Araştırma Makalesi
BibTex RIS Kaynak Göster

Cinsiyetin Kafeinle İndüklenen Kahverengi Yağ Doku Aktivasyonuna Etkisinin Kızılötesi Termografiyle İncelenmesi: Ön Çalışma Raporu

Yıl 2025, Cilt: 7 Sayı: 2, 87 - 98, 10.06.2025
https://doi.org/10.57224/jhpr.1675669

Öz

Amaç: Bu ön çalışmada, cinsiyetin diyetle indüklenen termojenez (DİT) sürecinde kahverengi yağ dokusu (KYD) aktivasyonu üzerindeki etkisinin kızılötesi termografi (IRT) yöntemiyle değerlendirilmesi amaçlanmıştır.
Gereç ve Yöntem: Kasım-Aralık 2024 döneminde beden kütle indeksi 18,5–24,9 kg/m² aralığındaki kadın (n=4) ve erkek (n=4) gönüllülerin katılımıyla gerçekleştirilmiştir. Katılımcılara 0.dk karbonhidrat jeli verilmiş ve 45. dk’da ise 200 mg kafein kapsülü uygulanmıştır. Termonötr koşullarda gerçekleştirilen 120 dakikalık deney protokolü süresince, supraklaviküler (SCV) bölgeden her 15 dakikada bir IRT ile sıcaklık ölçümleri yapılmıştır.
Bulgular: 0., 45., 60. ve 75. dakikalarda kadın katılımcılarda KYD aktivasyonuna işaret eden Tscf sıcaklıkları erkeklere göre istatistiksel olarak anlamlı derecede yüksektir (p<0.05). Ancak 90. dakikadan itibaren cinsiyetler arası istatistiksel anlamlı fark kaybolmuştur. Tref değerlerinde ise hiçbir ölçümde istatistiksel açıdan anlamlı bir fark bulunmamıştır.
Sonuç: Cinsiyetin DİT’e etkisini IRT üzerinden tanımlayan bu ön çalışma raporuna göre subklaviküler bölgedeki KYD’nin diyetle uyarımı kadınlarda erkeklere oranla daha erken ve belirgin şekilde gerçekleşmektedir. Bu farklılığın seks hormonları ve yağ kütlesindeki farka bağlı olabileceği düşünülmektedir. Bununla birlikte gelecekte planlanacak daha geniş katılımlı ve biyokimyasal parametrelerle desteklenmiş çalışmalarla cinsiyetin DİT sürecine etkisinin ortaya konması gerekmektedir.

Etik Beyan

Bu araştırma, İstanbul İstinye Üniversitesi İnsan Araştırmaları Etik Kurulu’nun 24-74 protokol numaralı ve 2024/04 tarihli onayı ile yürütülmüştür.

Teşekkür

Çalışmamıza gönüllü katılımlarından ve deneysel protokole uyumlarından dolayı öğrencilerimize çok teşekkür ediyoruz.

