Konferans Bildirisi
BibTex RIS Kaynak Göster

Gaz kromatografi-kütle spektrometresi ile gazdan arındırma ve tutma yöntemiyle Kocaeli bölgesi içme sularında trihalometan analizi

Yıl 2020, Cilt: 3 Sayı: 3, 269 - 277, 18.06.2020
https://doi.org/10.32322/jhsm.725795

Öz

Amaç: Bu çalışmada Kocaeli bölgesinde içme suyu arıtım proseslerinde kullanılan klor ve bileşiklerinin dezenfeksiyon işlemi sonrasında içme sularında oluşan trihalomethan (kloroform, tribromometan bromodikloromethan, dibromokloromethan) gibi uçucu organik bileşiklerin insan sağlığını ve içme suyu kalitesinin yapısını bozabilecek yan ürünlerin tespit edilmesi amaçlanmıştır.
Yöntem: Kocaeli bölgesinde yapılan çalışmalarda iki farklı noktadan (A-B) olmak üzere farklı günlerde alınan toplam 10 adet numune üzerinde analizler yapıldı. Analitiksel değerlendirmeler kantitatif olarak gaz kromatografi-kütle spektrometresi ile gazdan arındırma ve tutma cihazı ile gerçekleştirildi. Yapılan verifikasyon çalışmalarında on tekrarlı çalışmalar neticesinde ölçülebilir en düşük dedeksiyon limiti 0,010 µg/l ve ölçülebilir en düşük miktar limiti 0,051 µg/l olarak hesaplandı.
Bulgular: Her iki noktadan yapılan çalışmalarda A noktasından alınan 5 adet içme suyu numunelerinin toplam trihalometan miktarının; 32,81 µg/l (ppb), B noktasından alınan 5 adet içme suyu numunelerinin toplam trihalometan miktarının; 32,93 µg/l (ppb) olduğu gözlemlenmiştir. Yapılan çalışmalarda her iki noktadan alınan numunelerde coğrafi konumları farklı olmasına rağmen miktarsal olarak büyük farklılıklar olmadığı tespit edilmiştir.
Sonuç: Bu çalışma, ile yapılan analizler sonucunda uluslararası standartlarda yer alan Çevre Koruma Ajansı tarafından içme sularında klorlama sonucu oluşan toplam trihalometan miktarının yönetmeliklerde belirtilmiş olan 100 µg/l (ppb) limit değerinin altında kaldığı gözlemlendi. Dünya’da birçok ülkede kullanılan klorlama prosesinin oluşturduğu zararlı yan ürün miktarını en aza indirgemek ve içme suyu kalitesini arttırmak için, ileri oksidasyon proses türlerinden olan Ultrases, Hidrojen Peroksit (H2O2), Fenton vb. proseslerden faydalanılabilinir.

