Review
BibTex RIS Cite
Year 2024, Volume: 7 Issue: 2, 236 - 243, 25.03.2024
https://doi.org/10.32322/jhsm.1436244

Abstract

References

  • 1. Elnour Z, Grethe H, Siddig K, et al. Malaria control and elimination in Kenya: economy-wide benefits and regional disparities. Malar J. 2023;22(1):117. doi: 10.1186/s12936-023-04505-6
  • 2. Bakari C, Jones S, Subramaniam G, et al. Community-based surveys for Plasmodium falciparum pfhrp2 and pfhrp3 gene deletions in selected regions of mainland Tanzania. Malar J. 2020;19(1):391. doi: 10.1101/2020.05.12.20097766
  • 3. Poti KE, Sullivan DJ, Dondorp AM, Woodrow CJ. HRP2: transforming malaria diagnosis, but with caveats. Trends Parasitol. 2020;36(2):112-126. doi: 10.1016/j.pt.2019.12.004
  • 4. World Health Organization. False-negative RDT results and P. falciparum histidine-rich protein 2/3 gene deletions. WHO. 2019;10(1):12.
  • 5. Mussa A, Talib M, Mohamed Z, Hajissa K. Genetic diversity of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and its effect on the performance of PfHRP2-based rapid diagnostic tests. BMC Res Notes. 2019;12(1):334.
  • 6. Parsel SM, Gustafson SA, Friedlander E, et al. Malaria over-diagnosis in Cameroon: Diagnostic accuracy of Fluorescence and Staining Technologies (FAST) Malaria Stain and LED microscopy versus Giemsa and bright field microscopy validated by polymerase chain reaction. Infect Dis Poverty. 2017;6(02):20-28. doi: 10.1186/s40249-017-0251-0
  • 7. Watson OJ, Sumner KM, Janko M, et al. False-negative malaria rapid diagnostic test results and their impact on community-based malaria surveys in sub-Saharan Africa. BMJ Glob Health. 2019;4(4):e001582. doi: 10.1136/bmjgh-2019-001582
  • 8. Thomson R, Parr JB, Cheng Q, Chenet S, Perkins M, Cunningham J. (2020). Prevalence of plasmodium falciparum lacking histidine-rich proteins 2 and 3: A systematic review. Bulletin WHO. 2020;98(8):558-568. doi: 10.2471/BLT.20.250621
  • 9. Kaaya RD, Kavishe RA, Tenu FF, et al. Deletions of the Plasmodium falciparum histidine-rich protein 2/3 genes are common in field isolates from north-eastern Tanzania. Scientif Rep. 2022;12(1):5802.
  • 10. Boadu NY, Amuasi J, Ansong D, Einsiedel E, Menon D, Yanow SK. Challenges with implementing malaria rapid diagnostic tests at primary care facilities in a Ghanaian district: a qualitative study. Malar J. 2016;15(1):126. doi: 10.1186/s12936-016-1174-0
  • 11. Kyabayinze DJ, Zongo I, Cunningham J, et al. HRP2 and pLDH-based rapid diagnostic tests, expert microscopy, and PCR for detection of malaria infection during pregnancy and at delivery in areas of varied transmission: a prospective cohort study in Burkina Faso and Uganda. PLoS One. 2016;11(7):e0156954.
  • 12. Korzeniewski K, Bylicka-szczepanowska E. Prevalence of asymptomatic malaria infections in seemingly healthy children, the rural Dzanga Sangha region, Central African Republic. Int J Environ Res Pub Health. 2021;18(2):814.
  • 13. Parr JB, Anderson O, Juliano JJ, Meshnick SR. Streamlined, PCR-based testing for pfhrp2- and pfhrp3-negative Plasmodium falciparum. Malar J. 2018;17(1):137. doi: 10.1186/s12936-018-2287-4
  • 14. Kamau A, Mtanje G, Mataza C, et al. Malaria infection, disease and mortality among children and adults on the coast of Kenya. Malar J. 2020;19(1):210.
  • 15. Nderu D, Kimani F, Karanja E, et al. Genetic diversity and population structure of Plasmodium falciparum in Kenyan–Ugandan border areas. Trop Med Int Health. 2019;24(5):647-656. doi: 10.1111/tmi.13223
  • 16. Kokwaro G. Ongoing challenges in the management of malaria. Malar J. 2009;8(1):S2 doi: 10.1186/1475-2875-8-S1-S2
  • 17. Iqbal J, Hira PR, Sher A, Al-Enezi AA. Affiliations expand diagnosis of imported malaria by Plasmodium lactate dehydrogenase (pLDH) and histidine-rich protein 2 (PfHRP-2)-based immunocapture assays. Am J Trop Med Hygiene. 2001;64(1):20-23. doi: 10.4269/ajtmh.2001.64.20
  • 18. Meatherall B, Preston K, Pillai DR. False positive malaria rapid diagnostic test in returning traveler with typhoid fever. BMC Infect Dis. 2014;14(1):377.
  • 19. Mihreteab S, Anderson K, Pasay C, et al. Epidemiology of mutant Plasmodium falciparum parasites lacking histidine-rich protein 2/3 genes in Eritrea 2 years after switching from HRP2-based RDTs. Scientif Rep. 2021;11(1):21082.
  • 20. Jones S, Subramaniam G, Plucinski MM, Patel D, Padilla J, Aidoo M, Talundzic E. One-step PCR: a novel protocol for determination of pfhrp2 deletion status in Plasmodium falciparum. PLoS One. 2020;15(7):e0236369. doi: 10.1371/journal.pone.0236369
