Sürdürülebilir Harç Üretiminde Mısır Koçanı ve Pirinç Kabuğu Küllerinin Birlikte Kullanımı
Yıl 2025,
Cilt: 7 Sayı: 2, 185 - 207, 31.12.2025
Mohamad Srormalah
,
Özgür Ekincioğlu
Öz
Atık malzemelerin çevre üzerindeki olumsuz etkilerine dair artan farkındalık, tarımsal ve endüstriyel yan ürünlerin sürdürülebilir malzeme üretiminde değerlendirilmesini atık yönetimi açısından giderek daha önemli bir strateji haline getirmiştir. Bu çalışmada, mısır koçanı külü (CCA) ve pirinç kabuğu külü (RHA) çimento ile ağırlıkça kısmi olarak ikame edilerek sürdürülebilir harç üretimi geliştirilmesi araştırılmıştır. Üç aşamalı deneysel yaklaşım kapsamında (i) puzolanik aktivite değerlendirmesi, (ii) CCA–RHA karışım oranının optimizasyonu ve (iii) mekanik ve dayanıklılık performanslarının farklı çimento ikame oranlarında (ağırlıkça 5–20%) incelenmesi gerçekleştirilmiştir. Basınç ve eğilme dayanımı testleri, XRD, TGA ve SEM analizleri ile yapılan değerlendirmelerde, 5–10% çimento ikame oranlarının en uygun performansı sağladığı görülmüştür. RHA erken yaşta puzolanik reaksiyonları hızlandırırken, CCA uzun vadeli dayanıklılığa katkı sağlamıştır. Mikroyapı analizleri, kalsiyum hidroksit (CH) içeriğinde azalma ve kalsiyum silikat hidrat (C-S-H) oluşumunda artış olduğunu göstermiştir. Bulgular, bitkisel kökenli atık küllerinin puzolanik potansiyele sahip olduğunu ve atık malzemelerin değerlendirilmesi yoluyla sürdürülebilirliğe katkı sunduğunu desteklemektedir.
Etik Beyan
Yazarlar tüm etik standartlara uyduklarını beyan ederler.
Proje Numarası
MYL-2023-45062
Teşekkür
Bu çalışma, İstanbul Teknik Üniversitesi (İTÜ) Bilimsel Araştırma Projeleri Birimi tarafından MYL-2023-45062 numaralı proje kapsamında desteklenmiştir. Yazarlar, sağladığı destek için İTÜ’ye teşekkür ederler.
Kaynakça
-
Abellan-García, J. (2023). Effect of rice husk ash as partial replacement of ordinary Portland cement in ultra-high-performance glass concrete. European Journal of Environmental and Civil Engineering, 28(3), 661–683. https://doi.org/10.1080/19648189.2023.2219722
-
Abubakar, A., Mohammed, A., Duna, S., & Samson, D. (2016). Mechanical properties of concrete containing corn cob ash. International Journal of Scientific Research and Engineering Studies (IJSRES), 3(6), 47-51.
-
Adebisi, O., Taiwo, A. M., Julius, O. B., & Ebenezer, A. (2019). Partial replacement of cement with corn cob ash – a review. Retrieved September 13, 2025, from https://www.globalscientificjournal.com/researchpaper/PARTIAL_REPLACEMENT_OF_CEMENT_WITH_CORN_COB_ASH_A_REVIEW.pdf
-
Aliabdo, A. A., Abd Elmoaty, A. E. M., & Aboshama, A. Y. (2016). Utilization of waste glass powder in the production of cement and concrete. Construction and Building Materials, 124, 866–877. https://doi.org/10.1016/j.conbuildmat.2016.08.016
-
ASTM International. (2020). ASTM C185: Standard test method for air content of hydraulic cement mortar. West Conshohocken, PA: ASTM International.
-
ASTM International. (2020). ASTM C1585: Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes. West Conshohocken, PA: ASTM International.
-
ASTM International. (2022). ASTM C618: Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken, PA: ASTM International.
-
ASTM International. (2025). ASTM C311: Standard test methods for sampling and testing coal ash or natural pozzolans for use in concrete. West Conshohocken, PA: ASTM International.
-
ASTM International. (2025). ASTM C1567: Standard test method for determining the potential alkali-silica reactivity of combinations of cementitious materials and aggregate (accelerated mortar-bar method). West Conshohocken, PA: ASTM International.
-
Bahri, S., Mahmud, H. B., Shafigh, P., & Majuar, E. (2019). Mechanical and durability properties of high strength high performance concrete incorporating rice husk ash. IOP Conference Series: Materials Science and Engineering, 536, 012028. https://doi.org/10.1088/1757-899X/536/1/012028
-
British Standards Institution. (1999). BS EN 1015-3: Methods of test for mortar for masonry – Part 3: Determination of consistence of fresh mortar (by flow table). London: BSI.
