Araştırma Makalesi
BibTex RIS Kaynak Göster

ChatGPT in dentomaxillofacial radiology education

Yıl 2024, , 224 - 229, 25.03.2024
https://doi.org/10.32322/jhsm.1419341

Öz

Aims: Artificial intelligence refers to the ability of computer systems or machines to perform cognitive functions and tasks that are similar to humans’. The aim of this study is to assess the knowledge and interpretative abilities of ChatGPT-versions by administering a dentomaxillofacial-radiology exam, comparing its performance with that of dentistry-students in Türkiye, and questioning the effectiveness of different languages.
Methods: It is a descriptive research comparing the data of ChatGPT versions 3.5 and 4 in both Turkish and English.
Results: Firstly 20 test-questions were evaluated. There is a significant difference(p<0.05) between the ChatGPT answer-sheets. ChatGPT-4 in English demonstrated the highest performance. Answer-sheets of chatGPT-4 in Turkish and English demonstrated the best performance with 5 correct answers in open-ended-questions. Based on the answers of 89 students to 20 test-questions, a class-profile was created. ChatGPT answer-sheets and class-profile were analyzed(p<0.05). Class-profile ranked first as ChatGPT-4 in English. A significant difference was found between the answer-sheets of ChatGPT and the class-
profile for open-ended-questions(p<0.10). The most successful results were obtained from ChatGPT-4 in Turkish and English, as well as the class-profile.
Conclusion: It is important to mention that ChatGPT 3.5’s knowledge and perception in the field of dentomaxillofacial radiology are not sufficient, particularly for use in examinations.

Kaynakça

  • 1. Huh S. Are ChatGPT’s knowledge and interpretation ability comparable to those of medical students in Korea for taking a parasitology examination?: a descriptive study. J Educ Eval Health Prof. 2023;20:1.
  • 2. Keser G, Pekiner FN. Attitudes, perceptions and knowledge regarding the future of artificial intelligence in oral radiology among a group of dental students in Turkey: a survey. Clin Exp Health Sci. 2021;11(4):637-641.
  • 3. Yüzbaşıoğlu E. Attitudes and perceptions of dental students towards artificial intelligence. J Dent Educ. 2021;85(1):60-68.
  • 4. Sur J, Bose S, Khan F, Dewangan D, Sawriya E, Roul A. Knowledge, attitudes, and perceptions regarding the future of artificial intelligence in oral radiology in India: a survey. Imaging Sci Dent. 2020;50(3):193-198.
  • 5. Thurzo A, Strunga M, Urban R, Surovková J, Afrashtehfar KI. Impact of artificial intelligence on dental education: a review and guide for curriculum update. Educ Sci. 2023;13(2):150.
  • 6. Gilson A, Safranek CW, Huang T, et al. How does ChatGPT perform on the united states medical licensing examination? The implications of large language models for medical education and knowledge assessment. JMIR Med Educ. 2023;9(1):e45312.
  • 7. Cascella M, Montomoli J, Bellini V, Bignami E. Evaluating the feasibility of chatgpt in healthcare: an analysis of multiple clinical and research scenarios. J Med Syst. 2023;47(1):33.
  • 8. Ollivier M, Pareek A, Dahmen J, et al. A deeper dive into ChatGPT: history, use and future perspectives for orthopaedic research. Knee Surg Sports Traumatol Arthrosc. 2023;31(4):1190-1192.
  • 9. Ding H, Wu J, Zhao W, Matinlinna JP, Burrow MF, Tsoi JK. Artificial intelligence in dentistry-a review. Front Dent Med. 2023;4:1085251. doi: 10.3389/fdmed.2023.1085251
  • 10. Agrawal P, Nikhade P. Artificial intelligence in dentistry: past, present, and future. Cureus. 2022;14(7):e27405.
  • 11. Nguyen TT, Larrivee N, Lee A, Bilaniuk O, Durand R. Use of artificial intelligence in dentistry: current clinical trends and research advances. J Can Dent Assoc. 2021;87(l7):1488-2159.
  • 12. Park SH, Do KH, Kim S, Park JH, Lim YS. What should medical students know about artificial intelligence in medicine? J Educ Eval Health Prof. 2019;16:18.
  • 13. Eysenbach G. The role of ChatGPT, generative language models, and artificial intelligence in medical education: a conversation with ChatGPT and a call for papers. JMIR Med Educ. 2023;9(1):e46885. doi: 10.2196/46885
  • 14. Fatani B. ChatGPT for future medical and dental research. Cureus. 2023;15(4):e37285. doi: 10.7759/cureus.37285
  • 15. Khurana S, Vaddi A. ChatGPT from the perspective of an academic oral and maxillofacial radiologist. Cureus. 2023;15(6):e40053. doi: 10.7759/cureus.40053
  • 16. Alkaissi H, McFarlane SI. Artificial hallucinations in ChatGPT: Implications in scientific writing. Cureus. 2023;15(2):e35179. doi: 10.7759/cureus.35179
  • 17. Ali SR, Dobbs TD, Hutchings HA, Whitaker IS. Using ChatGPT to write patient clinic letters. Lancet Digit Health. 2023;5(4):e179-e181. doi: 10.1016/S2589-7500(23)00048-1
  • 18. Salvagno M, Taccone FS, Gerli AG. Can artificial intelligence help for scientific writing? Crit Care. 2023;27(1):75. doi: 10.1186/s13054-023-04380-2
Yıl 2024, , 224 - 229, 25.03.2024
https://doi.org/10.32322/jhsm.1419341

