Araştırma Makalesi
BibTex RIS Kaynak Göster

2005-2024 yılları arasında yapay zeka uygulamalarının kadın hastalıkları ve doğum alanındaki kullanımına ilişkin iki on yıllık bibliyometrik bir inceleme

Yıl 2025, Cilt: 8 Sayı: 5, 739 - 746, 16.09.2025
https://doi.org/10.32322/jhsm.1704036

Öz

Amaç: Yapay zeka (YZ) teknolojileri, doğum ve kadın hastalıkları (D&K) alanında tanı, tedavi optimizasyonu ve hasta bakımında önemli ilerlemeler sunarak bu alanı derinden etkilemiştir. YZ’nin giderek artan entegrasyonu, öngörücü analizler, makine öğrenimi ve robotik cerrahi gibi uygulamalarla anne ve fetüs sağlığını yeniden şekillendirmiştir. Bu çalışma, 1 Ocak 2005 ile 31 Aralık 2024 tarihleri arasında yayımlanmış D&K alanındaki YZ araştırmalarının bibliyometrik bir analizini sunmayı amaçlamaktadır. Temel hedefler arasında yayın eğilimlerinin, önde gelen katkı sağlayıcıların, baskın araştırma temalarının, iş birliği kalıplarının ve gelişen teknolojilerin belirlenmesi yer almaktadır.

Gereç ve Yöntem: Web of Science Core Collection veri tabanından "artificial intelligence" (yapay zeka) anahtar kelimesi kullanılarak ve "obstetrics gynecology" (doğum ve kadın hastalıkları) kategorisiyle filtrelenerek 959 yayına ait veriler elde edilmiştir. Bibliyometrik ağları (yazar iş birlikleri, anahtar kelime birlikteliği, bibliyografik eşleşme ve coğrafi iş birlikleri) görselleştirmek için VOSviewer yazılımı kullanılmıştır.

Bulgular: Analiz, 2017 sonrasında YZ ile ilgili araştırmalarda belirgin bir artış olduğunu ortaya koymuştur. Kuzey Amerika ve Avrupa en fazla katkı sağlayan bölgeler olarak öne çıkarken, Asya yükselen etkili bir bölge olarak dikkat çekmiştir. Tanımlanan temel temalar arasında makine öğrenimi, derin öğrenme, tüp bebek (IVF), tanısal görüntüleme ve robotik cerrahi yer almaktadır. İş birliği ağları, yüksek etkili kurumlar arasında güçlü kurumsal ve uluslararası araştırma ortaklıklarını göstermiştir.

Sonuç: Bu çalışma, YZ’nin D&K alanındaki dönüştürücü potansiyelini vurgulamakta ve kritik araştırma alanlarını, başlıca katkı sağlayıcıları ve iş birliği dinamiklerini ortaya koymaktadır. Bulgular, gelecekteki araştırmalar için bir temel oluşturmakta; kapsayıcılık, etik YZ kullanımı ve küresel sağlık hizmetlerindeki eşitsizliklerin giderilmesi gerekliliğini ön plana çıkarmaktadır.