-
British Standards Institution. (2002). BS EN 1015-18: Methods of test for mortar for masonry – Part 18: Determination of water absorption coefficient due to capillary action of hardened mortar. London: BSI.
-
British Standards Institution. (2011). BS EN 197-1: Cement – Part 1: Composition, specifications and conformity criteria for common cements. London: BSI.
-
British Standards Institution. (2012). BS EN 450-1: Fly ash for concrete – Part 1: Definition, specifications and conformity criteria. London: BSI.
-
British Standards Institution. (2012). BS EN 934-2: Admixtures for concrete, mortar and grout – Part 2: Concrete admixtures – Definitions, requirements, conformity and marking. London: BSI.
-
British Standards Institution. (2016). BS EN 196-1: Methods of testing cement – Part 1: Determination of strength. London: BSI.
-
Ekincioglu, O., Gurgun, A.P., Engin, Y., Tarhan, M., Kumbaracibasi, S., (2013). Approaches for sustainable cement production- A case study from Turkey, Energy and Buildings, 66, 136-142. https://doi.org/10.1016/j.enbuild.2013.07.006
-
Ghosh, S. (Ed.). (2018). Sustainable construction materials. Amsterdam: Elsevier.
-
Jayaraman, A., Vasudevan, M., Aravind, R., Keerthika, M., & Hari Prakash, J. (2023). Optimization of partial replacement of cement by silica fume and rice husk ash for sustainable concrete. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.05.598
-
Kamau, J., Ahmed, A. Hirst, P., & Kangwa, J., (2016). Suitability of corncob ash as a supplementary cementitious material. International Journal of Materials Science and Engineering, 4(4), 215-228. https://doi.org/10.17706/ijmse.2016.4.4.215-228
-
Kumari, S., Chander, D., & Walia, R. (2018). Durability and strength analysis of concrete by partial replacement of cement with corn cob ash and rice husk ash. International Journal of Research in Advent Technology, 6(7), 1593-1601.
-
Le, H. T., Nguyen, S. T., & Ludwig, H. M. (2014). A study on high performance fine-grained concrete containing rice husk ash. International Journal of Concrete Structures and Materials, 8(4), 301–307. https://doi.org/10.1007/s40069-014-0078-z
-
Mehta, P. K., & Monteiro, P. J. M. (2014). Concrete: Microstructure, properties, and materials (4th ed.). New York: McGraw-Hill Education.
-
Noori, A. N., Salman, H. K., Numan, H. A., & Al-Dlaemee, S. A. H. (2023). Effect of Iraqi’s rice husk ash on the mechanical properties of cement mortar: An experimental investigation. AIP Conference Proceedings, 2787(1), 080042. https://doi.org/10.1063/5.0149200
-
Olafusi, O. S., Kupolati, W. K., Sadiku, E. R., Snyman, J., and Ndambuki, J. M. (2018). Characterization of corncob ash (CCA) as a pozzolanic material. International Journal of Civil Engineering and Technology (IJCIET), 9(12), 1016-1024.
-
Olaleye, O. T. (2022). Performance of corncob ash pozzolan in concrete samples. Quest Journals: Journal of Architecture and Civil Engineering, 7(12), 15–20. ISSN (Online): 2321-8193.
-
Olaniyi, A. (2022). Strength characteristics of rice husk and corn cob ash blended cement concrete. Sustainability in Environment, 7(1), 102-110. https://doi.org/10.22158/se.v7n1p102
-
Siddika, A., Mamun, M. A., Alyousef, R., and Mohammadhosseini, H. (2021). State-of-the-art-review on rice husk ash: A supplementary cementitious material in concrete. Journal of King Saud University – Engineering Sciences, 32(5), 294-307. https://doi.org/10.1016/j.jksues.2020.10.006
-
Siddique, R., & Khan, M. I. (2011). Supplementary cementing materials. Dordrecht: Springer.
-
Singh, B. (2018). Rice husk ash. In R. Siddique & M. I. Khan (Eds.), Waste and supplementary cementitious materials in concrete: characterization, properties and applications (pp. 417–460). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-08-102156-9.00013-4
-
Tiseo, I. (2025). Cement industry emissions worldwide – Statistics & Facts. Statista. Retrieved October 26, 2025, from https://www.statista.com/topics/11056/cement-industry-emissions-worldwide/
Blended Use of Corn Cob and Rice Husk Ashes in Sustainable Mortar Production
Yıl 2025,
Cilt: 7 Sayı: 2, 185 - 207, 31.12.2025
Mohamad Srormalah
,
Özgür Ekincioğlu
Öz
The use of agricultural and industrial by-products in sustainable material production has become an increasingly attractive strategy for waste management with growing environmental awareness about the possible adverse effects of waste materials. Therefore, the partial replacement of cement by mass with corn cob ash (CCA) and rice husk ash (RHA) to develop sustainable mortar composites was investigated in this study. A three-phase experimental program was conducted, including (i) pozzolanic activity assessment, (ii) optimization of CCA–RHA mix ratio, and (iii) evaluation of mechanical and durability properties at various blended replacement levels (5–20% by mass). Key tests such as compressive and flexural strength, XRD, TGA, and SEM showed enhanced cementitious performance with 5–10% cement replacement. RHA accelerated early pozzolanic reactions, while CCA contributed to long-term durability. Microstructural analyses indicated reduced calcium hydroxide (CH) content and increased calcium silicate hydrate (C-S-H) formation. Results show that blended agricultural ashes offer effective SCM potential and contribute to sustainability by utilizing waste materials.