Öz

Kaynakça

  • 1. Huh S. Are ChatGPT’s knowledge and interpretation ability comparable to those of medical students in Korea for taking a parasitology examination?: a descriptive study. J Educ Eval Health Prof. 2023;20:1.
  • 2. Keser G, Pekiner FN. Attitudes, perceptions and knowledge regarding the future of artificial intelligence in oral radiology among a group of dental students in Turkey: a survey. Clin Exp Health Sci. 2021;11(4):637-641.
  • 3. Yüzbaşıoğlu E. Attitudes and perceptions of dental students towards artificial intelligence. J Dent Educ. 2021;85(1):60-68.
  • 4. Sur J, Bose S, Khan F, Dewangan D, Sawriya E, Roul A. Knowledge, attitudes, and perceptions regarding the future of artificial intelligence in oral radiology in India: a survey. Imaging Sci Dent. 2020;50(3):193-198.
  • 5. Thurzo A, Strunga M, Urban R, Surovková J, Afrashtehfar KI. Impact of artificial intelligence on dental education: a review and guide for curriculum update. Educ Sci. 2023;13(2):150.
  • 6. Gilson A, Safranek CW, Huang T, et al. How does ChatGPT perform on the united states medical licensing examination? The implications of large language models for medical education and knowledge assessment. JMIR Med Educ. 2023;9(1):e45312.
  • 7. Cascella M, Montomoli J, Bellini V, Bignami E. Evaluating the feasibility of chatgpt in healthcare: an analysis of multiple clinical and research scenarios. J Med Syst. 2023;47(1):33.
  • 8. Ollivier M, Pareek A, Dahmen J, et al. A deeper dive into ChatGPT: history, use and future perspectives for orthopaedic research. Knee Surg Sports Traumatol Arthrosc. 2023;31(4):1190-1192.
  • 9. Ding H, Wu J, Zhao W, Matinlinna JP, Burrow MF, Tsoi JK. Artificial intelligence in dentistry-a review. Front Dent Med. 2023;4:1085251. doi: 10.3389/fdmed.2023.1085251
  • 10. Agrawal P, Nikhade P. Artificial intelligence in dentistry: past, present, and future. Cureus. 2022;14(7):e27405.
  • 11. Nguyen TT, Larrivee N, Lee A, Bilaniuk O, Durand R. Use of artificial intelligence in dentistry: current clinical trends and research advances. J Can Dent Assoc. 2021;87(l7):1488-2159.
  • 12. Park SH, Do KH, Kim S, Park JH, Lim YS. What should medical students know about artificial intelligence in medicine? J Educ Eval Health Prof. 2019;16:18.
  • 13. Eysenbach G. The role of ChatGPT, generative language models, and artificial intelligence in medical education: a conversation with ChatGPT and a call for papers. JMIR Med Educ. 2023;9(1):e46885. doi: 10.2196/46885
  • 14. Fatani B. ChatGPT for future medical and dental research. Cureus. 2023;15(4):e37285. doi: 10.7759/cureus.37285
  • 15. Khurana S, Vaddi A. ChatGPT from the perspective of an academic oral and maxillofacial radiologist. Cureus. 2023;15(6):e40053. doi: 10.7759/cureus.40053
  • 16. Alkaissi H, McFarlane SI. Artificial hallucinations in ChatGPT: Implications in scientific writing. Cureus. 2023;15(2):e35179. doi: 10.7759/cureus.35179
  • 17. Ali SR, Dobbs TD, Hutchings HA, Whitaker IS. Using ChatGPT to write patient clinic letters. Lancet Digit Health. 2023;5(4):e179-e181. doi: 10.1016/S2589-7500(23)00048-1
  • 18. Salvagno M, Taccone FS, Gerli AG. Can artificial intelligence help for scientific writing? Crit Care. 2023;27(1):75. doi: 10.1186/s13054-023-04380-2
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ağız, Diş ve Çene Radyolojisi
Bölüm Orijinal Makale
Yazarlar

Hilal Peker Öztürk 0000-0003-4774-6232

Hakan Avsever 0000-0002-2972-2547

Buğra Şenel 0000-0003-0378-6013

Şükran Ayran 0009-0003-5988-2685

Mustafa Çağrı Peker 0000-0001-7191-2646

Hatice Seda Özgedik 0000-0002-2052-0690

Nurten Baysal 0000-0003-0634-2012

Yayımlanma Tarihi 25 Mart 2024
Gönderilme Tarihi 14 Ocak 2024
Kabul Tarihi 18 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

AMA Öztürk HP, Avsever H, Şenel B, Ayran Ş, Peker MÇ, Özgedik HS, Baysal N. ChatGPT in dentomaxillofacial radiology education. J Health Sci Med /JHSM /jhsm. Mart 2024;7(2):224-229. doi:10.32322/jhsm.1419341

Üniversitelerarası Kurul (ÜAK) Eşdeğerliği:  Ulakbim TR Dizin'de olan dergilerde yayımlanan makale [10 PUAN] ve 1a, b, c hariç  uluslararası indekslerde (1d) olan dergilerde yayımlanan makale [5 PUAN]

Dahil olduğumuz İndeksler (Dizinler) ve Platformlar sayfanın en altındadır.

Not:
Dergimiz WOS indeksli değildir ve bu nedenle Q olarak sınıflandırılmamıştır.

Yüksek Öğretim Kurumu (YÖK) kriterlerine göre yağmacı/şüpheli dergiler hakkındaki kararları ile yazar aydınlatma metni ve dergi ücretlendirme politikasını tarayıcınızdan indirebilirsiniz. https://dergipark.org.tr/tr/journal/2316/file/4905/show 


Dergi Dizin ve Platformları

Dizinler; ULAKBİM TR Dizin, Index Copernicus, ICI World of Journals, DOAJ, Directory of Research Journals Indexing (DRJI), General Impact Factor, ASOS Index, WorldCat (OCLC), MIAR, EuroPub, OpenAIRE, Türkiye Citation Index, Türk Medline Index, InfoBase Index, Scilit, vs.

Platformlar; Google Scholar, CrossRef (DOI), ResearchBib, Open Access, COPE, ICMJE, NCBI, ORCID, Creative Commons vs.