Kaynakça

  • Marlatt KL, Ravussin E. Brown adipose tissue: an update on recent findings. Curr Obes Rep 2017;6(4):389-96.
  • Richard MA, Pallubinsky H, Blondin DP. Functional characterization of human brown adipose tissue metabolism. Biochem J 2020;477(7):1261-86.
  • Çınar EN, İlhan A. Diyet polifenollerinin kahverengileşme ve kahverengi yağ dokusu aktivitesi üzerine etkileri. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 2022;9(2):334-40.
  • Merlin J, Evans BA, Dehvari N, Sato M, Bengtsson T, Hutchinson DS. Could burning fat start with a brite spark? Pharmacological and nutritional ways to promote thermogenesis. Mol Nutr Food Res 2016;60(1):18-42.
  • Wankhade UD, Shen M, Yadav H, Thakali KM. Novel browning agents, mechanisms, and therapeutic potentials of brown adipose tissue. Biomed Res Int 2016;2016:2365609.
  • Cheng L, Wang J, Dai H, Duan Y, An Y, Shi L, et al. Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte 2021;10(1):48-65.
  • Singh R, Barrios A, Dirakvand G, Pervin S. Human brown adipose tissue and metabolic health: potential for therapeutic avenues. Cells 2021;10(11):3030.
  • Harb E, Kheder O, Poopalasingam G, Rashid R, Srinivasan A, Izzi-Engbeaya C. Brown adipose tissue and regulation of human body weight. Diabetes Metab Res Rev 2023;39(1):e3594.
  • Okla M, Kim J, Koehler K, Chung S. Dietary factors promoting brown and beige fat development and thermogenesis. Adv Nutr 2017;8(3):473-83.
  • Saito M, Matsushita M, Yoneshiro T, Okamatsu-Ogura Y. Brown adipose tissue, diet-induced thermogenesis, and thermogenic food ingredients: from mice to men. Front Endocrinol (Lausanne) 2020;11:222.
  • Chan PC, Hsieh PS. The role and regulatory mechanism of brown adipose tissue activation in diet-induced thermogenesis in health and diseases. Int J Mol Sci 2022;23(16):9448.
  • Echtay KS. Mitochondrial uncoupling proteins—what is their physiological role?. Free Radic Biol Med 2007;43(10):1351-71.
  • Oelkrug R, Polymeropoulos ET, Jastroch M. Brown adipose tissue: physiological function and evolutionary significance. J Comp Physiol B 2015;185:587-606.
  • Bertholet AM, Kirichok Y. Mitochondrial H+ leak and thermogenesis. Annu Rev Physiol 2022;84:381-407.
  • Ulukaya E. Biyokimya. İstanbul: Nobel Tıp Kitabevleri; 2022.
  • Acheson KJ, Ravussin E, Wahren J, Jéquier E. Thermic effect of glucose in man. Obligatory and facultative thermogenesis. J Clin Invest 1984;74(5):1572-80.
  • Bastías-Pérez M, Serra D, Herrero L. Dietary options for rodents in the study of obesity. Nutrients 2020;12(11):3234.
  • Armani A, Feraco A, Camajani E, Gorini S, Lombardo M, Caprio M. Nutraceuticals in brown adipose tissue activation. Cells 2022;11(24):3996.
  • Choi Y, Yu L. Natural bioactive compounds as potential browning agents in white adipose tissue. Pharm Res 2021;38(4):549-67.
  • Machado SA, Pasquarelli-do-Nascimento G, Da Silva DS, Farias GR, de Oliveira Santos I, Baptista LB, et al. Browning of the white adipose tissue regulation: new insights into nutritional and metabolic relevance in health and diseases. Nutr Metab (Lond) 2022;19(1):61.
  • Nirengi S, Wakabayashi H, Matsushita M, Domichi M, Suzuki S, Sukino S, et al. An optimal condition for the evaluation of human brown adipose tissue by infrared thermography. PLoS One 2019;14(8):e0220574.
  • Ang QY, Goh HJ, Cao Y, Li Y, Chan SP, Swain JL, et al. A new method of infrared thermography for quantification of brown adipose tissue activation in healthy adults (TACTICAL): a randomized trial. J Physiol Sci 2017;67(3):395-406.
  • Law J, Chalmers J, Morris DE, Robinson L, Budge H, Symonds ME. The use of infrared thermography in the measurement and characterization of brown adipose tissue activation. Temperature (Austin) 2018;5(2):147-61.
  • Pérez DIV, Soto DAS, Barroso JM, Dos Santos DA, Queiroz ACC, Miarka B, et al. Physically active men with high brown adipose tissue activity showed increased energy expenditure after caffeine supplementation. J Therm Biol 2021;99:103000.
  • Van Schaik L, Kettle C, Green R, Irving HR, Rathner JA. Effects of caffeine on brown adipose tissue thermogenesis and metabolic homeostasis: a review. Front Neurosci 2021;15:621356.
  • Van Schaik L, Kettle C, Green RA, Irving HR, Rathner JA. Using a combination of indirect calorimetry, infrared thermography, and blood glucose levels to measure brown adipose tissue thermogenesis in humans. J Vis Exp 2023;(196):e64451.
  • Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol 2014;10(1):24-36.
  • Moreira DG, Costello JT, Brito CJ, Adamczyk JG, Ammer K, Bach AJE, et al. Thermographic imaging in sports and exercise medicine: a Delphi study and consensus statement on the measurement of human skin temperature. J Therm Biol 2017;69:155-62.
  • Reed BG, Carr BR. The normal menstrual cycle and the control of ovulation. In: Feingold KR, editor. Endotext. South Dartmouth (MA): MDText.com, Inc.; 2018.
  • Özkaya İ, Bavunoğlu İ, Tunçkale A. Body mass index and waist circumference affect lipid parameters negatively in Turkish women. Am J Public Health Res 2014;2(6):226-31.
  • Canbolat E. Biyoelektrik impedans analizi parametrelerinden faz açısının, tanısal kriter olarak olası rolü. Ann Health Sci Res 2018;7(1):58-65.
  • Rodak K, Kokot I, Kratz EM. Caffeine as a factor influencing the functioning of the human body-friend or foe?. Nutrients 2021;13(9):3088.
  • Walter K. Caffeine and health. JAMA 2022;327(7):693.
  • Antonio J, Newmire DE, Stout JR, Antonio B, Gibbons M, Lowery LM, et al. Common questions and misconceptions about caffeine supplementation: what does the scientific evidence really show?. J Int Soc Sports Nutr 2024;21(1):2323919.
  • Tinsley GM, Hamm MA, Hurtado AK, Cross AG, Pineda JG, Martin AY, et al. Effects of two pre-workout supplements on concentric and eccentric force production during lower body resistance exercise in males and females: a counterbalanced, double-blind, placebo-controlled trial. J Int Soc Sports Nutr 2017;14:46.
  • Pekcan A, Şanlıer N, Baş M, Tek N, Gökmen Özel H. Türkiye Beslenme Rehberi 2022.
  • El Hadi H, Frascati A, Granzotto M, Silvestrin V, Ferlini E, Vettor R, et al. Infrared thermography for indirect assessment of activation of brown adipose tissue in lean and obese male subjects. Physiol Meas 2016;37(12):N118-N128.
  • Kordić M, Dugandžić J, Ratko M, Habek N, Dugandžić A. Infrared thermography for the detection of changes in brown adipose tissue activity. J Vis Exp 2022;(187):e64463.
  • Van Schaik L, Kettle C, Green R, Wundersitz D, Gordon B, Irving HR, et al. Both caffeine and Capsicum annuum fruit powder lower blood glucose levels and increase brown adipose tissue temperature in healthy adult males. Front Physiol 2022;13:870154.