Etik Beyan
The authors declare that they comply with all ethical standards.
Proje Numarası
MYL-2023-45062
Teşekkür
This research was supported by the Scientific Research Projects Department of Istanbul Technical University (ITU) with Project Number MYL-2023-45062. The authors gratefully acknowledge ITU for its support.
Kaynakça
-
Abellan-García, J. (2023). Effect of rice husk ash as partial replacement of ordinary Portland cement in ultra-high-performance glass concrete. European Journal of Environmental and Civil Engineering, 28(3), 661–683. https://doi.org/10.1080/19648189.2023.2219722
-
Abubakar, A., Mohammed, A., Duna, S., & Samson, D. (2016). Mechanical properties of concrete containing corn cob ash. International Journal of Scientific Research and Engineering Studies (IJSRES), 3(6), 47-51.
-
Adebisi, O., Taiwo, A. M., Julius, O. B., & Ebenezer, A. (2019). Partial replacement of cement with corn cob ash – a review. Retrieved September 13, 2025, from https://www.globalscientificjournal.com/researchpaper/PARTIAL_REPLACEMENT_OF_CEMENT_WITH_CORN_COB_ASH_A_REVIEW.pdf
-
Aliabdo, A. A., Abd Elmoaty, A. E. M., & Aboshama, A. Y. (2016). Utilization of waste glass powder in the production of cement and concrete. Construction and Building Materials, 124, 866–877. https://doi.org/10.1016/j.conbuildmat.2016.08.016
-
ASTM International. (2020). ASTM C185: Standard test method for air content of hydraulic cement mortar. West Conshohocken, PA: ASTM International.
-
ASTM International. (2020). ASTM C1585: Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes. West Conshohocken, PA: ASTM International.
-
ASTM International. (2022). ASTM C618: Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken, PA: ASTM International.
-
ASTM International. (2025). ASTM C311: Standard test methods for sampling and testing coal ash or natural pozzolans for use in concrete. West Conshohocken, PA: ASTM International.
-
ASTM International. (2025). ASTM C1567: Standard test method for determining the potential alkali-silica reactivity of combinations of cementitious materials and aggregate (accelerated mortar-bar method). West Conshohocken, PA: ASTM International.
-
Bahri, S., Mahmud, H. B., Shafigh, P., & Majuar, E. (2019). Mechanical and durability properties of high strength high performance concrete incorporating rice husk ash. IOP Conference Series: Materials Science and Engineering, 536, 012028. https://doi.org/10.1088/1757-899X/536/1/012028
-
British Standards Institution. (1999). BS EN 1015-3: Methods of test for mortar for masonry – Part 3: Determination of consistence of fresh mortar (by flow table). London: BSI.
-
British Standards Institution. (2002). BS EN 1015-18: Methods of test for mortar for masonry – Part 18: Determination of water absorption coefficient due to capillary action of hardened mortar. London: BSI.
-
British Standards Institution. (2011). BS EN 197-1: Cement – Part 1: Composition, specifications and conformity criteria for common cements. London: BSI.
-
British Standards Institution. (2012). BS EN 450-1: Fly ash for concrete – Part 1: Definition, specifications and conformity criteria. London: BSI.
-
British Standards Institution. (2012). BS EN 934-2: Admixtures for concrete, mortar and grout – Part 2: Concrete admixtures – Definitions, requirements, conformity and marking. London: BSI.
-
British Standards Institution. (2016). BS EN 196-1: Methods of testing cement – Part 1: Determination of strength. London: BSI.
-
Ekincioglu, O., Gurgun, A.P., Engin, Y., Tarhan, M., Kumbaracibasi, S., (2013). Approaches for sustainable cement production- A case study from Turkey, Energy and Buildings, 66, 136-142. https://doi.org/10.1016/j.enbuild.2013.07.006
-
Ghosh, S. (Ed.). (2018). Sustainable construction materials. Amsterdam: Elsevier.
-
Jayaraman, A., Vasudevan, M., Aravind, R., Keerthika, M., & Hari Prakash, J. (2023). Optimization of partial replacement of cement by silica fume and rice husk ash for sustainable concrete. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.05.598
-
Kamau, J., Ahmed, A. Hirst, P., & Kangwa, J., (2016). