanlarından bir ligan veri seti derlenmiş ve SwissADME kullanılarak ADMETox (emilim, dağılım, metabolizma, atılım ve toksisite) özellikleri açısından değerlendirilmiştir. Sanal tarama için, Sirt1-7 enzimlerinin aktif bölgeleri ile Taraxacum officinale'den elde edilen 51 biyolojik aktif bileşen kütüphanesi arasında moleküler yerleştirme yapmak üzere AutoDock Vina kullanılmıştır. Son olarak, protein-ligan etkileşimlerinin görselleştirilmesi için BIOVIA Discovery Studio 2024 kullanılmıştır.
Sonuç ve Tartışma: Gözlemlenen protein-ligand etkileşimleri, Taraxacum officinale biyoaktif bileşiklerinin sirtuinleri düzenleme potansiyelini vurgular ve bu da metabolik sağlık ve hücresel dayanıklılık üzerinde faydalı etkilere yol açabilir. Özellikle, taraxerol, taraxasterol ve beta-amirin gibi bileşikler, sirtuin proteini (Sirt1-7) ile güçlü etkileşime sahip en yüksek 10'da yer alır ve yaşlanma ve stresle ilişkili durumları hedeflemeyi amaçlayan terapötik stratejilerde Taraxacum officinale biyoaktifinin önemini vurgular. Bu çalışma, sağlıklı yaşlanmayı desteklemek ve stres dayanıklılığını artırmak için sirtuinleri hedefleyen yeni terapötik ajanları keşfetmek için değerli bir temel görevi görür.

Kaynakça

  • 1. Tenchov, R., Sasso, J.M., Wang, X., Zhou, Q.A. (2024). Aging hallmarks and progression and age-related diseases: A landscape view of research advancement. ACS chemical Neuroscience, 15(1), 1-30. [CrossRef]
  • 2. Inci, N., Kamali, D., Akyildiz, E.O., Turanli, E.T., Bozaykut, P. (2022). Translation of cellular senescence to novel therapeutics: Insights from alternative tools and models. Frontiers in Aging, 3, 828058. [CrossRef]
  • 3. Sławińska, N., Krupa, R. (2021). Molecular aspects of senescence and organismal ageing-DNA damage response, telomeres, ınflammation and chromatin. International Journal of Molecular Sciences, 22(2), 590. [CrossRef]
  • 4. Hajam, Y.A., Rani, R., Ganie, S.Y., Sheikh, T.A., Javaid, D., Qadri, S.S., Pramodh, S., Alsulimani, A., Alkhanani, M.F., Harakeh, S., Hussain, A., Haque, S., Reshi, M.S. (2022). Oxidative stress in human pathology and aging: molecular mechanisms and perspectives. Cells, 11(3), 552. [CrossRef]
  • 5. Jiang, H., Ju, Z., Rudolph, K L. (2007). Telomere shortening and ageing. Zeitschrift Fur Gerontologie Und Geriatrie, 40(5), 314–324. [CrossRef]
  • 6. Somasundaram, I., Jain, S.M., Blot-Chabaud, M., Pathak, S., Banerjee, A., Rawat, S., Sharma, N., Duttaroy, A.K. (2024). Mitochondrial dysfunction and its association with age-related disorders. Frontiers in Physiology, 15. [CrossRef]
  • 7. Miwa, S., Kashyap, S., Chini, E., von Zglinicki, T. (2022). Mitochondrial dysfunction in cell senescence and aging. The Journal of Clinical Investigation, 132(13), e158447. [CrossRef]
  • 8. Yegorov, Y.E., Poznyak, A.V., Nikiforov, N.G., Sobenin, I.A., Orekhov, A.N. (2020). The link between chronic stress and accelerated aging. Biomedicines, 8(7), 198. [CrossRef]
  • 9. Dutta, N., Garcia, G., Higuchi-Sanabria, R. (2022). Hijacking cellular stress responses to promote lifespan. Frontiers in Aging, 3, 860404. [CrossRef]
  • 10. Maldonado, E., Morales-Pison, S., Urbina, F., Solari, A. (2023). Aging hallmarks and the role of oxidative stress. Antioxidants, 12(3), 651. [CrossRef]
