Araştırma Makalesi
BibTex RIS Kaynak Göster

In vitro kortikal kemik modellemesi için model malzeme olarak polietilen ve poliüretan blokların mekanik özelliklerinin karşılaştırılması

Yıl 2025, Cilt: 8 Sayı: 1, 34 - 39, 12.01.2025
https://doi.org/10.32322/jhsm.1591547

Öz

Amaçlar: Bu çalışmanın amacı, kortikal kemik modellemesinde kullanılmak üzere 60 pcf yoğunluktaki polietilen (PE) ve poliüretan (PU) blokları eğilme dayanımı (FS), elastik modül (EM), uzama ve sertlik açısından in vitro olarak karşılaştırmaktır.
Yöntemler: Bu in vitro çalışma Van Yüzüncü Yıl Üniversitesi Diş Hekimliği Fakültesi Ortodonti Anabilim Dalı'nda, çalışmanın test ve laboratuvar aşamaları ise Van Yüzüncü Yıl Üniversitesi Diş Hekimliği Fakültesi Araştırma Laboratuvarı'nda yürütülmüştür. Çalışmada 60 pcf (0,96 g/cm3) yoğunluktaki PE (grup 1) ve PU (grup 2) bloklar kullanılmıştır. 3 nokta eğme testi üniversal test cihazında yapılmış ve FS, EM, uzama ve sertlik ölçümleri yapılmıştır. Çalışmaya PU grubunda 15 ve PE grubunda 15 olmak üzere toplam 30 örnek dahil edilmiştir.
Sonuçlar: PE ve PU'nun FS ve sertlik değerleri istatistiksel olarak anlamlı bir fark göstermedi (p>0,05). PE ve PU grupları arasında EM ve uzama değerleri için istatistiksel olarak anlamlı farklar bulundu (p<0,05).
Sonuç: Bu çalışma, PE bloklarının in vitro kortikal kemik modellemesi için ortodontide kullanılabileceğini gösterdi.