  • 21. Wambani J, Okoth P. Impact of malaria diagnostic technologies on the disease burden in the sub-Saharan Africa. J Trop Med. 2022;2022:7324281. PMCID: PMC8964171. PMID: 35360189 doi: 10.1155/2022/7324281
  • 22. Roca-Feltrer A, Schellenberg JRA, Smith L, Carneiro I. A simple method for defining malaria seasonality. Malar J. 2009;8(1):276.
  • 23. Gamboa D, Ho MF, Bendezu J, et al. A large proportion of P. falciparum isolates in the Amazon region of Peru lack pfrp2 and pfrp3: implications for malaria rapid diagnostic tests. PLoS One. 2010;5(1):e8091. doi: 10.1371/journal.pone.0008091
  • 24. Akinyi S, Hayden T, Gamboa D, et al. Multiple genetic origins of histidine-rich protein 2 gene deletion in Plasmodium falciparum parasites from Peru. Scientif Rep. 2013;3(1):2797. doi: 10.1038/srep02797
  • 25. Mihreteab S, Anderson K, Pasay C, et al. Epidemiology of mutant Plasmodium falciparum parasites lacking histidine-rich protein 2/3 genes in Eritrea 2 years after switching from HRP2-based RDTs. Scientif Rep. 2021;11(1):21082.
  • 26. Nsobya SL, Walakira A, Namirembe E, et al. Deletions of pfhrp2 and pfhrp3 genes were uncommon in rapid diagnostic test-negative Plasmodium falciparum isolates from Uganda. Malar J. 2021;20(1):4.
  • 27. Bosco AB, Anderson K, Gresty K, et al. Molecular surveillance reveals the presence of pfhrp2 and pfhrp3 gene deletions in Plasmodium falciparum parasite populations in Uganda, 2017–2019. Malar J. 2020;19(1):300.
  • 28. Golassa L, Messele A, Amambua-Ngwa A, Swedberg G. High prevalence and extended deletions in Plasmodium falciparum hrp2/3 genomic loci in Ethiopia. PLoS One. 2020;15(11):e0241807. doi: 10.1371/journal.pone.0241807
  • 29. Jorgensen P, Chanthap LON, Rebueno A, Tsuyuoka R, Bell D. Malaria rapid diagnostic tests in tropical climates: the need for a cool chain. Am J Trop Med Hygiene. 2006;74(5):750-754.
  • 30. Albertini A, Lee E, Coulibaly SO, et al. Malaria rapid diagnostic test transport and storage conditions in Burkina Faso, Senegal, Ethiopia and the Philippines. Malar J. 2012;11(1):406.
  • 31. Baker J, Ho MF, Pelecanos A, et al. Global sequence variation in the histidine-rich proteins 2 and 3 of Plasmodium falciparum: implications for the performance of malaria rapid diagnostic tests. Malar J. 2010;9(1):129.
  • 32. WHO. Malaria Policy Advisory Committee Meeting, 14–16 September2016, Background document for Session 7; P. falciparum hrp2/3 gene deletions, conclusions and recommendations of a technical consultation. Geneva: World Health Organization, 2016. Available from: http://www.who.int/malaria/mpac/mpac-sept2016-hrp2-consultation-short-report-session7.pdf
  • 33. Gillet P, Maltha J, Hermans V, Ravinetto R, Bruggeman C, Jacobs J. Malaria rapid diagnostic kits : quality of packaging , design and labelling of boxes and components and readability and accuracy of information inserts. Malar J. 2011;10(1):39.
  • 34. Bosco AB, Nankabirwa JI, Yeka A, et al. Limitations of rapid diagnostic tests in malaria surveys in areas with varied transmission intensity in Uganda 2017-2019: implications for selection and use of HRP2. PLoS One. 2020;15(12):e0244457.
  • 35. Gillet P, Mori M, Van Esbroeck M, Ende JVD, Jacobs J. Assessment of the prozone effect in malaria rapid diagnostic tests. Malar J. 2009;8(1):271. doi: 10.1186/1475-2875-8-271
  • 36. Bell DR, Wilson DW, Martin LB. False-positive results of a plasmodium falciparum histidine-rich protein 2–detecting malaria rapid diagnostic test due to high sensitivity in a community with fluctuating low parasite density. Am J Trop Med Hygiene. 2005;73(1):199-203
  • 37. Bell D, Wongsrichanalai C, Barnwell JW. Ensuring quality and access for malaria diagnosis: how can it be achieved? Nature Rev Microbiol. 2006;4(9):682-695.
  • 38. Plucinski MM, Herman C, Jones S, et al. Screening for Pfhrp2/3-deleted plasmodium falciparum, non-falciparum, and low-density malaria infections by a multiplex antigen assay. J Infect Dis. 2019;219(3):437-447. doi: 10.1093/infdis/jiy525
  • 39. McCaffery JN, Nace D, Herman C, et al. Plasmodium falciparum pfhrp2 and pfhrp3 gene deletions among patients in the DRC enrolled from 2017 to 2018. Scientif Rep. 2021;11(1):22979.
  • 40. Thomson R, Beshir KB, Cunningham J, et al. pfhrp2 and pfhrp3 gene deletions that affect malaria rapid diagnostic tests for plasmodium falciparum: analysis of archived blood samples from 3 African countries. J Infect Dis. 2019;220(9):1444-1452. doi: 10.1093/infdis/jiz335