Kaynakça

  • 1. White GC, ed. The Handbook of Chlorination, 2nd ed., New York, Van Nostrand Reinhold, 1986.
  • 2. Bellar TA, Lichtenberg JJ. Determining volatile organics at micgram-per-liter levels by gas chromatography. J Am Water Work As 1974; 66: 739-44.
  • 3. Linge KL, Liew D, Kiristiana I, Cadee K, Charrois JWA, Joll CA. Thirty years of Australian disinfection by-product research: an overview of the changing research. Water 2015; 42:71–7.
  • 4. Nurden AT. Platelets, inflammation and tissue regeneration. Thromb Haemost 2011; 105: 13-33.
  • 5. Pavon J, Martin S, Pinto C, Cordero B. Determination of trihalomethanes in water samples: a review. Anal Chim Acta 2008; 629: 6–23.
  • 6. US EPA. Analysis of Trihalomethanes in Drinking Water By Liquid/Liquid Extraction. Genium Publishing Corporation; Schenectady, NY, USA: 1979. (EPA 500 Series).
  • 7. Cardador MJ, Serrano A, Gallego M. Simultaneous liquid–liquid microextraction/methylation for the determination of haloacetic acids in drinking waters by headspace gas chromatography. J Chromatogr A 2008; 1209: 61–9.
  • 8. Zoccolillo L, Amendola L, Cafaro C, Insogna S. Improved analysis of volatile halogenated hydrocarbons in water by purge-and-trap with gas chromatography and mass spectrometric detection. J Chromatogr A 2005; 1077: 181–7.
  • 9. ASTM. The ASTM standard practice for determining volatile organic compounds (VOC) contents of paints and related coating (D3960), American Society for Testing and Materials, Philadelphia, USA, 1989.
  • 10. WHO. Indoor air quality: Organic pollutants, Report on a WHO Meeting, World Health Organization, Berlin, 1987.
  • 11. ATSDR. Agency for toxic substances and registry, U.S. Public Health Service, U.S. Department of Health and Human Service, Atlanta, 1997.
  • 12. EPA. Volatile organic compounds in water, soil, soil gas, and air by direct sampling ion trap mass spectrometry (DSITMS), US Public Health Service, US Department of Health and Human Service, USA, 2002.
  • 13. Daubert TE, Danner RP. Physical and Thermodynamic Properties of Pure Chemicals Data Compilation, Taylor and Francis, Washington, 1989.
  • 14. Callahan MA, Slimak NW, Gabel NW, et al. Water-Related Environmental Fate of 129 Priority Pollutants, US Environmental Protection Agency, Washington, 1989, 1-59.
  • 15. Erol A, Ayla D, Mustafa Ö. Polisiklik aromatik hidrokarbonlar ve sağlığa etkileri. Mehmet Akif Üni Fen Bilim Enst Derg 2012; 3: 45-52.
  • 16. Ayers MA, Kennen JG, Stackelberg PE. Water Quality in the Long Island–New Jersey Coastal Drainages New Jersey and New York, US Geological Survey Circular 1201, New Jersey, 2000.
  • 17. Bloemen HJ, Burn J. Chemistry and Analyses of Volatile Organic Compounds in the Environment, Blackie Academic and Professional, Glasgow, Scotland, 1993, pp. 290.
  • 18. Smith JA, Witkowski PJ, Fusillo TV. Manmade Organic Compounds in The Surface Waters Of The United States-A Review Of Current Understanding, U.S. Geological Survey Circular 1007, New Jersey, 1988. pp. 92.
  • 19. Navalon S, Alvaro M, Garcia H. Carbohydrates as trihalomethanes precursors. influence of pH and the presence of Cl(-) and Br(-) on trihalomethane formation potential. Water Res 2008; 42: 3990–4000.
  • 20. Sadiq R, Rodriguez MJ. Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: areview. Sci Total Environ 2004; 321: 21–46.
  • 21. McFadyen JD, Kaplan ZS. Platelets are not just for clots. Transfus Med Rev 2015; 29: 110.
  • 22. Alicia C. DBP formation during chlorination. J AWWA 2000; 92; 76-90.
  • 23. Chen C, Zhang X, Zhu L, He W, Han H. Changes in different organic matter fractions during conventional treatment and advanced treatment. J Environ Sci 2011; 23: 582–6.
  • 24. Baytak D, Sofuoglu A, Inal F, Sofuoglu SC. Seasonal variation in drinking water concentrations of disinfection by-products in İzmir and associated human health risks. Science of the Total Environment 2008; 407: 286-96.
  • 25. Fazlzadeh Davil M, Mahvi AH, Mazloomi S, Nabizadeh R, Younesian M, Nazmara S. Concentration of trihalomethanes in tehran drinking water. Int J Hyg Environ Health 2011; 2: 45-52.
  • 26. Asgari GH, Ghanizadeh A, Mohammadi S. Adsorption of humic acid from aqueous solutions onto modified pumice with hexadecyl trimethyl ammonium bromide. J Babol Univ Med Sci 2012; 14: 14-22.
  • 27. Wells WW, Benjamin MM, Korshin GV. Effects of thermal treatment on halogenated disinfection by-products ın drinking water. Wat Res 2001; 35: 3545–50.
  • 28. Krasner SW, Wright JM. The effect of boiling water on disinfection by-product exposure, Water Res 2005; 39: 855–64.
  • 29. Kampioti AA, Stephanou EG. The impact of bromide on the formation of neutral and acidic disinfection by-products(DBPs) in Mediterranean chlorinated drinking water, Water Res 2002; 36: 2596–606.
  • 30. Kim J, Chung Y, Shin D, et al. Chlorination by-products in surface water treatment process. Desalination 2003; 151: 1–9.
  • 31. Hladik ML, Focazio MJ, Engle M. Discharges of produced waters from oil and gas extraction via wastewater treatmentplants are sources of disinfection by-products to receiving streams. Sci Total Environ 2014; 466–467: 1085–93.
  • 32. Verschueren K. Handbook of Environmental Data on Organic Chemicals, Van Nostrand Rheinhold Company Inc., New York, 1983.
  • 33. Toroz I, Uyak V. Seasonal variations of trihalomethanes (THMs) in water distribution networks of Istanbul City. Desalination 2005; 176: 127-41.
  • 34. Özdoğan N, Özdemir K. İçme suyu kaynaklarındaki trihalometan oluşumunun incelenmesi. Avrupa Bilim ve Teknoloji Derg 2019; 17: 776-85.
  • 35. Özdemir K, Toröz I, Uyak V. Relationship among chlorine dose, reaction time and bromide ıons on trihalomethane formation in drinking water sources in Istanbul, Turkey. Asian J Chem 2014; 26: 6935-9.