Kaynakça

  • Xiao P, Li L, Qu J, Wang G. Global research hotspots and trends on robotic surgery in obstetrics and gynecology: a bibliometric analysis based on VOSviewer. Front Surg. 2024;11:1308489. doi:10.3389/fsurg. 2024.1308489
  • Levin G, Siedhoff M, Wright KN, et al. Robotic surgery in obstetrics and gynecology: a bibliometric study. J Robot Surg. 2023;17(5):2387-2397. doi:10.1007/s11701-023-01672-1
  • Lestari D, Maulana FI, Adi PDP, Rahayu A, Nadlifatin R, Widartha VP. Bibliometric analysis of intelligent techniques for obstetric complication prediction in the last 20 years. In: 2024 4th International Conference on Emerging Smart Technologies and Applications (eSmarTA). IEEE. 2024: 1-8. doi:10.1109/eSmarTA62850.2024.10638994
  • Sibanda K, Ndayizigamiye P, Twinomurinzi H. Industry 4.0 technologies in maternal health care: bibliometric analysis and research agenda. JMIR Pediatr Parent. 2024;7:e47848. doi:10.2196/47848
  • Levin G, Brezinov Y, Meyer R. Exploring the use of ChatGPT in OBGYN: a bibliometric analysis of the first ChatGPT-related publications. Arch Gynecol Obstet. 2023;308(6):1785-1789. doi:10.1007/s00404-023-07081-x
  • Ray PP. Bridging the gap: integrating ChatGPT into obstetrics and gynecology research-a call to action. Arch Gynecol Obstet. 2024;309(3): 1111-1113. doi:10.1007/s00404-023-07129-y
  • Sreedharan S, Mian M, Robertson RA, Yang N. The top 100 most cited articles in medical artificial intelligence: a bibliometric analysis. J Med Artif Intell. 2020;3. doi:10.21037/jmai.2019.11.04
  • Xiong DD, He RQ, Huang ZG, et al. Global bibliometric mapping of the research trends in artificial intelligence-based digital pathology for lung cancer over the past two decades. Digit Health. 2024;10: 205520762412 77735. doi:10.1177/20552076241277735
  • Fu Q, Lu Z, Sui J, Chang Y, Zhang M. Trends in artificial intelligence and ultrasound medicine: a bibliometric and visualized analysis. Available at SSRN 4333609. 2023.
  • Oprescu AM, Miro-Amarante G, García-Díaz L, Beltrán LM, Rey VE, Romero-Ternero M. Artificial intelligence in pregnancy: a scoping review. IEEE Access. 2020;8:181450-181484.
  • Triantafyllopoulos L, Paxinou E, Feretzakis G, Kalles D, Verykios VS. Mapping how artificial intelligence blends with healthcare: insights from a bibliometric analysis. Future Internet. 2024;16(7):221. doi:10. 3390/fi16070221
  • Tran T, Do TT, Reid I, Carneiro G. Bayesian generative active deep learning. In International conference on machine learning. 2019, pp. 6295-6304). PMLR.
  • Tagliafico AS, Piana M, Schenone D, Lai R, Massone AM, Houssami N. Overview of radiomics in breast cancer diagnosis and prognostication. Breast. 2020;49:74-80. doi:10.1016/j.breast.2019.10.018
  • VerMilyea M, Hall JMM, Diakiw SM, et al. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum Reprod. 2020;35(4):770-784. doi:10.1093/humrep/deaa013
  • Carter SM, Rogers W, Win KT, Frazer H, Richards B, Houssami N. The ethical, legal and social implications of using artificial intelligence systems in breast cancer care. Breast. 2020;49:25-32. doi:10.1016/j.breast.2019.10.001
  • Grünebaum A, Chervenak J, Pollet SL, Katz A, Chervenak FA. The exciting potential for ChatGPT in obstetrics and gynecology. Am J Obstet Gynecol. 2023;228(6):696-705. doi:10.1016/j.ajog.2023.03.009
  • Brandt JS, Hadaya O, Schuster M, Rosen T, Sauer MV, Ananth CV. A bibliometric analysis of top-cited journal articles in obstetrics and gynecology. JAMA Netw Open. 2019;2(12):e1918007. doi:10.1001/jama networkopen.2019.18007
  • Maulana FI, Lestari D, Adi PDP, Hamim M, Rahayu A, Widartha VP. Direction of machine learning research in obstetric care in the last 10 years. In: 2024 4th International Conference on Emerging Smart Technologies and Applications (eSmarTA). IEEE; 2024. p. 1-7.
  • Xie Y, Zhai YS, Lu G. Evolution of artificial intelligence in healthcare: a 30-year bibliometric study. Front Med. 2024;11:1505692. doi:10.3389/fmed.2024.1505692

A two-decade bibliometric exploration of AI applications in obstetrics and gynecology (2005-2024)

Yıl 2025, Cilt: 8 Sayı: 5, 739 - 746, 16.09.2025
https://doi.org/10.32322/jhsm.1704036

Öz

Aims: Artificial Intelligence (AI) technologies have significantly impacted obstetrics and gynecology (Obs&Gyn), particularly in diagnostics, treatment, and patient care. This study aims to conduct a bibliometric analysis of AI-related research in Obs&Gyn published between January 1, 2005, and December 31, 2024. The main objectives are to explore publication trends, leading contributors, research themes, collaboration patterns, and emerging technologies.
Methods: A total of 959 publications were retrieved from the Web of Science Core Collection using the keyword “artificial intelligence” and filtered by the Obs&Gyn category. VOSviewer software was used to map co-authorship, keyword co-occurrence, bibliographic coupling, and geographic collaborations.
Results: AI research in Obs&Gyn increased notably after 2017. North America and Europe led in publication output, with Asia also showing strong contributions. Prominent themes included machine learning, deep learning, IVF, diagnostic imaging, and robotic surgery. Collaboration networks revealed strong institutional and international partnerships.
Conclusion: This study underscores the transformative potential of AI in Obs&Gyn and highlights critical research areas, key contributors, and collaboration dynamics. Findings provide a foundation for future research, emphasizing the need for inclusivity, ethical AI adoption, and addressing global healthcare disparities in Obs&Gyn.

Kaynakça

  • Xiao P, Li L, Qu J, Wang G. Global research hotspots and trends on robotic surgery in obstetrics and gynecology: a bibliometric analysis based on VOSviewer. Front Surg. 2024;11:1308489. doi:10.3389/fsurg. 2024.1308489
  • Levin G, Siedhoff M, Wright KN, et al. Robotic surgery in obstetrics and gynecology: a bibliometric study. J Robot Surg. 2023;17(5):2387-2397. doi:10.1007/s11701-023-01672-1
  • Lestari D, Maulana FI, Adi PDP, Rahayu A, Nadlifatin R, Widartha VP. Bibliometric analysis of intelligent techniques for obstetric complication prediction in the last 20 years. In: 2024 4th International Conference on Emerging Smart Technologies and Applications (eSmarTA). IEEE. 2024: 1-8. doi:10.1109/eSmarTA62850.2024.10638994
  • Sibanda K, Ndayizigamiye P, Twinomurinzi H. Industry 4.0 technologies in maternal health care: bibliometric analysis and research agenda. JMIR Pediatr Parent. 2024;7:e47848. doi:10.2196/47848
  • Levin G, Brezinov Y, Meyer R. Exploring the use of ChatGPT in OBGYN: a bibliometric analysis of the first ChatGPT-related publications. Arch Gynecol Obstet. 2023;308(6):1785-1789. doi:10.1007/s00404-023-07081-x
  • Ray PP. Bridging the gap: integrating ChatGPT into obstetrics and gynecology research-a call to action. Arch Gynecol Obstet. 2024;309(3): 1111-1113. doi:10.1007/s00404-023-07129-y
  • Sreedharan S, Mian M, Robertson RA, Yang N. The top 100 most cited articles in medical artificial intelligence: a bibliometric analysis. J Med Artif Intell. 2020;3. doi:10.21037/jmai.2019.11.04
  • Xiong DD, He RQ, Huang ZG, et al. Global bibliometric mapping of the research trends in artificial intelligence-based digital pathology for lung cancer over the past two decades. Digit Health. 2024;10: 205520762412 77735. doi:10.1177/20552076241277735
  • Fu Q, Lu Z, Sui J, Chang Y, Zhang M. Trends in artificial intelligence and ultrasound medicine: a bibliometric and visualized analysis. Available at SSRN 4333609. 2023.
  • Oprescu AM, Miro-Amarante G, García-Díaz L, Beltrán LM, Rey VE, Romero-Ternero M. Artificial intelligence in pregnancy: a scoping review. IEEE Access. 2020;8:181450-181484.
  • Triantafyllopoulos L, Paxinou E, Feretzakis G, Kalles D, Verykios VS. Mapping how artificial intelligence blends with healthcare: insights from a bibliometric analysis. Future Internet. 2024;16(7):221. doi:10. 3390/fi16070221
  • Tran T, Do TT, Reid I, Carneiro G. Bayesian generative active deep learning. In International conference on machine learning. 2019, pp. 6295-6304). PMLR.
  • Tagliafico AS, Piana M, Schenone D, Lai R, Massone AM, Houssami N. Overview of radiomics in breast cancer diagnosis and prognostication. Breast. 2020;49:74-80. doi:10.1016/j.breast.2019.10.018
  • VerMilyea M, Hall JMM, Diakiw SM, et al. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum Reprod. 2020;35(4):770-784. doi:10.1093/humrep/deaa013
  • Carter SM, Rogers W, Win KT, Frazer H, Richards B, Houssami N. The ethical, legal and social implications of using artificial intelligence systems in breast cancer care. Breast. 2020;49:25-32. doi:10.1016/j.breast.2019.10.001
  • Grünebaum A, Chervenak J, Pollet SL, Katz A, Chervenak FA. The exciting potential for ChatGPT in obstetrics and gynecology. Am J Obstet Gynecol. 2023;228(6):696-705. doi:10.1016/j.ajog.2023.03.009
  • Brandt JS, Hadaya O, Schuster M, Rosen T, Sauer MV, Ananth CV. A bibliometric analysis of top-cited journal articles in obstetrics and gynecology. JAMA Netw Open. 2019;2(12):e1918007. doi:10.1001/jama networkopen.2019.18007
  • Maulana FI, Lestari D, Adi PDP, Hamim M, Rahayu A, Widartha VP. Direction of machine learning research in obstetric care in the last 10 years. In: 2024 4th International Conference on Emerging Smart Technologies and Applications (eSmarTA). IEEE; 2024. p. 1-7.
  • Xie Y, Zhai YS, Lu G. Evolution of artificial intelligence in healthcare: a 30-year bibliometric study. Front Med. 2024;11:1505692. doi:10.3389/fmed.2024.1505692
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kadın Hastalıkları ve Doğum
Bölüm Orijinal Makale
Yazarlar