Kaynakça

  • Paxton NC, Allenby MC, Lewis PM, Woodruff MA. Biomedical applications of polyethylene. Eur Polym J. 2019;118:412-428. doi:10.1016/ j.eurpolymj.2019.05.037
  • Murty MVS, Grulke EA, Bhattacharyya D. Influence of metallic additives on thermal degradation and liquefaction of high density polyethylene (HDPE). Polym Degrad Stab. 1998;61(3):421-430. doi:10.1016/ S0141-3910(97)00228-0
  • Ziąbka M, Mertas A, Król W, Bobrowski A, Chłopek J. High density polyethylene containing antibacterial silver nanoparticles for medical applications. Macromol Symp. 2012;315(1):218-225. doi:10.1002/masy. 201250527
  • Sgarioto M, Adhikari R, Gunatillake PA, et al. Properties and in vitro evaluation of high modulus biodegradable polyurethanes for applications in cardiovascular stents. J Biomed Mater Res B Appl Biomater. 2014;102(8):1711-1719. doi:10.1002/jbm.b.33137
  • Wang W, Wang C. Polyurethane for biomedical applications: a review of recent developments. Design Manufact Med Devic. 2012:115-151. doi:10. 1533/9781908818188.115
  • Miyashiro M, Suedam V, Moretti Neto RT, Ferreira PM, Rubo JH. Validation of an experimental polyurethane model for biomechanical studies on implant supported prosthesis - tension tests. J Appl Oral Sci. 2011;19(3):244-248. doi:10.1590/S1678-77572011000300012
  • Comuzzi L, Tumedei M, D’Arcangelo C, Piattelli A, Iezzi G. An in vitro analysis on polyurethane foam blocks of the insertion torque (IT) values, removal torque values (RTVs), and resonance frequency analysis (RFA) values in tapered and cylindrical implants. Int J Environ Res Public Health. 2021;18(17):9238. doi:10.3390/ijerph18179238
  • Marchi A, Camporesi M, Festa M, Salvatierra L, Izadi S, Farronato G. Drilling capability of orthodontic miniscrews: in vitro study. Dent J (Basel). 2020;8(4):138. doi:10.3390/dj8040138
  • Funk JR, Kerrigan JR, Crandall JR. Dynamic bending tolerance and elastic-plastic material properties of the human femur. Annu Proc Assoc Adv Automot Med. 2004;48:215-233.
  • ISO 178 | 3-Point Bend Test on Plastics. ISO 178 | 3-Point Bend Test on Plastics. Accessed July 1, 2024. https://www.zwickroell.com/industries/plastics/thermoplastics-and-thermosetting-molding-materials/3-point-flexure-test-iso-178/
  • Şen Z, Mangır A. Innovative equivalent elastic modulus based stress calculation methodology for reinforced concrete columns. Buildings. 2023;13(8):1962. doi:10.3390/buildings13081962
  • Kiran A, Amin F, Mahmood SJ, Ali A. Flexural strength of modified and unmodified acrylic denture base material after different processing techniques. J Ayub Med Coll Abbottabad JAMC. 2020;32(Suppl 1-4): S672-S677.
  • Hopkins KD, Weeks DL. Tests for normality and measures of skewness and kurtosis: their place in research reporting. Educ Psychol Meas. 1990; 50(4):717-729.
  • Misch CE, Qu Z, Bidez MW. Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg. 1999;57(6):700-706. doi:10.1016/s0278-2391(99) 90437-8
  • Shash YH, El-Wakad MT, Eldosoky MAA, Dohiem MM. Finite-element analysis of the effect of utilizing various material assemblies in “All on Four” on the stresses on mandible bone and prosthetic parts. Int J Polym Sci. 2022;2022(1):4520250. doi:10.1155/2022/4520250
  • Arendts FJ, Sigolotto C. Mechanical characteristics of the human mandible and study of in vivo behavior of compact bone tissue, a contribution to the description of biomechanics of the mandible--II. Biomed Tech (Berl). 1990;35(6):123-130. doi:10.1515/bmte.1990.35.6.123
  • Dechow PC, Schwartz-Dabney CL, Ashman RB. Elastic properties of the human mandibular corpus. Bone Biodyn Orthod Orthop Treat. 1992; 27:299-314.
  • Stoppie N, Van Cleynenbreugel T, Wevers M, Sloten JV, Naert I. The Validation of a Compression Testing Method for Cancellous Human Jawbone by High-resolution Finite Element Modeling. | International Journal of Oral &amp; Maxillofacial Implants | EBSCOhost. May 1, 2007. Accessed August 16, 2024. https://openurl.ebsco.com/contentitem/gcd: 36831462?sid=ebsco:plink:crawler&id=ebsco:gcd:36831462
  • Möhlhenrich SC, Heussen N, Modabber A, et al. Influence of bone density, screw size and surgical procedure on orthodontic mini-implant placement – part B: implant stability. Int J Oral Maxillofac Surg. 2021; 50(4):565-572. doi:10.1016/j.ijom.2020.07.003
  • Lim SA, Cha JY, Hwang CJ. Insertion torque of orthodontic miniscrews according to changes in shape, diameter and length. Angle Orthod. 2008;78(2):234-240. doi:10.2319/121206-507.1
  • Lin CL, Yu JH, Liu HL, Lin CH, Lin YS. Evaluation of contributions of orthodontic mini-screw design factors based on FE analysis and the Taguchi method. J Biomech. 2010;43(11):2174-2181. doi:10.1016/j.jbiomech.2010.03.043
  • ASTM F1839-08(2012)e1 - Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments. iTeh Standards. Accessed May 1, 2024. https://standards.iteh.ai/catalog/standards/astm/cf113305-7639-4a98-a065-f90df513a67d/astm-f1839-082012e1
  • Tepedino M, Masedu F, Chimenti C. Comparative evaluation of insertion torque and mechanical stability for self-tapping and self-drilling orthodontic miniscrews - an in vitro study. Head Face Med. 2017;13(1):10. doi:10.1186/s13005-017-0143-3
  • Erbay Elibol FK, Oflaz E, Buğra E, Orhan M, Demir T. Effect of cortical bone thickness and density on pullout strength of mini-implants: an experimental study. Am J Orthod Dentofacial Orthop. 2020;157(2):178-185. doi:10.1016/j.ajodo.2019.02.020
  • Jin J, Kim GT, Kwon JS, Choi SH. Effects of intrabony length and cortical bone density on the primary stability of orthodontic miniscrews. Materials. 2020;13(24):5615. doi:10.3390/ma13245615
  • Orhan ZD, Ciğerim L. A new approach to implant stability using a flexible synthetic silicate-additive beta-tricalcium phosphate-poly (D, L-lactide-co-caprolactone) bone graft: an in vitro study. Polymers. 2024; 16(8):1101. doi:10.3390/polym16081101
  • Roohani-Esfahani SI, Newman P, Zreiqat H. Design and fabrication of 3D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects. Sci Rep. 2016;6(1):19468. doi:10.1038/srep19468
  • Singh D, Rana A, Jhajhria SK, Garg B, Pandey PM, Kalyanasundaram D. Experimental assessment of biomechanical properties in human male elbow bone subjected to bending and compression loads. J Appl Biomater Funct Mater. 2019;17(2):1-13.