Meta-analytic review on the impact of factors that affect performance of malaria rapid diagnostic test in Africa

Year 2024, Volume: 7 Issue: 2, 236 - 243, 25.03.2024
https://doi.org/10.32322/jhsm.1436244

Abstract

Timely, accurate diagnosis and treatment has improved malaria case management. Malaria Rapid Diagnostic Test (mRDT) kits are largely used in malaria diagnosis. Their performance is compromised by factors related to gene deletions, parasite density, quality of the kit, poor storage conditions and end-user inefficiencies hence diagnosis gives either positive, negative, false negative (FN) or false positive (FP) which defines consequent management strategies. This review assessed reports on prevalence of the Plasmodium falciparum histidine rich protein 2/3 (Pfhrp2/3) gene deletions in malaria infected populations in Africa and the risk of mRDT failure to identify malaria positive cases. Preferred Reporting Items for Systematic Meta-Analysis (PRISMA) statement was used for data collection. Literature search was done using Google and Mendel search for data published in a malaria journal, Journal of infectious diseases, scientific reports, Annals of Ibadan postgraduate medicine, and BMC journals published between 2019 and 2023. Fifty eight reports were identified were screened and tested for eligibility.
Majority of studies described the consistent use of Pfhrp2/3 mRDT for malaria diagnosis in rural health facilities in Africa and nine reports met inclusion criteria for review. Five of them certified the world health organization’s sample criteria of ‘more than 350 sample’ to estimate the prevalence of Pfhrp2/3 gene deletions leading to declaration of false negative results of which one study posted FN outcome resulting from these deletions. Four out of nine studies did not meet this WHO criterion. This review affirmed presence of Pfhrp2/3 gene deletions challenges in Africa though other countries recorded the converse. Data was pooled using random effect models with Odds ratio and 95% confidence limit. The prevalence of the gene deletions was heterogeneous, ranging from 0% to 78.1%. The review found that an average prevalence of Pfhrp2/3 deletion as 26.2%. This was above the WHO standard recommended declaration value of 5%.; a factor that demonstrated setback to the use of mRDT in malaria endemic regions. Therefore alternative methods should be used where aspersions are cast on outcome of mRDT for
it will help improve malaria treatment, tracking and management.

