Araştırma Makalesi
BibTex RIS Kaynak Göster

Yüksek Bina Tasarımında Galapagos ve Wallacei Optimizasyon Çözücülerinin Karşılaştırılması

Yıl 2025, Cilt: 7 Sayı: 2, 131 - 153, 31.12.2025
https://doi.org/10.60093/jiciviltech.1585588

Öz

Belirli kriterleri karşılayan tasarımı optimize etmek, tasarımcılar için bir yük oluşturabilir ve bina üretim sürecini yavaşlatabilir. Tekrarlayan ve karmaşık hesaplamaları gerçekleştirebilen yenilikçi araçlar, hızlı ve çeşitli tasarım seçenekleri sunarak optimizasyon hedeflerine verimli bir şekilde ulaşılmasını sağlar. Optimizasyon çözücüleri, tekli ve çoklu hedeflere uygun tasarım varyasyonları oluşturarak bu süreci kolaylaştırır. Bu çalışma, optimizasyon çözücülerinin yüksek bina tasarımındaki avantajlarını ve yeteneklerini incelemektedir. ML tabanlı araçlara yönelik bir literatür taramasının ardından çalışma kapsamında, Galapagos ve Wallacei optimizasyon çözücülerine odaklanılmıştır. İki farklı karmaşıklık düzeyinde tasarım problemi tanımlayan temel bir parametrik yüksek yapı modeli oluşturulmuştur. Her çözücü ile, bu problemlere yönelik en uygun tasarım varyasyonları üretilmiş ve bu varyasyonlar arayüz, çalışma mekanizmaları, etkinlik ve pratik katkılar açısından karşılaştırılmıştır. Yapılan analizler ile Makine Öğreniminin (ML) parametrik tasarım süreçlerine katkı sağladığı görülmüştür. Galapagos ve Wallacei optimizasyon çözücülerinin karşılaştırılması, konuya basit bir örnek üzerinden temel oluşturmaktadır. Böylece bu araçların pratikte uygulanabilirlikleri açısından bu bağlamda farklı bir örnek oluşturmuştur. Ayrıca çalışma kapsamında farklı tasarım bağlamları için arayüz kullanılabilirliğini artırmaya yönelik önerilerde bulunulmuştur.

Kaynakça

  • About Wallacei. Accessed 31 Jul 2024. https://www.wallacei.com/about.
  • Baletic B (1992). Information codes of mutant forms. In proceedings of the ECAADE 1992 conference (ss. 173–186). Barcelona, Spain.
  • Granberg A, Wahlstein J (2020). Parametric design and optimization of pipe bridges; Automating the design process in early stage of design. Thesis KTH Royal Institute of Technology, Stockholm, Sweden.
  • Grasshopper3d. (2014). Galapagos reaching certain value [Online forum discussion]. Retrieved July 31, 2024, from https://www.grasshopper3d.com/forum/topics/galapagos-reaching-certain-value?overrideMobileRedirect=1.
  • Lu S, Lin B, Wang C (2020). Investigation on the potential of improving daylight efficiency of office buildings by curved facade optimization. Build. Simul. 13, 287–303. https://doi.org/10.1007/s12273-019-0586-5.
  • Özerol G, Arslan Selçuk S (2023). Machine learning in the discipline of architecture: A review on the research trends between 2014 and 2020. International Journal of Architectural Computing, 21(1), 23–41. https://doi.org/10.1177/14780771221100102.
  • Rutten D (2011 March 4). Evolutionary principles applied to problem solving. Accessed 31 Jul 2024. https://ieatbugsforbreakfast.wordpress.com/2011/03/04/epatps01/.
  • Rutten D (2014). Navigating multidimensional landscapes in foggy weather as an analogy for generic problem solving. 16th International Conference on Geometry and Graphics ©2014 Isgg. 4–8 August, 2014, Innsbruck, Austria.
  • Rutten, D. (2013), Galapagos: On the logic and limitations of generic solvers. Archit Design, 83, 132-135. https://doi.org/10.1002/ad.1568.
  • Schwaar C (2023). The best generative design software in 2024. Accessed 31 Jul 2024. https://all3dp.com/1/the-best-generative-design-software/.
  • Touloupaki E, Theodosiou, T (2017). Optimization of building form to minimize energy consumption through parametric modelling. Procedia Environmental Sciences, 38, 509–514. https://doi.org/10.1016/j.proenv.2017.03.114.
  • Vukorep I, Kotov A (2021). Artificial Intelligence in Architecture: Machine learning in architecture; An overview of existing tools, ss. 93-109.
  • Wallacei Primer. Accessed 31 Jul 2024. https://www.wallacei.com/learn.
  • Zhang J, Liu N, Wang S (2020). A parametric approach for performance optimization of residential building design in Beijing. Build. Simul. 13, 223–235. https://doi.org/10.1007/s12273-019-0571-z.

A Comparison of Galapagos and Wallacei Optimization Solvers in High-Rise Building Design

Yıl 2025, Cilt: 7 Sayı: 2, 131 - 153, 31.12.2025
https://doi.org/10.60093/jiciviltech.1585588

Öz

Optimizing designs that meet specific criteria is burdensome for designers and slows down the building production process. Innovative tools can help by performing repetitive and complex calculations quickly to efficiently reach optimization goals. Optimization solvers facilitate this process by generating design variations suitable for single and multiple objectives. This study examines the advantages and capabilities of optimization solvers in high-rise building design. Following a literature review on ML-based tools, the study focused on the Galapagos and Wallacei solvers. A basic parametric high-rise model was created, defining a design problem at two levels of complexity. With each solver, the most suitable design variations for these problems were generated and compared in terms of interface, working mechanisms, effectiveness, and practical contributions. The analyses conducted revealed that Machine Learning (ML) contributes to parametric design processes. The comparison of Galapagos and Wallacei solvers provides a basic understanding of the subject through a simple example. Thus, it has created a different example in this context in terms of the practical applicability of these tools. Furthermore, within the scope of the study, recommendations were made to increase interface usability for different design contexts.

Etik Beyan

The authors declare that this research was conducted in accordance with ethical standards.

Kaynakça

  • About Wallacei. Accessed 31 Jul 2024. https://www.wallacei.com/about.
  • Baletic B (1992). Information codes of mutant forms. In proceedings of the ECAADE 1992 conference (ss. 173–186). Barcelona, Spain.
  • Granberg A, Wahlstein J (2020). Parametric design and optimization of pipe bridges; Automating the design process in early stage of design. Thesis KTH Royal Institute of Technology, Stockholm, Sweden.
  • Grasshopper3d. (2014). Galapagos reaching certain value [Online forum discussion]. Retrieved July 31, 2024, from https://www.grasshopper3d.com/forum/topics/galapagos-reaching-certain-value?overrideMobileRedirect=1.
  • Lu S, Lin B, Wang C (2020). Investigation on the potential of improving daylight efficiency of office buildings by curved facade optimization. Build. Simul. 13, 287–303. https://doi.org/10.1007/s12273-019-0586-5.
  • Özerol G, Arslan Selçuk S (2023). Machine learning in the discipline of architecture: A review on the research trends between 2014 and 2020. International Journal of Architectural Computing, 21(1), 23–41. https://doi.org/10.1177/14780771221100102.
  • Rutten D (2011 March 4). Evolutionary principles applied to problem solving. Accessed 31 Jul 2024. https://ieatbugsforbreakfast.wordpress.com/2011/03/04/epatps01/.
  • Rutten D (2014). Navigating multidimensional landscapes in foggy weather as an analogy for generic problem solving. 16th International Conference on Geometry and Graphics ©2014 Isgg. 4–8 August, 2014, Innsbruck, Austria.
  • Rutten, D. (2013), Galapagos: On the logic and limitations of generic solvers. Archit Design, 83, 132-135. https://doi.org/10.1002/ad.1568.
  • Schwaar C (2023). The best generative design software in 2024. Accessed 31 Jul 2024. https://all3dp.com/1/the-best-generative-design-software/.
  • Touloupaki E, Theodosiou, T (2017). Optimization of building form to minimize energy consumption through parametric modelling. Procedia Environmental Sciences, 38, 509–514. https://doi.org/10.1016/j.proenv.2017.03.114.
  • Vukorep I, Kotov A (2021). Artificial Intelligence in Architecture: Machine learning in architecture; An overview of existing tools, ss. 93-109.
  • Wallacei Primer. Accessed 31 Jul 2024. https://www.wallacei.com/learn.
  • Zhang J, Liu N, Wang S (2020). A parametric approach for performance optimization of residential building design in Beijing. Build. Simul. 13, 223–235. https://doi.org/10.1007/s12273-019-0571-z.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mimarlık (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Ceren Aydan Nasır 0009-0009-3407-8635

Funda Tan Bayram 0000-0001-6995-2868

Seher Güzelçoban Mayuk 0000-0002-2676-4784

Gönderilme Tarihi 14 Kasım 2024
Kabul Tarihi 11 Temmuz 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 2

Kaynak Göster

APA Nasır, C. A., Tan Bayram, F., & Güzelçoban Mayuk, S. (2025). A Comparison of Galapagos and Wallacei Optimization Solvers in High-Rise Building Design. Journal of Innovations in Civil Engineering and Technology, 7(2), 131-153. https://doi.org/10.60093/jiciviltech.1585588