Analysis of trihalomethanes in potable waters of Kocaeli region by gas chromatography-mass spectrometry purge and trap

Yıl 2020, Cilt: 3 Sayı: 3, 269 - 277, 18.06.2020
https://doi.org/10.32322/jhsm.725795

Öz

Aim: In this study, it was aimed to determine the by-products of volatile organic compounds such as trihalomethan (chloroform, tribromomethane bromodichloromethan, dibromochloromethan), which are formed in drinking water after disinfection of chlorine and its compounds used in drinking water treatment processes.
Method: In the studies carried out in the Kocaeli region, analyzes were performed on a total of 10 samples from two different points (A-B) on different days. Analytical evaluations were performed quantitatively with the gas chromatography-mass spectrometry purge and trap device. In the verification studies, the lowest measurable detection limit was calculated as 0.010 µg/l and the lowest measurable limit was 0.051 µg/l as a result of ten repetitive studies.
Results: In the studies conducted from both points, the total trihalomethane amount of 5 drinking water samples taken from Point A; 32.81 µg/l (ppb), total trihalomethane amount of 5 drinking water samples taken from point B; it has been observed to be 32.93 µg/l (ppb). In the studies conducted, it was determined that there is no large amount of differences in the samples taken from both points, although their geographical locations were different.
Conclusion: As a result of this analysis, it was observed that the total amount of trihalomethane formed as a result of chlorination in drinking water by the Environmental Protection Agency, which is included in international standards, remaining below the limit value of 100 µg/l (ppb) specified in the regulations. Advance oxidation processes can be used to improve drinking water quality.