Comparison of mechanical properties of polyethylene and polyurethane blocks as model materials for in vitro cortical bone modelling

Yıl 2025, Cilt: 8 Sayı: 1, 34 - 39, 12.01.2025
https://doi.org/10.32322/jhsm.1591547

Öz

Aims: The aim of this study was to compare polyethylene (PE) and polyurethane (PU) blocks at a density of 60 pcf in terms of flexural strength (FS), elastic modulus (EM), elongation, and hardness in vitro for use in cortical bone modelling.
Methods: This in vitro study was conducted at Van Yüzüncü Yıl University Faculty of Dentistry Department of Orthodontics and the testing and laboratory phases of the study were conducted at Van Yüzüncü Yıl University Faculty of Dentistry Research Laboratory. PE (group 1) and PU (group 2) blocks with a density of 60 pcf (0.96 g/cm3) were used in the study. The 3-point bending test was performed on a universal testing machine and FS, EM, elongation, and hardness were measured. A total of 30 samples, 15 in the PU group and 15 in the PE group, were included in the study.
Results: The FS and hardness values of PE and PU did not show statistically significant differences (p>0.05). Statistically significant differences were found between the PE and PU groups for EM and elongation values (p<0.05).
Conclusion: This study showed that PE blocks can be used in orthodontics for in vitro cortical bone modelling.