  • Jang C, Jalapu S, Thuzar M, Law PW, Jeavons S, Barclay JL, et al. Infrared thermography in the detection of brown adipose tissue in humans. Physiol Rep 2014;2(11):e12167.
  • Sun L, Verma S, Michael N, Chan SP, Yan J, Sadananthan SA, et al. Brown adipose tissue: multimodality evaluation by PET, MRI, infrared thermography, and whole-body calorimetry (TACTICAL-II). Obesity (Silver Spring) 2019;27(9):1434-42.
  • Heenan KA, Carrillo AE, Fulton JL, Ryan EJ, Edsall JR, Rigopoulos D, et al. Effects of nutrition/diet on brown adipose tissue in humans: a systematic review and meta-analysis. Nutrients 2020;12(9):2752.
  • Yoneshiro T, Aita S, Kawai Y, Iwanaga T, Saito M. Nonpungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans. Am J Clin Nutr 2012;95(4):845-50.
  • Carey AL, Formosa MF, Van Every B, Bertovic D, Eikelis N, Lambert GW, et al. Ephedrine activates brown adipose tissue in lean but not obese humans. Diabetologia 2013;56(1):147-55.
  • Reis HHT, Brito CJ, Sillero-Quintana M, Silva AGD, Fernández-Cuevas I, Cerqueira MS, Werneck FZ, Marins JCB. Can the body mass index influence the skin temperature of adolescents assessed by infrared thermography? J Therm Biol. 2023;111:103424. doi: 10.1016/j.jtherbio.2022.103424.
  • Gatidis S, Schmidt H, Pfannenberg CA, Nikolaou K, Schick F, Schwenzer NF. Is it possible to detect activated brown adipose tissue in humans using single-time-point infrared thermography under thermoneutral conditions? Impact of BMI and subcutaneous adipose tissue thickness. PLoS One. 2016;11(3):e0151152. doi: 10.1371/journal.pone.0151152.
  • van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360(15):1500-8. doi: 10.1056/NEJMoa0808718.
  • Kwok TC, Ramage LE, Kelman A, Semple RK, Stimson RH. Measurements of skin temperature in lean and obese humans at thermoneutrality and following cold exposure. Endocr Abstr. 2021;77:P185. Available from: https://www.endocrine-abstracts.org/ea/0077/ea0077p185
  • Martínez-Téllez B, Pérez-Bey A, Sánchez-Delgado G, Acosta FM, Corral-Pérez J, Amaro-Gahete FJ, et al. Concurrent validity of supraclavicular skin temperature measured with iButtons and infrared thermography as a surrogate marker of brown adipose tissue. J Therm Biol. 2019;82:186-96. doi: 10.1016/j.jtherbio.2019.04.009.
  • Boon MR, Bakker LE, van der Linden RA, Pereira Arias-Bouda LM, Smit F, Verberne HJ, et al. Supraclavicular skin temperature as a measure of 18F-FDG uptake by BAT in human subjects. PLoS One. 2014;9(6):e98822. doi: 10.1371/journal.pone.0098822.
  • Nirengi S, Fuse S, Amagasa S, Homma T, Kime R, Kuroiwa M, et al. Applicability of supraclavicular oxygenated and total hemoglobin evaluated by near-infrared time-resolved spectroscopy as indicators of brown adipose tissue density in humans. Int J Mol Sci. 2019;20(9):2214. doi: 10.3390/ijms20092214.
  • Herz CT, Kulterer OC, Prager M, Marculescu R, Langer FB, Prager G, et al. Sex differences in brown adipose tissue activity and cold-induced thermogenesis. Mol Cell Endocrinol 2021;534:111365.
  • Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004;89(6):2548-56.
  • Yach D, Stuckler D, Brownell KD. Epidemiologic and economic consequences of the global epidemics of obesity and diabetes. Nat Med 2006;12(1):62-6.
  • de Morentin PBM, González-García I, Martins L, Lage R, Fernandez-Mallo D, Martínez-Sánchez N, et al. Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK. Cell Metab 2014;20(1):41-53.
  • González-García I, Contreras C, Estevez-Salguero A, Ruíz-Pino F, Colsh B, Pensado I, et al. Estradiol regulates energy balance by ameliorating hypothalamic ceramide-induced ER stress. Cell Rep 2018;25(2):413-23.
  • Santos RS, Frank AP, Fátima LA, Palmer BF, Öz OK, Clegg DJ. Activation of estrogen receptor alpha induces beiging of adipocytes. Mol Metab 2018;18:51-9.
  • Zhou Z, Moore TM, Drew BG, Ribas V, Wanagat J, Civelek M, et al. Estrogen receptor α controls metabolism in white and brown adipocytes by regulating Polg1 and mitochondrial remodeling. Sci Transl Med 2020;12(555):eaax8096.
  • Rodríguez AM, Quevedo-Coli S, Roca P, Palou A. Sex-dependent dietary obesity, induction of UCPs, and leptin expression in rat adipose tissues. Obes Res 2001;9(9):579-88.
  • Valle A, Català-Niell A, Colom B, García-Palmer FJ, Oliver J, Roca P. Sex-related differences in energy balance in response to caloric restriction. Am J Physiol Endocrinol Metab 2005;289(1):E15-22.
  • Kim SN, Jung YS, Kwon HJ, Seong JK, Granneman JG, Lee YH. Sex differences in sympathetic innervation and browning of white adipose tissue of mice. Biol Sex Differ 2016;7:67.
  • Ouellet V, Routhier-Labadie A, Bellemare W, Lakhal-Chaieb L, Turcotte E, Carpentier AC, Richard D. Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans. J Clin Endocrinol Metab 2011;96(1):192-9.
  • Brendle C, Werner MK, Schmadl M, la Fougère C, Nikolaou K, Stefan N, Pfannenberg C. Correlation of brown adipose tissue with other body fat compartments and patient characteristics: a retrospective analysis in a large patient cohort using PET/CT. Acad Radiol 2018;25(1):102-10.
  • Malpique R, Gallego-Escuredo JM, Sebastiani G, Villarroya J, López-Bermejo A, de Zegher F, et al. Brown adipose tissue in prepubertal children: associations with sex, birthweight, and metabolic profile. Int J Obes (Lond) 2019;43(2):384-91.
  • Martinez-Tellez B, Sanchez-Delgado G, Boon MR, Rensen PCN, Llamas-Elvira JM, Ruiz JR. Distribution of brown adipose tissue radiodensity in young adults: implications for cold [18F]FDG-PET/CT analyses. Mol Imaging Biol 2020;22(2):425-33.
  • Robinson LJ, Law J, Astle V, Gutiérrez-García M, Ojha S, Symonds ME, et al. Sexual dimorphism of brown adipose tissue function. J Pediatr 2019;210:166-72.e1.
  • Fletcher LA, Kim K, Leitner BP, Cassimatis TM, O'Mara AE, Johnson JW, et al. Sexual dimorphisms in adult human brown adipose tissue. Obesity (Silver Spring) 2020;28(2):241-6.
  • Fuller-Jackson JP, Dordevic AL, Clarke IJ, Henry BA. Effect of sex and sex steroids on brown adipose tissue heat production in humans. Eur J Endocrinol 2020;183(3):343-55.
  • Marshall J. Thermal changes in the normal menstrual cycle. Br Med J 1963;1(5323):102-4.
  • Hessemer V, Brück K. Influence of menstrual cycle on shivering, skin blood flow, and sweating responses measured at night. J Appl Physiol (1985) 1985;59(6):1902-10.
  • Cagnacci A, Volpe A, Paoletti AM, Melis GB. Regulation of the 24-hour rhythm of body temperature in menstrual cycles with spontaneous and gonadotropin-induced ovulation. Fertil Steril 1997;68(3):421-5.