Ethical Statement

This study was approved by National Commission for Science, Technology & Innovation (NACOSTI), Kenya and the Maseno University Scientific and Ethical Review committee.

Supporting Institution

This study is supported by Maseno University and the Kenya Medical Research Institute (KEMRI) Kisumu

Thanks

I would to thank the journal for giving us an opportunity to submit our manuscript for review and publication, J.K.Ongonda

References

  • 1. Elnour Z, Grethe H, Siddig K, et al. Malaria control and elimination in Kenya: economy-wide benefits and regional disparities. Malar J. 2023;22(1):117. doi: 10.1186/s12936-023-04505-6
  • 2. Bakari C, Jones S, Subramaniam G, et al. Community-based surveys for Plasmodium falciparum pfhrp2 and pfhrp3 gene deletions in selected regions of mainland Tanzania. Malar J. 2020;19(1):391. doi: 10.1101/2020.05.12.20097766
  • 3. Poti KE, Sullivan DJ, Dondorp AM, Woodrow CJ. HRP2: transforming malaria diagnosis, but with caveats. Trends Parasitol. 2020;36(2):112-126. doi: 10.1016/j.pt.2019.12.004
  • 4. World Health Organization. False-negative RDT results and P. falciparum histidine-rich protein 2/3 gene deletions. WHO. 2019;10(1):12.
  • 5. Mussa A, Talib M, Mohamed Z, Hajissa K. Genetic diversity of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and its effect on the performance of PfHRP2-based rapid diagnostic tests. BMC Res Notes. 2019;12(1):334.
  • 6. Parsel SM, Gustafson SA, Friedlander E, et al. Malaria over-diagnosis in Cameroon: Diagnostic accuracy of Fluorescence and Staining Technologies (FAST) Malaria Stain and LED microscopy versus Giemsa and bright field microscopy validated by polymerase chain reaction. Infect Dis Poverty. 2017;6(02):20-28. doi: 10.1186/s40249-017-0251-0
  • 7. Watson OJ, Sumner KM, Janko M, et al. False-negative malaria rapid diagnostic test results and their impact on community-based malaria surveys in sub-Saharan Africa. BMJ Glob Health. 2019;4(4):e001582. doi: 10.1136/bmjgh-2019-001582
  • 8. Thomson R, Parr JB, Cheng Q, Chenet S, Perkins M, Cunningham J. (2020). Prevalence of plasmodium falciparum lacking histidine-rich proteins 2 and 3: A systematic review. Bulletin WHO. 2020;98(8):558-568. doi: 10.2471/BLT.20.250621
  • 9. Kaaya RD, Kavishe RA, Tenu FF, et al. Deletions of the Plasmodium falciparum histidine-rich protein 2/3 genes are common in field isolates from north-eastern Tanzania. Scientif Rep. 2022;12(1):5802.
  • 10. Boadu NY, Amuasi J, Ansong D, Einsiedel E, Menon D, Yanow SK. Challenges with implementing malaria rapid diagnostic tests at primary care facilities in a Ghanaian district: a qualitative study. Malar J. 2016;15(1):126. doi: 10.1186/s12936-016-1174-0
  • 11. Kyabayinze DJ, Zongo I, Cunningham J, et al. HRP2 and pLDH-based rapid diagnostic tests, expert microscopy, and PCR for detection of malaria infection during pregnancy and at delivery in areas of varied transmission: a prospective cohort study in Burkina Faso and Uganda. PLoS One. 2016;11(7):e0156954.