  • 11. Li, Y., Tian, X., Luo, J., Bao, T., Wang, S., Wu, X. (2024). Molecular mechanisms of aging and anti-aging strategies. Cell Communication and Signaling, 22(1), 285. [CrossRef]
  • 12. Yang, Y., Liu, Y., Wang, Y., Chao, Y., Zhang, J., Jia, Y., Tie, J., Hu, D. (2022). Regulation of SIRT1 and ıts roles in ınflammation. Frontiers in Immunology, 13, 831168. [CrossRef]
  • 13. Xue, J., Hou, X., Fang, H. (2023). Structure, functions, and recent advances in the development of SIRT2 inhibitors. Pharmaceutical Science Advances, 1(2), 100010. [CrossRef]
  • 14. Trinh, D., Al Halabi, L., Brar, H., Kametani, M., Nash, J.E. (2024). The role of SIRT3 in homeostasis and cellular health. Frontiers in Cellular Neuroscience, 18, 1434459. [CrossRef]
  • 15. Wang, C., Liu, Y., Zhu, Y., Kong, C. (2020). Functions of mammalian SIRT4 in cellular metabolism and research progress in human cancer. Oncology Letters, 20(4), 11. [CrossRef]
  • 16. Xie, Y., Cai, N., Liu, X., He, L., Ma, Y., Yan, C., Liang, J., Ouyang, S.H., Luo, A., He, Y., Lu, J., Ao, D., Liu, J., Ye, Z., Liu, B., He, R.R., Li, W. (2025). SIRT5: A potential target for discovering bioactive natural products. Journal of Natural Medicines. [CrossRef]
  • 17. Korotkov, A., Seluanov, A., Gorbunova, V. (2021). Sirtuin 6: Linking longevity with genome and epigenome stability. Trends in Cell Biology, 31(12), 994-1006. [CrossRef]
  • 18. Iyer-Bierhoff, A., Krogh, N., Tessarz, P., Ruppert, T., Nielsen, H., Grummt, I. (2018). SIRT7-dependent deacetylation of fibrillarin controls histone H2A methylation and rRNA synthesis during the cell cycle. Cell Reports, 25(11), 2946-2954.e5. [CrossRef]
  • 19. Ji, Z., Liu, G.H., Qu, J. (2022). Mitochondrial sirtuins, metabolism, and aging. Journal of Genetics and Genomics, 49(4), 287-298. [CrossRef]
  • 20. Wu, Q.J., Zhang, T.N., Chen, H.H., Yu, X.F., Lv, J.L., Liu, Y.Y., Liu, Y.S., Zheng, G., Zhao, J.Q., Wei, Y.F., Guo, J.Y., Liu, F.H., Chang, Q., Zhang, Y.X., Liu, C.G., Zhao, Y.H. (2022). The sirtuin family in health and disease. Signal Transduction and Targeted Therapy, 7(1), 1-74. [CrossRef]
  • 21. Shen, H., Qi, X., Hu, Y., Wang, Y., Zhang, J., Liu, Z., Qin, Z. (2024). Targeting sirtuins for cancer therapy: Epigenetics modifications and beyond. Theranostics, 14(17), 6726-6767. [CrossRef]
  • 22. Fan, M., Zhang, X., Song, H., Zhang, Y. (2023). Dandelion (Taraxacum genus): A review of chemical constituents and pharmacological effects. Molecules, 28(13), 5022. [CrossRef]
  • 23. Olas, B. (2022). New perspectives on the effect of dandelion, ıts food products and other preparations on the cardiovascular system and ıts diseases. Nutrients, 14(7), 1350. [CrossRef]
  • 24. Bursch, K.L., Goetz, C.J., Smith, B.C. (2024). Current trends in sirtuin activator and inhibitor development. Molecules, 29(5), 1185. [CrossRef]
  • 25. Abbotto, E., Scarano, N., Piacente, F., Millo, E., Cichero, E., Bruzzone, S. (2022). Virtual screening in the ıdentification of sirtuins’ activity modulators. Molecules, 27(17), 5641. [CrossRef]
  • 26. Trott, O., Olson, A.J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461. [CrossRef]
  • 27. Duke, J.A. (2016). Dr. Duke’s phytochemical and ethnobotanical databases. U.S. Department of Agriculture. Ag Data Commons.