Investigation of The Effect of Sex on Caffeine-Induced Brown Fat Tissue Activation By Infrared Thermography: A Preliminary Report

Yıl 2025, Cilt: 7 Sayı: 2, 87 - 98, 10.06.2025
https://doi.org/10.57224/jhpr.1675669

Öz

Aim: This preliminary study aimed to evaluate the effect of sex on brown adipose tissue (BAT) activation during the diet-induced thermogenesis (DIT) process using infrared thermography (IRT).
Material and Method: It was conducted with the participation of female (n=4) and male (n=4) volunteers with a body mass index between 18.5–24.9 kg/m² in November-December 2024. Participants were given carbohydrate gel at 0 min, and a 200 mg caffeine capsule was applied at 45 min. During the 120-minute experimental protocol performed under thermoneutral conditions, temperature measurements were taken from the supraclavicular (SCV) region every 15 minutes with IRT.
Results: Tscf temperatures indicating BAT activation were statistically significantly higher in female participants than in males at 0, 45, 60, and 75 minutes (p<0.05). However, the statistically significant difference between the sexes disappeared after the 90th minute. No statistically significant difference was found in any of the measurements in the Tref values.
Conclusion: According to this preliminary study report defining the effect of sex on DIT via IRT, the stimulation of CHD in the subclavicular region with diet occurs earlier and more clearly in women than in men. It is thought that this difference may be due to the difference in sex hormones and fat mass. However, the effect of sex on the DIT process should be revealed in future studies with broader participation and supported by biochemical parameters.