Kaynakça

  • 1. White GC, ed. The Handbook of Chlorination, 2nd ed., New York, Van Nostrand Reinhold, 1986.
  • 2. Bellar TA, Lichtenberg JJ. Determining volatile organics at micgram-per-liter levels by gas chromatography. J Am Water Work As 1974; 66: 739-44.
  • 3. Linge KL, Liew D, Kiristiana I, Cadee K, Charrois JWA, Joll CA. Thirty years of Australian disinfection by-product research: an overview of the changing research. Water 2015; 42:71–7.
  • 4. Nurden AT. Platelets, inflammation and tissue regeneration. Thromb Haemost 2011; 105: 13-33.
  • 5. Pavon J, Martin S, Pinto C, Cordero B. Determination of trihalomethanes in water samples: a review. Anal Chim Acta 2008; 629: 6–23.
  • 6. US EPA. Analysis of Trihalomethanes in Drinking Water By Liquid/Liquid Extraction. Genium Publishing Corporation; Schenectady, NY, USA: 1979. (EPA 500 Series).
  • 7. Cardador MJ, Serrano A, Gallego M. Simultaneous liquid–liquid microextraction/methylation for the determination of haloacetic acids in drinking waters by headspace gas chromatography. J Chromatogr A 2008; 1209: 61–9.
  • 8. Zoccolillo L, Amendola L, Cafaro C, Insogna S. Improved analysis of volatile halogenated hydrocarbons in water by purge-and-trap with gas chromatography and mass spectrometric detection. J Chromatogr A 2005; 1077: 181–7.
  • 9. ASTM. The ASTM standard practice for determining volatile organic compounds (VOC) contents of paints and related coating (D3960), American Society for Testing and Materials, Philadelphia, USA, 1989.
  • 10. WHO. Indoor air quality: Organic pollutants, Report on a WHO Meeting, World Health Organization, Berlin, 1987.
  • 11. ATSDR. Agency for toxic substances and registry, U.S. Public Health Service, U.S. Department of Health and Human Service, Atlanta, 1997.
  • 12. EPA. Volatile organic compounds in water, soil, soil gas, and air by direct sampling ion trap mass spectrometry (DSITMS), US Public Health Service, US Department of Health and Human Service, USA, 2002.
  • 13. Daubert TE, Danner RP. Physical and Thermodynamic Properties of Pure Chemicals Data Compilation, Taylor and Francis, Washington, 1989.
  • 14. Callahan MA, Slimak NW, Gabel NW, et al. Water-Related Environmental Fate of 129 Priority Pollutants, US Environmental Protection Agency, Washington, 1989, 1-59.
  • 15. Erol A, Ayla D, Mustafa Ö. Polisiklik aromatik hidrokarbonlar ve sağlığa etkileri. Mehmet Akif Üni Fen Bilim Enst Derg 2012; 3: 45-52.
  • 16. Ayers MA, Kennen JG, Stackelberg PE. Water Quality in the Long Island–New Jersey Coastal Drainages New Jersey and New York, US Geological Survey Circular 1201, New Jersey, 2000.
  • 17. Bloemen HJ, Burn J. Chemistry and Analyses of Volatile Organic Compounds in the Environment, Blackie Academic and Professional, Glasgow, Scotland, 1993, pp. 290.
  • 18. Smith JA, Witkowski PJ, Fusillo TV. Manmade Organic Compounds in The Surface Waters Of The United States-A Review Of Current Understanding, U.S. Geological Survey Circular 1007, New Jersey, 1988. pp. 92.
  • 19. Navalon S, Alvaro M, Garcia H. Carbohydrates as trihalomethanes precursors. influence of pH and the presence of Cl(-) and Br(-) on trihalomethane formation potential. Water Res 2008; 42: 3990–4000.
  • 20. Sadiq R, Rodriguez MJ. Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: areview. Sci Total Environ 2004; 321: 21–46.
  • 21. McFadyen JD, Kaplan ZS. Platelets are not just for clots. Transfus Med Rev 2015; 29: 110.
  • 22. Alicia C. DBP formation during chlorination. J AWWA 2000; 92; 76-90.
  • 23. Chen C, Zhang X, Zhu L, He W, Han H. Changes in different organic matter fractions during conventional treatment and advanced treatment. J Environ Sci 2011; 23: 582–6.
  • 24. Baytak D, Sofuoglu A, Inal F, Sofuoglu SC. Seasonal variation in drinking water concentrations of disinfection by-products in İzmir and associated human health risks. Science of the Total Environment 2008; 407: 286-96.
  • 25. Fazlzadeh Davil M, Mahvi AH, Mazloomi S, Nabizadeh R, Younesian M, Nazmara S. Concentration of trihalomethanes in tehran drinking water. Int J Hyg Environ Health 2011; 2: 45-52.
  • 26. Asgari GH, Ghanizadeh A, Mohammadi S. Adsorption of humic acid from aqueous solutions onto modified pumice with hexadecyl trimethyl ammonium bromide. J Babol Univ Med Sci 2012; 14: 14-22.
  • 27. Wells WW, Benjamin MM, Korshin GV. Effects of thermal treatment on halogenated disinfection by-products ın drinking water. Wat Res 2001; 35: 3545–50.
  • 28. Krasner SW, Wright JM. The effect of boiling water on disinfection by-product exposure, Water Res 2005; 39: 855–64.
  • 29. Kampioti AA, Stephanou EG. The impact of bromide on the formation of neutral and acidic disinfection by-products(DBPs) in Mediterranean chlorinated drinking water, Water Res 2002; 36: 2596–606.
  • 30. Kim J, Chung Y, Shin D, et al. Chlorination by-products in surface water treatment process. Desalination 2003; 151: 1–9.
  • 31. Hladik ML, Focazio MJ, Engle M. Discharges of produced waters from oil and gas extraction via wastewater treatmentplants are sources of disinfection by-products to receiving streams. Sci Total Environ 2014; 466–467: 1085–93.
  • 32. Verschueren K. Handbook of Environmental Data on Organic Chemicals, Van Nostrand Rheinhold Company Inc., New York, 1983.
  • 33. Toroz I, Uyak V. Seasonal variations of trihalomethanes (THMs) in water distribution networks of Istanbul City. Desalination 2005; 176: 127-41.
  • 34. Özdoğan N, Özdemir K. İçme suyu kaynaklarındaki trihalometan oluşumunun incelenmesi. Avrupa Bilim ve Teknoloji Derg 2019; 17: 776-85.
  • 35. Özdemir K, Toröz I, Uyak V. Relationship among chlorine dose, reaction time and bromide ıons on trihalomethane formation in drinking water sources in Istanbul, Turkey. Asian J Chem 2014; 26: 6935-9.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Orijinal Makale
Yazarlar