  • 12. Korzeniewski K, Bylicka-szczepanowska E. Prevalence of asymptomatic malaria infections in seemingly healthy children, the rural Dzanga Sangha region, Central African Republic. Int J Environ Res Pub Health. 2021;18(2):814.
  • 13. Parr JB, Anderson O, Juliano JJ, Meshnick SR. Streamlined, PCR-based testing for pfhrp2- and pfhrp3-negative Plasmodium falciparum. Malar J. 2018;17(1):137. doi: 10.1186/s12936-018-2287-4
  • 14. Kamau A, Mtanje G, Mataza C, et al. Malaria infection, disease and mortality among children and adults on the coast of Kenya. Malar J. 2020;19(1):210.
  • 15. Nderu D, Kimani F, Karanja E, et al. Genetic diversity and population structure of Plasmodium falciparum in Kenyan–Ugandan border areas. Trop Med Int Health. 2019;24(5):647-656. doi: 10.1111/tmi.13223
  • 16. Kokwaro G. Ongoing challenges in the management of malaria. Malar J. 2009;8(1):S2 doi: 10.1186/1475-2875-8-S1-S2
  • 17. Iqbal J, Hira PR, Sher A, Al-Enezi AA. Affiliations expand diagnosis of imported malaria by Plasmodium lactate dehydrogenase (pLDH) and histidine-rich protein 2 (PfHRP-2)-based immunocapture assays. Am J Trop Med Hygiene. 2001;64(1):20-23. doi: 10.4269/ajtmh.2001.64.20
  • 18. Meatherall B, Preston K, Pillai DR. False positive malaria rapid diagnostic test in returning traveler with typhoid fever. BMC Infect Dis. 2014;14(1):377.
  • 19. Mihreteab S, Anderson K, Pasay C, et al. Epidemiology of mutant Plasmodium falciparum parasites lacking histidine-rich protein 2/3 genes in Eritrea 2 years after switching from HRP2-based RDTs. Scientif Rep. 2021;11(1):21082.
  • 20. Jones S, Subramaniam G, Plucinski MM, Patel D, Padilla J, Aidoo M, Talundzic E. One-step PCR: a novel protocol for determination of pfhrp2 deletion status in Plasmodium falciparum. PLoS One. 2020;15(7):e0236369. doi: 10.1371/journal.pone.0236369
  • 21. Wambani J, Okoth P. Impact of malaria diagnostic technologies on the disease burden in the sub-Saharan Africa. J Trop Med. 2022;2022:7324281. PMCID: PMC8964171. PMID: 35360189 doi: 10.1155/2022/7324281
  • 22. Roca-Feltrer A, Schellenberg JRA, Smith L, Carneiro I. A simple method for defining malaria seasonality. Malar J. 2009;8(1):276.
  • 23. Gamboa D, Ho MF, Bendezu J, et al. A large proportion of P. falciparum isolates in the Amazon region of Peru lack pfrp2 and pfrp3: implications for malaria rapid diagnostic tests. PLoS One. 2010;5(1):e8091. doi: 10.1371/journal.pone.0008091
  • 24. Akinyi S, Hayden T, Gamboa D, et al. Multiple genetic origins of histidine-rich protein 2 gene deletion in Plasmodium falciparum parasites from Peru. Scientif Rep. 2013;3(1):2797. doi: 10.1038/srep02797
  • 25. Mihreteab S, Anderson K, Pasay C, et al. Epidemiology of mutant Plasmodium falciparum parasites lacking histidine-rich protein 2/3 genes in Eritrea 2 years after switching from HRP2-based RDTs. Scientif Rep. 2021;11(1):21082.
  • 26. Nsobya SL, Walakira A, Namirembe E, et al. Deletions of pfhrp2 and pfhrp3 genes were uncommon in rapid diagnostic test-negative Plasmodium falciparum isolates from Uganda. Malar J. 2021;20(1):4.
  • 27. Bosco AB, Anderson K, Gresty K, et al. Molecular surveillance reveals the presence of pfhrp2 and pfhrp3 gene deletions in Plasmodium falciparum parasite populations in Uganda, 2017–2019. Malar J. 2020;19(1):300.