Kaynakça

  • Marlatt KL, Ravussin E. Brown adipose tissue: an update on recent findings. Curr Obes Rep 2017;6(4):389-96.
  • Richard MA, Pallubinsky H, Blondin DP. Functional characterization of human brown adipose tissue metabolism. Biochem J 2020;477(7):1261-86.
  • Çınar EN, İlhan A. Diyet polifenollerinin kahverengileşme ve kahverengi yağ dokusu aktivitesi üzerine etkileri. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 2022;9(2):334-40.
  • Merlin J, Evans BA, Dehvari N, Sato M, Bengtsson T, Hutchinson DS. Could burning fat start with a brite spark? Pharmacological and nutritional ways to promote thermogenesis. Mol Nutr Food Res 2016;60(1):18-42.
  • Wankhade UD, Shen M, Yadav H, Thakali KM. Novel browning agents, mechanisms, and therapeutic potentials of brown adipose tissue. Biomed Res Int 2016;2016:2365609.
  • Cheng L, Wang J, Dai H, Duan Y, An Y, Shi L, et al. Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte 2021;10(1):48-65.
  • Singh R, Barrios A, Dirakvand G, Pervin S. Human brown adipose tissue and metabolic health: potential for therapeutic avenues. Cells 2021;10(11):3030.
  • Harb E, Kheder O, Poopalasingam G, Rashid R, Srinivasan A, Izzi-Engbeaya C. Brown adipose tissue and regulation of human body weight. Diabetes Metab Res Rev 2023;39(1):e3594.
  • Okla M, Kim J, Koehler K, Chung S. Dietary factors promoting brown and beige fat development and thermogenesis. Adv Nutr 2017;8(3):473-83.
  • Saito M, Matsushita M, Yoneshiro T, Okamatsu-Ogura Y. Brown adipose tissue, diet-induced thermogenesis, and thermogenic food ingredients: from mice to men. Front Endocrinol (Lausanne) 2020;11:222.
  • Chan PC, Hsieh PS. The role and regulatory mechanism of brown adipose tissue activation in diet-induced thermogenesis in health and diseases. Int J Mol Sci 2022;23(16):9448.
  • Echtay KS. Mitochondrial uncoupling proteins—what is their physiological role?. Free Radic Biol Med 2007;43(10):1351-71.
  • Oelkrug R, Polymeropoulos ET, Jastroch M. Brown adipose tissue: physiological function and evolutionary significance. J Comp Physiol B 2015;185:587-606.
  • Bertholet AM, Kirichok Y. Mitochondrial H+ leak and thermogenesis. Annu Rev Physiol 2022;84:381-407.
  • Ulukaya E. Biyokimya. İstanbul: Nobel Tıp Kitabevleri; 2022.
  • Acheson KJ, Ravussin E, Wahren J, Jéquier E. Thermic effect of glucose in man. Obligatory and facultative thermogenesis. J Clin Invest 1984;74(5):1572-80.
  • Bastías-Pérez M, Serra D, Herrero L. Dietary options for rodents in the study of obesity. Nutrients 2020;12(11):3234.
  • Armani A, Feraco A, Camajani E, Gorini S, Lombardo M, Caprio M. Nutraceuticals in brown adipose tissue activation. Cells 2022;11(24):3996.
  • Choi Y, Yu L. Natural bioactive compounds as potential browning agents in white adipose tissue. Pharm Res 2021;38(4):549-67.
  • Machado SA, Pasquarelli-do-Nascimento G, Da Silva DS, Farias GR, de Oliveira Santos I, Baptista LB, et al. Browning of the white adipose tissue regulation: new insights into nutritional and metabolic relevance in health and diseases. Nutr Metab (Lond) 2022;19(1):61.
  • Nirengi S, Wakabayashi H, Matsushita M, Domichi M, Suzuki S, Sukino S, et al. An optimal condition for the evaluation of human brown adipose tissue by infrared thermography. PLoS One 2019;14(8):e0220574.
  • Ang QY, Goh HJ, Cao Y, Li Y, Chan SP, Swain JL, et al. A new method of infrared thermography for quantification of brown adipose tissue activation in healthy adults (TACTICAL): a randomized trial. J Physiol Sci 2017;67(3):395-406.
  • Law J, Chalmers J, Morris DE, Robinson L, Budge H, Symonds ME. The use of infrared thermography in the measurement and characterization of brown adipose tissue activation. Temperature (Austin) 2018;5(2):147-61.
  • Pérez DIV, Soto DAS, Barroso JM, Dos Santos DA, Queiroz ACC, Miarka B, et al. Physically active men with high brown adipose tissue activity showed increased energy expenditure after caffeine supplementation. J Therm Biol 2021;99:103000.
  • Van Schaik L, Kettle C, Green R, Irving HR, Rathner JA. Effects of caffeine on brown adipose tissue thermogenesis and metabolic homeostasis: a review. Front Neurosci 2021;15:621356.
  • Van Schaik L, Kettle C, Green RA, Irving HR, Rathner JA. Using a combination of indirect calorimetry, infrared thermography, and blood glucose levels to measure brown adipose tissue thermogenesis in humans. J Vis Exp 2023;(196):e64451.
  • Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol 2014;10(1):24-36.