İsmail Sunar 0000-0002-2126-0210

Mahmut Kopan Bu kişi benim 0000-0001-7961-4897

Soner Akgün Bu kişi benim 0000-0003-1458-4994

Yayımlanma Tarihi 18 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: 3

Kaynak Göster

AMA Sunar İ, Kopan M, Akgün S. Gaz kromatografi-kütle spektrometresi ile gazdan arındırma ve tutma yöntemiyle Kocaeli bölgesi içme sularında trihalometan analizi. J Health Sci Med /JHSM /jhsm. Haziran 2020;3(3):269-277. doi:10.32322/jhsm.725795

Üniversitelerarası Kurul (ÜAK) Eşdeğerliği:  Ulakbim TR Dizin'de olan dergilerde yayımlanan makale [10 PUAN] ve 1a, b, c hariç  uluslararası indekslerde (1d) olan dergilerde yayımlanan makale [5 PUAN]

Dahil olduğumuz İndeksler (Dizinler) ve Platformlar sayfanın en altındadır.

Not:
Dergimiz WOS indeksli değildir ve bu nedenle Q olarak sınıflandırılmamıştır.

Yüksek Öğretim Kurumu (YÖK) kriterlerine göre yağmacı/şüpheli dergiler hakkındaki kararları ile yazar aydınlatma metni ve dergi ücretlendirme politikasını tarayıcınızdan indirebilirsiniz. https://dergipark.org.tr/tr/journal/2316/file/4905/show 


Dergi Dizin ve Platformları

Dizinler; ULAKBİM TR Dizin, Index Copernicus, ICI World of Journals, DOAJ, Directory of Research Journals Indexing (DRJI), General Impact Factor, ASOS Index, WorldCat (OCLC), MIAR, EuroPub, OpenAIRE, Türkiye Citation Index, Türk Medline Index, InfoBase Index, Scilit, vs.

Platformlar; Google Scholar, CrossRef (DOI), ResearchBib, Open Access, COPE, ICMJE, NCBI, ORCID, Creative Commons vs.