Fatma Kılıç Hamzaoğlu 0000-0002-9735-3552

Yayımlanma Tarihi 16 Eylül 2025
Gönderilme Tarihi 22 Mayıs 2025
Kabul Tarihi 14 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 5

Kaynak Göster

AMA Kılıç Hamzaoğlu F. A two-decade bibliometric exploration of AI applications in obstetrics and gynecology (2005-2024). J Health Sci Med /JHSM /jhsm. Eylül 2025;8(5):739-746. doi:10.32322/jhsm.1704036

Üniversitelerarası Kurul (ÜAK) Eşdeğerliği:  Ulakbim TR Dizin'de olan dergilerde yayımlanan makale [10 PUAN] ve 1a, b, c hariç  uluslararası indekslerde (1d) olan dergilerde yayımlanan makale [5 PUAN]

Dahil olduğumuz İndeksler (Dizinler) ve Platformlar sayfanın en altındadır.

Not:
Dergimiz WOS indeksli değildir ve bu nedenle Q olarak sınıflandırılmamıştır.

Yüksek Öğretim Kurumu (YÖK) kriterlerine göre yağmacı/şüpheli dergiler hakkındaki kararları ile yazar aydınlatma metni ve dergi ücretlendirme politikasını tarayıcınızdan indirebilirsiniz. https://dergipark.org.tr/tr/journal/2316/file/4905/show 


Dergi Dizin ve Platformları

Dizinler; ULAKBİM TR Dizin, Index Copernicus, ICI World of Journals, DOAJ, Directory of Research Journals Indexing (DRJI), General Impact Factor, ASOS Index, WorldCat (OCLC), MIAR, EuroPub, OpenAIRE, Türkiye Citation Index, Türk Medline Index, InfoBase Index, Scilit, vs.

Platformlar; Google Scholar, CrossRef (DOI), ResearchBib, Open Access, COPE, ICMJE, NCBI, ORCID, Creative Commons vs.