  • 28. Golassa L, Messele A, Amambua-Ngwa A, Swedberg G. High prevalence and extended deletions in Plasmodium falciparum hrp2/3 genomic loci in Ethiopia. PLoS One. 2020;15(11):e0241807. doi: 10.1371/journal.pone.0241807
  • 29. Jorgensen P, Chanthap LON, Rebueno A, Tsuyuoka R, Bell D. Malaria rapid diagnostic tests in tropical climates: the need for a cool chain. Am J Trop Med Hygiene. 2006;74(5):750-754.
  • 30. Albertini A, Lee E, Coulibaly SO, et al. Malaria rapid diagnostic test transport and storage conditions in Burkina Faso, Senegal, Ethiopia and the Philippines. Malar J. 2012;11(1):406.
  • 31. Baker J, Ho MF, Pelecanos A, et al. Global sequence variation in the histidine-rich proteins 2 and 3 of Plasmodium falciparum: implications for the performance of malaria rapid diagnostic tests. Malar J. 2010;9(1):129.
  • 32. WHO. Malaria Policy Advisory Committee Meeting, 14–16 September2016, Background document for Session 7; P. falciparum hrp2/3 gene deletions, conclusions and recommendations of a technical consultation. Geneva: World Health Organization, 2016. Available from: http://www.who.int/malaria/mpac/mpac-sept2016-hrp2-consultation-short-report-session7.pdf
  • 33. Gillet P, Maltha J, Hermans V, Ravinetto R, Bruggeman C, Jacobs J. Malaria rapid diagnostic kits : quality of packaging , design and labelling of boxes and components and readability and accuracy of information inserts. Malar J. 2011;10(1):39.
  • 34. Bosco AB, Nankabirwa JI, Yeka A, et al. Limitations of rapid diagnostic tests in malaria surveys in areas with varied transmission intensity in Uganda 2017-2019: implications for selection and use of HRP2. PLoS One. 2020;15(12):e0244457.
  • 35. Gillet P, Mori M, Van Esbroeck M, Ende JVD, Jacobs J. Assessment of the prozone effect in malaria rapid diagnostic tests. Malar J. 2009;8(1):271. doi: 10.1186/1475-2875-8-271
  • 36. Bell DR, Wilson DW, Martin LB. False-positive results of a plasmodium falciparum histidine-rich protein 2–detecting malaria rapid diagnostic test due to high sensitivity in a community with fluctuating low parasite density. Am J Trop Med Hygiene. 2005;73(1):199-203
  • 37. Bell D, Wongsrichanalai C, Barnwell JW. Ensuring quality and access for malaria diagnosis: how can it be achieved? Nature Rev Microbiol. 2006;4(9):682-695.
  • 38. Plucinski MM, Herman C, Jones S, et al. Screening for Pfhrp2/3-deleted plasmodium falciparum, non-falciparum, and low-density malaria infections by a multiplex antigen assay. J Infect Dis. 2019;219(3):437-447. doi: 10.1093/infdis/jiy525
  • 39. McCaffery JN, Nace D, Herman C, et al. Plasmodium falciparum pfhrp2 and pfhrp3 gene deletions among patients in the DRC enrolled from 2017 to 2018. Scientif Rep. 2021;11(1):22979.
  • 40. Thomson R, Beshir KB, Cunningham J, et al. pfhrp2 and pfhrp3 gene deletions that affect malaria rapid diagnostic tests for plasmodium falciparum: analysis of archived blood samples from 3 African countries. J Infect Dis. 2019;220(9):1444-1452. doi: 10.1093/infdis/jiz335
There are 40 citations in total.