Kaynakça

  • Paxton NC, Allenby MC, Lewis PM, Woodruff MA. Biomedical applications of polyethylene. Eur Polym J. 2019;118:412-428. doi:10.1016/ j.eurpolymj.2019.05.037
  • Murty MVS, Grulke EA, Bhattacharyya D. Influence of metallic additives on thermal degradation and liquefaction of high density polyethylene (HDPE). Polym Degrad Stab. 1998;61(3):421-430. doi:10.1016/ S0141-3910(97)00228-0
  • Ziąbka M, Mertas A, Król W, Bobrowski A, Chłopek J. High density polyethylene containing antibacterial silver nanoparticles for medical applications. Macromol Symp. 2012;315(1):218-225. doi:10.1002/masy. 201250527
  • Sgarioto M, Adhikari R, Gunatillake PA, et al. Properties and in vitro evaluation of high modulus biodegradable polyurethanes for applications in cardiovascular stents. J Biomed Mater Res B Appl Biomater. 2014;102(8):1711-1719. doi:10.1002/jbm.b.33137
  • Wang W, Wang C. Polyurethane for biomedical applications: a review of recent developments. Design Manufact Med Devic. 2012:115-151. doi:10. 1533/9781908818188.115
  • Miyashiro M, Suedam V, Moretti Neto RT, Ferreira PM, Rubo JH. Validation of an experimental polyurethane model for biomechanical studies on implant supported prosthesis - tension tests. J Appl Oral Sci. 2011;19(3):244-248. doi:10.1590/S1678-77572011000300012
  • Comuzzi L, Tumedei M, D’Arcangelo C, Piattelli A, Iezzi G. An in vitro analysis on polyurethane foam blocks of the insertion torque (IT) values, removal torque values (RTVs), and resonance frequency analysis (RFA) values in tapered and cylindrical implants. Int J Environ Res Public Health. 2021;18(17):9238. doi:10.3390/ijerph18179238
  • Marchi A, Camporesi M, Festa M, Salvatierra L, Izadi S, Farronato G. Drilling capability of orthodontic miniscrews: in vitro study. Dent J (Basel). 2020;8(4):138. doi:10.3390/dj8040138
  • Funk JR, Kerrigan JR, Crandall JR. Dynamic bending tolerance and elastic-plastic material properties of the human femur. Annu Proc Assoc Adv Automot Med. 2004;48:215-233.
  • ISO 178 | 3-Point Bend Test on Plastics. ISO 178 | 3-Point Bend Test on Plastics. Accessed July 1, 2024. https://www.zwickroell.com/industries/plastics/thermoplastics-and-thermosetting-molding-materials/3-point-flexure-test-iso-178/
  • Şen Z, Mangır A. Innovative equivalent elastic modulus based stress calculation methodology for reinforced concrete columns. Buildings. 2023;13(8):1962. doi:10.3390/buildings13081962
  • Kiran A, Amin F, Mahmood SJ, Ali A. Flexural strength of modified and unmodified acrylic denture base material after different processing techniques. J Ayub Med Coll Abbottabad JAMC. 2020;32(Suppl 1-4): S672-S677.
  • Hopkins KD, Weeks DL. Tests for normality and measures of skewness and kurtosis: their place in research reporting. Educ Psychol Meas. 1990; 50(4):717-729.
  • Misch CE, Qu Z, Bidez MW. Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg. 1999;57(6):700-706. doi:10.1016/s0278-2391(99) 90437-8
  • Shash YH, El-Wakad MT, Eldosoky MAA, Dohiem MM. Finite-element analysis of the effect of utilizing various material assemblies in “All on Four” on the stresses on mandible bone and prosthetic parts. Int J Polym Sci. 2022;2022(1):4520250. doi:10.1155/2022/4520250
  • Arendts FJ, Sigolotto C. Mechanical characteristics of the human mandible and study of in vivo behavior of compact bone tissue, a contribution to the description of biomechanics of the mandible--II. Biomed Tech (Berl). 1990;35(6):123-130. doi:10.1515/bmte.1990.35.6.123
  • Dechow PC, Schwartz-Dabney CL, Ashman RB. Elastic properties of the human mandibular corpus. Bone Biodyn Orthod Orthop Treat. 1992; 27:299-314.
  • Stoppie N, Van Cleynenbreugel T, Wevers M, Sloten JV, Naert I. The Validation of a Compression Testing Method for Cancellous Human Jawbone by High-resolution Finite Element Modeling. | International Journal of Oral &amp; Maxillofacial Implants | EBSCOhost. May 1, 2007. Accessed August 16, 2024. https://openurl.ebsco.com/contentitem/gcd: 36831462?sid=ebsco:plink:crawler&id=ebsco:gcd:36831462
  • Möhlhenrich SC, Heussen N, Modabber A, et al. Influence of bone density, screw size and surgical procedure on orthodontic mini-implant placement – part B: implant stability. Int J Oral Maxillofac Surg. 2021; 50(4):565-572. doi:10.1016/j.ijom.2020.07.003
  • Lim SA, Cha JY, Hwang CJ. Insertion torque of orthodontic miniscrews according to changes in shape, diameter and length. Angle Orthod. 2008;78(2):234-240. doi:10.2319/121206-507.1
  • Lin CL, Yu JH, Liu HL, Lin CH, Lin YS. Evaluation of contributions of orthodontic mini-screw design factors based on FE analysis and the Taguchi method. J Biomech. 2010;43(11):2174-2181. doi:10.1016/j.jbiomech.2010.03.043
  • ASTM F1839-08(2012)e1 - Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments. iTeh Standards. Accessed May 1, 2024. https://standards.iteh.ai/catalog/standards/astm/cf113305-7639-4a98-a065-f90df513a67d/astm-f1839-082012e1
  • Tepedino M, Masedu F, Chimenti C. Comparative evaluation of insertion torque and mechanical stability for self-tapping and self-drilling orthodontic miniscrews - an in vitro study. Head Face Med. 2017;13(1):10. doi:10.1186/s13005-017-0143-3
  • Erbay Elibol FK, Oflaz E, Buğra E, Orhan M, Demir T. Effect of cortical bone thickness and density on pullout strength of mini-implants: an experimental study. Am J Orthod Dentofacial Orthop. 2020;157(2):178-185. doi:10.1016/j.ajodo.2019.02.020
  • Jin J, Kim GT, Kwon JS, Choi SH. Effects of intrabony length and cortical bone density on the primary stability of orthodontic miniscrews. Materials. 2020;13(24):5615. doi:10.3390/ma13245615
  • Orhan ZD, Ciğerim L. A new approach to implant stability using a flexible synthetic silicate-additive beta-tricalcium phosphate-poly (D, L-lactide-co-caprolactone) bone graft: an in vitro study. Polymers. 2024; 16(8):1101. doi:10.3390/polym16081101
  • Roohani-Esfahani SI, Newman P, Zreiqat H. Design and fabrication of 3D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects. Sci Rep. 2016;6(1):19468. doi:10.1038/srep19468
  • Singh D, Rana A, Jhajhria SK, Garg B, Pandey PM, Kalyanasundaram D. Experimental assessment of biomechanical properties in human male elbow bone subjected to bending and compression loads. J Appl Biomater Funct Mater. 2019;17(2):1-13.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ağız ve Çene Cerrahisi, Diş Malzemeleri ve Ekipmanı
Bölüm Orijinal Makale
Yazarlar