  • 28. Zhao, L., Cao, J., Hu, K., He, X., Yun, D., Tong, T., Han, L. (2020). Sirtuins and their biological relevance in aging and age-related diseases. Aging and Disease, 11(4), 927-945. [CrossRef]
  • 29. Zhao, X., Allison, D., Condon, B., Zhang, F., Gheyi, T., Zhang, A., Ashok, S., Russell, M., MacEwan, I., Qian, Y., Jamison, J.A., Luz, J.G. (2013). The 2.5 Å crystal structure of the SIRT1 catalytic domain bound to nicotinamide adenine dinucleotide (NAD+) and an ındole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition. Journal of Medicinal Chemistry, 56(3), 963-969. [CrossRef]
  • 30. Yang, J., Nicely, N.I., Weiser, B.P. (2023). Effects of dimerization on the deacylase activities of human SIRT2. Biochemistry, 62(23), 3383-3395. [CrossRef]
  • 31. Jin, L., Wei, W., Jiang, Y., Peng, H., Cai, J., Mao, C., Dai, H., Choy, W., Bemis, J.E., Jirousek, M.R., Milne, J.C., Westphal, C.H., Perni, R.B. (2009). Crystal structures of human SIRT3 displaying substrate-induced conformational changes. The Journal of Biological Chemistry, 284(36), 24394-24405. [CrossRef]
  • 32. Pannek, M., Simic, Z., Fuszard, M., Meleshin, M., Rotili, D., Mai, A., Schutkowski, M., Steegborn, C. (2017). Crystal structures of the mitochondrial deacylase Sirtuin 4 reveal isoform-specific acyl recognition and regulation features. Nature Communications, 8(1), 1513. [CrossRef]
  • 33. Schuetz, A., Min, J., Antoshenko, T., Wang, C.L., Allali-Hassani, A., Dong, A., Loppnau, P., Vedadi, M., Bochkarev, A., Sternglanz, R., Plotnikov, A.N. (2007). Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Structure, 15(3), 377-389. [CrossRef]
  • 34. Pan, P.W., Feldman, J.L., Devries, M.K., Dong, A., Edwards, A.M., Denu, J.M. (2011). Structure and biochemical functions of SIRT6. The Journal of Biological Chemistry, 286(16), 14575-14587. [CrossRef]
  • 35. Priyanka, A., Solanki, V., Parkesh, R., Thakur, K.G. (2016). Crystal structure of the N-terminal domain of human SIRT7 reveals a three-helical domain architecture. Proteins, 84(10), 1558-1563. [CrossRef]
  • 36. Zaki, K., Ouabane, M., Guendouzi, A., Sbai, A., Sekkate, C., Bouachrine, M., Lakhlifi, T. (2024). From farm to pharma: Investigation of the therapeutic potential of the dietary plants Apium graveolens L., Coriandrum sativum, and Mentha longifolia, as AhR modulators for Immunotherapy. Computers in Biology and Medicine, 181, 109051. [CrossRef]
  • 37. Jung, W., Goo, S., Hwang, T., Lee, H., Kim, Y.K., Chae, J., Yun, H., Jung, S. (2024). Absorption distribution metabolism excretion and toxicity property prediction utilizing a pre-trained natural language processing model and its applications in early-stage drug development. Pharmaceuticals, 17(3), 382. [CrossRef]
  • 38. Daina, A., Michielin, O., Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. [CrossRef]
  • 39. Dong, J., Wang, N.N., Yao, Z.J., Zhang, L., Cheng, Y., Ouyang, D., Lu, A.P., Cao, D.S. (2018). ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. Journal of Cheminformatics, 10(1), 29. [CrossRef]
  • 40. Lipinski, C.A. (2004). Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337-341. [CrossRef]
  • 41. Kralj, S., Jukič, M., Bren, U. (2023). Molecular filters in medicinal chemistry. Encyclopedia, 3(2), 501-511. [CrossRef]
  • 42. Pathania, S., Singh, P.K. (2021). Analyzing FDA-approved drugs for compliance of pharmacokinetic principles: should there be a critical screening parameter in drug designing protocols? Expert Opinion on Drug Metabolism Toxicology, 17(4), 351-354. [CrossRef]
  • 43. Badaoui, H., Ouabane, M., Alaqarbeh, M., Elbouhi, M., Choukrad, M., Lakhlifi, T., Bouachrine, M. (2025). The main chemical constituents responsible for the antidiabetic properties of the datura metel l plant. decryption and in-silico investigations. Physical Chemistry Research, 13(2), 241-254. [CrossRef]
  • 44. Ouabane, M., Tabti, K., Hajji, H., Elbouhi, M., Khaldan, A., Elkamel, K., Sbai, A., Ajana, A.M., Sekkate, C., Bouachrine, M., Lakhlifi, T. (2023). Structure-odor relationship in pyrazines and derivatives: A physicochemical study using 3D-QSPR, HQSPR, Monte Carlo, molecular docking, ADME-Tox and molecular dynamics. Arabian Journal of Chemistry, 16(11), 105207. [CrossRef]
  • 45. Dankwa, B., Broni, E., Enninful, K.S., Kwofie, S.K., Wilson, M.D. (2022). Consensus docking and MM-PBSA computations identify putative furin protease inhibitors for developing potential therapeutics against COVID-19. Structural Chemistry, 33(6), 2221-2241. [CrossRef]
  • 46. Daina, A., Zoete, V. (2016). A BOILED‐Egg to predict gastrointestinal absorption and brain penetration of small molecules. Chemmedchem, 11(11), 1117-1121. [CrossRef]
  • 47. Naanaai, L., Ouabane, M., El Aissouq, A., Guendouzi, A., Zaitan, H., Bouachrine, M., Khalil, F. (2025). Indole-pyridine carbonitriles as potential anti-diabetic agents: A computational study using 3D-QSAR, molecular docking, ADME-Tox and molecular dynamics simulations. Chemistry Africa. [CrossRef]
  • 48. Ouabane, M., Zaki, K., Tabti, K., Alaqarbeh, M., Sbai, A., Sekkate, C., Bouachrine, M., Lakhlifi, T. (2024). Molecular toxicity of nitrobenzene derivatives to tetrahymena pyriformis based on SMILES descriptors using Monte Carlo, docking, and MD simulations. Computers in Biology and Medicine, 169, 107880. [CrossRef]
  • 49. Czub, N., Szlęk, J., Pacławski, A., Klimończyk, K., Puccetti, M., Mendyk, A. (2023). Artificial intelligence-based quantitative structure–property relationship model for predicting human intestinal absorption of compounds with serotonergic activity. Molecular Pharmaceutics, 20(5), 2545-2555. [CrossRef]
  • 50. Sun, Y., Zabihi, M., Li, Q., Li, X., Kim, B.J., Ubogu, E.E., Raja, S.N., Wesselmann, U., Zhao, C. (2023). Drug permeability: From the blood-brain barrier to the peripheral nerve barriers. Advanced Therapeutics, 6(4), 2200150. [CrossRef]
  • 51. Quintás, G., Castell, J.V., Moreno-Torres, M. (2023). The assessment of the potential hepatotoxicity of new drugs by in vitro metabolomics. Frontiers in Pharmacology, 14, 1155271. [CrossRef]
  • 52. Crofton, K.M., Bassan, A., Behl, M., Chushak, Y.G., Fritsche, E., Gearhart, J.M., Marty, M. S., Mumtaz, M., Pavan, M., Ruiz, P., Sachana, M., Selvam, R., Shafer, T.J., Stavitskaya, L., Szabo, D.T., Szabo, S.T., Tice, R.R., Wilson, D., Woolley, D., Myatt, G.J. (2022). Current status and future directions for a neurotoxicity hazard assessment framework that integrates in silico approaches. Computational Toxicology, 22, 100223. [CrossRef]
  • 53. Khalak, Y., Tresadern, G., Aldeghi, M.M., Baumann, H.L. Mobley, D., Groot, B.L. de, Gapsys, V. (2021). Alchemical absolute protein–ligand binding free energies for drug design. Chemical Science, 12(41), 13958-13971. [CrossRef]
  • 54. Lambona, C., Zwergel, C., Valente, S., Mai, A. (2024). SIRT3 activation a promise in drug development? new insights into SIRT3 biology and its implications on the drug discovery process. Journal of Medicinal Chemistry, 67(3), 1662-1689. [CrossRef]
  • 55. Kane, A.E., Sinclair, D.A. (2018). Sirtuins and NAD+ in the development and treatment of metabolic and cardiovascular diseases. Circulation Research, 123(7), 868. [CrossRef]