  • Moreira DG, Costello JT, Brito CJ, Adamczyk JG, Ammer K, Bach AJE, et al. Thermographic imaging in sports and exercise medicine: a Delphi study and consensus statement on the measurement of human skin temperature. J Therm Biol 2017;69:155-62.
  • Reed BG, Carr BR. The normal menstrual cycle and the control of ovulation. In: Feingold KR, editor. Endotext. South Dartmouth (MA): MDText.com, Inc.; 2018.
  • Özkaya İ, Bavunoğlu İ, Tunçkale A. Body mass index and waist circumference affect lipid parameters negatively in Turkish women. Am J Public Health Res 2014;2(6):226-31.
  • Canbolat E. Biyoelektrik impedans analizi parametrelerinden faz açısının, tanısal kriter olarak olası rolü. Ann Health Sci Res 2018;7(1):58-65.
  • Rodak K, Kokot I, Kratz EM. Caffeine as a factor influencing the functioning of the human body-friend or foe?. Nutrients 2021;13(9):3088.
  • Walter K. Caffeine and health. JAMA 2022;327(7):693.
  • Antonio J, Newmire DE, Stout JR, Antonio B, Gibbons M, Lowery LM, et al. Common questions and misconceptions about caffeine supplementation: what does the scientific evidence really show?. J Int Soc Sports Nutr 2024;21(1):2323919.
  • Tinsley GM, Hamm MA, Hurtado AK, Cross AG, Pineda JG, Martin AY, et al. Effects of two pre-workout supplements on concentric and eccentric force production during lower body resistance exercise in males and females: a counterbalanced, double-blind, placebo-controlled trial. J Int Soc Sports Nutr 2017;14:46.
  • Pekcan A, Şanlıer N, Baş M, Tek N, Gökmen Özel H. Türkiye Beslenme Rehberi 2022.
  • El Hadi H, Frascati A, Granzotto M, Silvestrin V, Ferlini E, Vettor R, et al. Infrared thermography for indirect assessment of activation of brown adipose tissue in lean and obese male subjects. Physiol Meas 2016;37(12):N118-N128.
  • Kordić M, Dugandžić J, Ratko M, Habek N, Dugandžić A. Infrared thermography for the detection of changes in brown adipose tissue activity. J Vis Exp 2022;(187):e64463.
  • Van Schaik L, Kettle C, Green R, Wundersitz D, Gordon B, Irving HR, et al. Both caffeine and Capsicum annuum fruit powder lower blood glucose levels and increase brown adipose tissue temperature in healthy adult males. Front Physiol 2022;13:870154.
  • Jang C, Jalapu S, Thuzar M, Law PW, Jeavons S, Barclay JL, et al. Infrared thermography in the detection of brown adipose tissue in humans. Physiol Rep 2014;2(11):e12167.
  • Sun L, Verma S, Michael N, Chan SP, Yan J, Sadananthan SA, et al. Brown adipose tissue: multimodality evaluation by PET, MRI, infrared thermography, and whole-body calorimetry (TACTICAL-II). Obesity (Silver Spring) 2019;27(9):1434-42.
  • Heenan KA, Carrillo AE, Fulton JL, Ryan EJ, Edsall JR, Rigopoulos D, et al. Effects of nutrition/diet on brown adipose tissue in humans: a systematic review and meta-analysis. Nutrients 2020;12(9):2752.
  • Yoneshiro T, Aita S, Kawai Y, Iwanaga T, Saito M. Nonpungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans. Am J Clin Nutr 2012;95(4):845-50.
  • Carey AL, Formosa MF, Van Every B, Bertovic D, Eikelis N, Lambert GW, et al. Ephedrine activates brown adipose tissue in lean but not obese humans. Diabetologia 2013;56(1):147-55.
  • Reis HHT, Brito CJ, Sillero-Quintana M, Silva AGD, Fernández-Cuevas I, Cerqueira MS, Werneck FZ, Marins JCB. Can the body mass index influence the skin temperature of adolescents assessed by infrared thermography? J Therm Biol. 2023;111:103424. doi: 10.1016/j.jtherbio.2022.103424.
  • Gatidis S, Schmidt H, Pfannenberg CA, Nikolaou K, Schick F, Schwenzer NF. Is it possible to detect activated brown adipose tissue in humans using single-time-point infrared thermography under thermoneutral conditions? Impact of BMI and subcutaneous adipose tissue thickness. PLoS One. 2016;11(3):e0151152. doi: 10.1371/journal.pone.0151152.
  • van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360(15):1500-8. doi: 10.1056/NEJMoa0808718.
  • Kwok TC, Ramage LE, Kelman A, Semple RK, Stimson RH. Measurements of skin temperature in lean and obese humans at thermoneutrality and following cold exposure. Endocr Abstr. 2021;77:P185. Available from: https://www.endocrine-abstracts.org/ea/0077/ea0077p185
  • Martínez-Téllez B, Pérez-Bey A, Sánchez-Delgado G, Acosta FM, Corral-Pérez J, Amaro-Gahete FJ, et al. Concurrent validity of supraclavicular skin temperature measured with iButtons and infrared thermography as a surrogate marker of brown adipose tissue. J Therm Biol. 2019;82:186-96. doi: 10.1016/j.jtherbio.2019.04.009.