Levent Ciğerim 0000-0001-5218-8568

Kader Tatar 0000-0002-9320-1500

Saadet Çınarsoy Ciğerim 0000-0002-4384-0929

Nazlı Hilal Kahraman 0000-0002-9963-4120

Erkan Feslihan 0000-0003-4082-3039

Volkan Kaplan 0000-0002-7605-1125

Yayımlanma Tarihi 12 Ocak 2025
Gönderilme Tarihi 27 Kasım 2024
Kabul Tarihi 13 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 1

Kaynak Göster

AMA Ciğerim L, Tatar K, Çınarsoy Ciğerim S, Kahraman NH, Feslihan E, Kaplan V. Comparison of mechanical properties of polyethylene and polyurethane blocks as model materials for in vitro cortical bone modelling. J Health Sci Med /JHSM /jhsm. Ocak 2025;8(1):34-39. doi:10.32322/jhsm.1591547

Üniversitelerarası Kurul (ÜAK) Eşdeğerliği:  Ulakbim TR Dizin'de olan dergilerde yayımlanan makale [10 PUAN] ve 1a, b, c hariç  uluslararası indekslerde (1d) olan dergilerde yayımlanan makale [5 PUAN]

Dahil olduğumuz İndeksler (Dizinler) ve Platformlar sayfanın en altındadır.

Not:
Dergimiz WOS indeksli değildir ve bu nedenle Q olarak sınıflandırılmamıştır.

Yüksek Öğretim Kurumu (YÖK) kriterlerine göre yağmacı/şüpheli dergiler hakkındaki kararları ile yazar aydınlatma metni ve dergi ücretlendirme politikasını tarayıcınızdan indirebilirsiniz. https://dergipark.org.tr/tr/journal/2316/file/4905/show 


Dergi Dizin ve Platformları

Dizinler; ULAKBİM TR Dizin, Index Copernicus, ICI World of Journals, DOAJ, Directory of Research Journals Indexing (DRJI), General Impact Factor, ASOS Index, WorldCat (OCLC), MIAR, EuroPub, OpenAIRE, Türkiye Citation Index, Türk Medline Index, InfoBase Index, Scilit, vs.

Platformlar; Google Scholar, CrossRef (DOI), ResearchBib, Open Access, COPE, ICMJE, NCBI, ORCID, Creative Commons vs.