Details

Primary Language English
Subjects Infectious Diseases
Journal Section Review
Authors

John Khamala Ongonda 0000-0001-7897-8517

Cyrus Ayieko This is me 0000-0003-1673-225X

Stephen Miheso This is me 0009-0008-6344-5134

Publication Date March 25, 2024
Submission Date February 13, 2024
Acceptance Date March 13, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

AMA Ongonda JK, Ayieko C, Miheso S. Meta-analytic review on the impact of factors that affect performance of malaria rapid diagnostic test in Africa. J Health Sci Med / JHSM. March 2024;7(2):236-243. doi:10.32322/jhsm.1436244

Interuniversity Board (UAK) Equivalency: Article published in Ulakbim TR Index journal [10 POINTS], and Article published in other (excuding 1a, b, c) international indexed journal (1d) [5 POINTS].

The Directories (indexes) and Platforms we are included in are at the bottom of the page.

Note: Our journal is not WOS indexed and therefore is not classified as Q.

You can download Council of Higher Education (CoHG) [Yüksek Öğretim Kurumu (YÖK)] Criteria) decisions about predatory/questionable journals and the author's clarification text and journal charge policy from your browser. https://dergipark.org.tr/tr/journal/2316/file/4905/show







The indexes of the journal are ULAKBİM TR Dizin, Index Copernicus, ICI World of Journals, DOAJ, Directory of Research Journals Indexing (DRJI), General Impact Factor, ASOS Index, WorldCat (OCLC), MIAR, EuroPub, OpenAIRE, Türkiye Citation Index, Türk Medline Index, InfoBase Index, Scilit, etc.

       images?q=tbn:ANd9GcRB9r6zRLDl0Pz7om2DQkiTQXqDtuq64Eb1Qg&usqp=CAU

500px-WorldCat_logo.svg.png

atifdizini.png

logo_world_of_journals_no_margin.png

images?q=tbn%3AANd9GcTNpvUjQ4Ffc6uQBqMQrqYMR53c7bRqD9rohCINkko0Y1a_hPSn&usqp=CAU

doaj.png  

images?q=tbn:ANd9GcSpOQFsFv3RdX0lIQJC3SwkFIA-CceHin_ujli_JrqBy3A32A_Tx_oMoIZn96EcrpLwTQg&usqp=CAU

ici2.png

asos-index.png

drji.png





The platforms of the journal are Google Scholar, CrossRef (DOI), ResearchBib, Open Access, COPE, ICMJE, NCBI, ORCID, Creative Commons, etc.

COPE-logo-300x199.jpgimages?q=tbn:ANd9GcQR6_qdgvxMP9owgnYzJ1M6CS_XzR_d7orTjA&usqp=CAU

icmje_1_orig.png

cc.logo.large.png

ncbi.pngimages?q=tbn:ANd9GcRBcJw8ia8S9TI4Fun5vj3HPzEcEKIvF_jtnw&usqp=CAU

ORCID_logo.png

1*mvsP194Golg0Dmo2rjJ-oQ.jpeg


Our Journal using the DergiPark system indexed are;

Ulakbim TR Dizin,  Index Copernicus, ICI World of JournalsDirectory of Research Journals Indexing (DRJI), General Impact FactorASOS Index, OpenAIRE, MIAR,  EuroPub, WorldCat (OCLC)DOAJ,  Türkiye Citation Index, Türk Medline Index, InfoBase Index


Our Journal using the DergiPark system platforms are;

Google, Google Scholar, CrossRef (DOI), ResearchBib, ICJME, COPE, NCBI, ORCID, Creative Commons, Open Access, and etc.


Journal articles are evaluated as "Double-Blind Peer Review". 

Our journal has adopted the Open Access Policy and articles in JHSM are Open Access and fully comply with Open Access instructions. All articles in the system can be accessed and read without a journal user.  https//dergipark.org.tr/tr/pub/jhsm/page/9535

Journal charge policy   https://dergipark.org.tr/tr/pub/jhsm/page/10912


Editor List for 2022

Assoc. Prof. Alpaslan TANOĞLU (MD)  

Prof. Aydın ÇİFCİ (MD)

Prof. İbrahim Celalaettin HAZNEDAROĞLU (MD)

Prof. Murat KEKİLLİ (MD)

Prof. Yavuz BEYAZIT (MD) 

Prof. Ekrem ÜNAL (MD)

Prof. Ahmet EKEN (MD)

Assoc. Prof. Ercan YUVANÇ (MD)

Assoc. Prof. Bekir UÇAN (MD) 

Assoc. Prof. Mehmet Sinan DAL (MD)


Our journal has been indexed in DOAJ as of May 18, 2020.

Our journal has been indexed in TR-Dizin as of March 12, 2021.


17873

Articles published in the Journal of Health Sciences and Medicine have open access and are licensed under the Creative Commons CC BY-NC-ND 4.0 International License.