  • Boon MR, Bakker LE, van der Linden RA, Pereira Arias-Bouda LM, Smit F, Verberne HJ, et al. Supraclavicular skin temperature as a measure of 18F-FDG uptake by BAT in human subjects. PLoS One. 2014;9(6):e98822. doi: 10.1371/journal.pone.0098822.
  • Nirengi S, Fuse S, Amagasa S, Homma T, Kime R, Kuroiwa M, et al. Applicability of supraclavicular oxygenated and total hemoglobin evaluated by near-infrared time-resolved spectroscopy as indicators of brown adipose tissue density in humans. Int J Mol Sci. 2019;20(9):2214. doi: 10.3390/ijms20092214.
  • Herz CT, Kulterer OC, Prager M, Marculescu R, Langer FB, Prager G, et al. Sex differences in brown adipose tissue activity and cold-induced thermogenesis. Mol Cell Endocrinol 2021;534:111365.
  • Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004;89(6):2548-56.
  • Yach D, Stuckler D, Brownell KD. Epidemiologic and economic consequences of the global epidemics of obesity and diabetes. Nat Med 2006;12(1):62-6.
  • de Morentin PBM, González-García I, Martins L, Lage R, Fernandez-Mallo D, Martínez-Sánchez N, et al. Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK. Cell Metab 2014;20(1):41-53.
  • González-García I, Contreras C, Estevez-Salguero A, Ruíz-Pino F, Colsh B, Pensado I, et al. Estradiol regulates energy balance by ameliorating hypothalamic ceramide-induced ER stress. Cell Rep 2018;25(2):413-23.
  • Santos RS, Frank AP, Fátima LA, Palmer BF, Öz OK, Clegg DJ. Activation of estrogen receptor alpha induces beiging of adipocytes. Mol Metab 2018;18:51-9.
  • Zhou Z, Moore TM, Drew BG, Ribas V, Wanagat J, Civelek M, et al. Estrogen receptor α controls metabolism in white and brown adipocytes by regulating Polg1 and mitochondrial remodeling. Sci Transl Med 2020;12(555):eaax8096.
  • Rodríguez AM, Quevedo-Coli S, Roca P, Palou A. Sex-dependent dietary obesity, induction of UCPs, and leptin expression in rat adipose tissues. Obes Res 2001;9(9):579-88.
  • Valle A, Català-Niell A, Colom B, García-Palmer FJ, Oliver J, Roca P. Sex-related differences in energy balance in response to caloric restriction. Am J Physiol Endocrinol Metab 2005;289(1):E15-22.
  • Kim SN, Jung YS, Kwon HJ, Seong JK, Granneman JG, Lee YH. Sex differences in sympathetic innervation and browning of white adipose tissue of mice. Biol Sex Differ 2016;7:67.
  • Ouellet V, Routhier-Labadie A, Bellemare W, Lakhal-Chaieb L, Turcotte E, Carpentier AC, Richard D. Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans. J Clin Endocrinol Metab 2011;96(1):192-9.
  • Brendle C, Werner MK, Schmadl M, la Fougère C, Nikolaou K, Stefan N, Pfannenberg C. Correlation of brown adipose tissue with other body fat compartments and patient characteristics: a retrospective analysis in a large patient cohort using PET/CT. Acad Radiol 2018;25(1):102-10.
  • Malpique R, Gallego-Escuredo JM, Sebastiani G, Villarroya J, López-Bermejo A, de Zegher F, et al. Brown adipose tissue in prepubertal children: associations with sex, birthweight, and metabolic profile. Int J Obes (Lond) 2019;43(2):384-91.
  • Martinez-Tellez B, Sanchez-Delgado G, Boon MR, Rensen PCN, Llamas-Elvira JM, Ruiz JR. Distribution of brown adipose tissue radiodensity in young adults: implications for cold [18F]FDG-PET/CT analyses. Mol Imaging Biol 2020;22(2):425-33.
  • Robinson LJ, Law J, Astle V, Gutiérrez-García M, Ojha S, Symonds ME, et al. Sexual dimorphism of brown adipose tissue function. J Pediatr 2019;210:166-72.e1.
  • Fletcher LA, Kim K, Leitner BP, Cassimatis TM, O'Mara AE, Johnson JW, et al. Sexual dimorphisms in adult human brown adipose tissue. Obesity (Silver Spring) 2020;28(2):241-6.
  • Fuller-Jackson JP, Dordevic AL, Clarke IJ, Henry BA. Effect of sex and sex steroids on brown adipose tissue heat production in humans. Eur J Endocrinol 2020;183(3):343-55.
  • Marshall J. Thermal changes in the normal menstrual cycle. Br Med J 1963;1(5323):102-4.
  • Hessemer V, Brück K. Influence of menstrual cycle on shivering, skin blood flow, and sweating responses measured at night. J Appl Physiol (1985) 1985;59(6):1902-10.
  • Cagnacci A, Volpe A, Paoletti AM, Melis GB. Regulation of the 24-hour rhythm of body temperature in menstrual cycles with spontaneous and gonadotropin-induced ovulation. Fertil Steril 1997;68(3):421-5.
Toplam 71 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Spor ve Beslenme
Bölüm Araştırma Makaleleri
Yazarlar

Zeynep Ercan Karakaya 0000-0002-9958-5728

Elif Günalan 0000-0002-3644-5066

Hayrettin Mutlu 0000-0002-6560-5831

Yayımlanma Tarihi 10 Haziran 2025
Gönderilme Tarihi 14 Nisan 2025
Kabul Tarihi 15 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 2

Kaynak Göster

APA Ercan Karakaya, Z., Günalan, E., & Mutlu, H. (2025). Cinsiyetin Kafeinle İndüklenen Kahverengi Yağ Doku Aktivasyonuna Etkisinin Kızılötesi Termografiyle İncelenmesi: Ön Çalışma Raporu. Sağlık Profesyonelleri Araştırma Dergisi, 7(2), 87-98. https://doi.org/10.57224/jhpr.1675669
AMA Ercan Karakaya Z, Günalan E, Mutlu H. Cinsiyetin Kafeinle İndüklenen Kahverengi Yağ Doku Aktivasyonuna Etkisinin Kızılötesi Termografiyle İncelenmesi: Ön Çalışma Raporu. Sağlık Pro Arş Dergisi. Haziran 2025;7(2):87-98. doi:10.57224/jhpr.1675669
Chicago Ercan Karakaya, Zeynep, Elif Günalan, ve Hayrettin Mutlu. “Cinsiyetin Kafeinle İndüklenen Kahverengi Yağ Doku Aktivasyonuna Etkisinin Kızılötesi Termografiyle İncelenmesi: Ön Çalışma Raporu”. Sağlık Profesyonelleri Araştırma Dergisi 7, sy. 2 (Haziran 2025): 87-98. https://doi.org/10.57224/jhpr.1675669.
EndNote Ercan Karakaya Z, Günalan E, Mutlu H (01 Haziran 2025) Cinsiyetin Kafeinle İndüklenen Kahverengi Yağ Doku Aktivasyonuna Etkisinin Kızılötesi Termografiyle İncelenmesi: Ön Çalışma Raporu. Sağlık Profesyonelleri Araştırma Dergisi 7 2 87–98.
IEEE Z. Ercan Karakaya, E. Günalan, ve H. Mutlu, “Cinsiyetin Kafeinle İndüklenen Kahverengi Yağ Doku Aktivasyonuna Etkisinin Kızılötesi Termografiyle İncelenmesi: Ön Çalışma Raporu”, Sağlık Pro Arş Dergisi, c. 7, sy. 2, ss. 87–98, 2025, doi: 10.57224/jhpr.1675669.
ISNAD Ercan Karakaya, Zeynep vd. “Cinsiyetin Kafeinle İndüklenen Kahverengi Yağ Doku Aktivasyonuna Etkisinin Kızılötesi Termografiyle İncelenmesi: Ön Çalışma Raporu”. Sağlık Profesyonelleri Araştırma Dergisi 7/2 (Haziran2025), 87-98. https://doi.org/10.57224/jhpr.1675669.
JAMA Ercan Karakaya Z, Günalan E, Mutlu H. Cinsiyetin Kafeinle İndüklenen Kahverengi Yağ Doku Aktivasyonuna Etkisinin Kızılötesi Termografiyle İncelenmesi: Ön Çalışma Raporu. Sağlık Pro Arş Dergisi. 2025;7:87–98.
MLA Ercan Karakaya, Zeynep vd. “Cinsiyetin Kafeinle İndüklenen Kahverengi Yağ Doku Aktivasyonuna Etkisinin Kızılötesi Termografiyle İncelenmesi: Ön Çalışma Raporu”. Sağlık Profesyonelleri Araştırma Dergisi, c. 7, sy. 2, 2025, ss. 87-98, doi:10.57224/jhpr.1675669.
Vancouver Ercan Karakaya Z, Günalan E, Mutlu H. Cinsiyetin Kafeinle İndüklenen Kahverengi Yağ Doku Aktivasyonuna Etkisinin Kızılötesi Termografiyle İncelenmesi: Ön Çalışma Raporu. Sağlık Pro Arş Dergisi. 2025;7(2):87-98.

SAĞLIK PROFESYONELLERİ ARAŞTIRMA DERGİSİ / JOURNAL OF HEALTH PROFESSIONALS RESEARCH /J HEALTH PRO RES