  • 56. Zhang, M., Tang, Z. (2023). Therapeutic potential of natural molecules against Alzheimer’s disease via SIRT1 modulation. Biomedicine Pharmacotherapy, 161, 114474. [CrossRef]
  • 57. Ouabane, M., Dichane, Z., Alaqarbeh, M., Alnajjar, R., Sekkate, C., Lakhlifi, T., Bouachrine, M. (2025). The use of combined machine learning and in-silico molecular approaches for the study and the prediction of anti-HIV activity. Current Chemistry Letters, 14(1), 205-232. [CrossRef]
  • 58. Du, X., Li, Y., Xia, Y.L., Ai, S.M., Liang, J., Sang, P., Ji, X.L., Liu, S.Q. (2016). Insights into protein–ligand interactions: Mechanisms, models, and methods. International Journal of Molecular Sciences, 17(2), 144. [CrossRef]
  • 59. Kratz, E.M., Sołkiewicz, K., Kubis-Kubiak, A., Piwowar, A. (2021). Sirtuins as important factors in pathological states and the role of their molecular activity modulators. International Journal of Molecular Sciences, 22(2), 630. [CrossRef]
  • 60. Ziętara, P., Dziewięcka, M., Augustyniak, M. (2023). Why ıs longevity still a scientific mystery? Sirtuins-past, present and future. International Journal of Molecular Sciences, 24(1), 728. [CrossRef]
  • 61. Leite, J.A., Ghirotto, B., Targhetta, V.P., de Lima, J., Câmara, N.O.S. (2022). Sirtuins as pharmacological targets in neurodegenerative and neuropsychiatric disorders. British Journal of Pharmacology, 179(8), 1496-1511. [CrossRef]
  • 62. Yao, X., Li, G., Bai, Q., Xu, H., Lü, C. (2013). Taraxerol inhibits LPS-induced inflammatory responses through suppression of TAK1 and Akt activation. International Immunopharmacology, 15(2), 316-324. [CrossRef]
  • 63. Lu, J., Yi, S., Wang, S., Shang, Y., Yang, S., Cui, K. (2024). The effect of taraxerol acetate extracted from dandelion on alleviating oxidative stress responses in vitro. Free Radical Research, 58(12), 811-825. [CrossRef]
  • 64. Xie, J., Ou, Y., Fu, Q., Ye, Z., Chen, Y., Yang, Z., Lin, L., Wu, Q., Wu, D., Gan, R., Wang, J., Luo, Q., Zeng, K., Miao, H. (2024). Taraxasterol exhibits dual biological effects on anti-aging and anti-cancer in lung cells. American Journal of Cancer Research, 14(6), 2755-2769. [CrossRef]
  • 65. Movahhed, M., Pazhouhi, M., Ghaleh, H.E.G., Kondori, B.J. (2023). Anti-metastatic effect of taraxasterol on prostate cancer cell lines. Research in Pharmaceutical Sciences, 18(4), 439-448. [CrossRef]
  • 66. Vitor, C., Figueiredo, C., Hara, D., Bento, A., Mazzuco, T., Calixto, J. (2009). Therapeutic action and underlying mechanisms of a combination of two pentacyclic triterpenes, α- and β-amyrin, in a mouse model of colitis. British Journal of Pharmacology, 157(6), 1034-1044. [CrossRef]
  • 67. Thirupathi, A., Silveira, P., Nesi, R., Pinho, R. (2017). β-Amyrin, a pentacyclic triterpene, exhibits anti-fibrotic, anti-inflammatory, and anti-apoptotic effects on dimethyl nitrosamine–induced hepatic fibrosis in male rats. Human Experimental Toxicology, 36(2), 113-122. [CrossRef]
  • 68. Medoro, A., Jafar, T.H., Ali, S., Trung, T.T., Sorrenti, V., Intrieri, M., Scapagnini, G., Davinelli, S. (2023). In silico evaluation of geroprotective phytochemicals as potential sirtuin 1 interactors. Biomedicine Pharmacotherapy, 161, 114425. [CrossRef]
  • 69. Peluso, P., Chankvetadze, B. (2024). Recent developments in molecular modeling tools and applications related to pharmaceutical and biomedical research. Journal of Pharmaceutical and Biomedical Analysis, 238, 115836. [CrossRef]
  • 70. Jarmoskaite, I., AlSadhan, I., Vaidyanathan, P.P., Herschlag, D. (2020). How to measure and evaluate binding affinities. eLife, 9, e57264. [CrossRef]
Toplam 70 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık Bilimleri, Eczacılıkta Analitik Kimya, Farmasotik Biyoteknoloji
Bölüm Araştırma Makalesi
Yazarlar

Marvel Reuben Suwitono 0000-0002-0466-4774

Ida Ayu Ika Wahyuniari 0000-0003-3141-6247

Huali Luo Bu kişi benim 0000-0001-5966-3683

Martin Culbert Suwitono Bu kişi benim 0009-0005-1629-8897

Titin Sulastri Bu kişi benim 0000-0002-7471-8563

Erken Görünüm Tarihi 14 Ağustos 2025
Yayımlanma Tarihi 19 Eylül 2025
Gönderilme Tarihi 29 Kasım 2024
Kabul Tarihi 12 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 49 Sayı: 3

Kaynak Göster

APA Suwitono, M. R., Wahyuniari, I. A. I., Luo, H., … Suwitono, M. C. (2025). IDENTIFICATION OF SIRTUIN-ACTIVATING BIOACTIVE FROM TARAXACUM OFFICINALE THROUGH VIRTUAL DISCOVERIES FOR ANTI-AGING AND STRESS RESISTANCE APPLICATIONS. Journal of Faculty of Pharmacy of Ankara University, 49(3), 790-808. https://doi.org/10.33483/jfpau.1588979
AMA Suwitono MR, Wahyuniari IAI, Luo H, Suwitono MC, Sulastri T. IDENTIFICATION OF SIRTUIN-ACTIVATING BIOACTIVE FROM TARAXACUM OFFICINALE THROUGH VIRTUAL DISCOVERIES FOR ANTI-AGING AND STRESS RESISTANCE APPLICATIONS. Ankara Ecz. Fak. Derg. Eylül 2025;49(3):790-808. doi:10.33483/jfpau.1588979
Chicago Suwitono, Marvel Reuben, Ida Ayu Ika Wahyuniari, Huali Luo, Martin Culbert Suwitono, ve Titin Sulastri. “IDENTIFICATION OF SIRTUIN-ACTIVATING BIOACTIVE FROM TARAXACUM OFFICINALE THROUGH VIRTUAL DISCOVERIES FOR ANTI-AGING AND STRESS RESISTANCE APPLICATIONS”. Journal of Faculty of Pharmacy of Ankara University 49, sy. 3 (Eylül 2025): 790-808. https://doi.org/10.33483/jfpau.1588979.
EndNote Suwitono MR, Wahyuniari IAI, Luo H, Suwitono MC, Sulastri T (01 Eylül 2025) IDENTIFICATION OF SIRTUIN-ACTIVATING BIOACTIVE FROM TARAXACUM OFFICINALE THROUGH VIRTUAL DISCOVERIES FOR ANTI-AGING AND STRESS RESISTANCE APPLICATIONS. Journal of Faculty of Pharmacy of Ankara University 49 3 790–808.
IEEE M. R. Suwitono, I. A. I. Wahyuniari, H. Luo, M. C. Suwitono, ve T. Sulastri, “IDENTIFICATION OF SIRTUIN-ACTIVATING BIOACTIVE FROM TARAXACUM OFFICINALE THROUGH VIRTUAL DISCOVERIES FOR ANTI-AGING AND STRESS RESISTANCE APPLICATIONS”, Ankara Ecz. Fak. Derg., c. 49, sy. 3, ss. 790–808, 2025, doi: 10.33483/jfpau.1588979.
ISNAD Suwitono, Marvel Reuben vd. “IDENTIFICATION OF SIRTUIN-ACTIVATING BIOACTIVE FROM TARAXACUM OFFICINALE THROUGH VIRTUAL DISCOVERIES FOR ANTI-AGING AND STRESS RESISTANCE APPLICATIONS”. Journal of Faculty of Pharmacy of Ankara University 49/3 (Eylül2025), 790-808. https://doi.org/10.33483/jfpau.1588979.
JAMA Suwitono MR, Wahyuniari IAI, Luo H, Suwitono MC, Sulastri T. IDENTIFICATION OF SIRTUIN-ACTIVATING BIOACTIVE FROM TARAXACUM OFFICINALE THROUGH VIRTUAL DISCOVERIES FOR ANTI-AGING AND STRESS RESISTANCE APPLICATIONS. Ankara Ecz. Fak. Derg. 2025;49:790–808.
MLA Suwitono, Marvel Reuben vd. “IDENTIFICATION OF SIRTUIN-ACTIVATING BIOACTIVE FROM TARAXACUM OFFICINALE THROUGH VIRTUAL DISCOVERIES FOR ANTI-AGING AND STRESS RESISTANCE APPLICATIONS”. Journal of Faculty of Pharmacy of Ankara University, c. 49, sy. 3, 2025, ss. 790-08, doi:10.33483/jfpau.1588979.
Vancouver Suwitono MR, Wahyuniari IAI, Luo H, Suwitono MC, Sulastri T. IDENTIFICATION OF SIRTUIN-ACTIVATING BIOACTIVE FROM TARAXACUM OFFICINALE THROUGH VIRTUAL DISCOVERIES FOR ANTI-AGING AND STRESS RESISTANCE APPLICATIONS. Ankara Ecz. Fak. Derg. 2025;49(3):790-808.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.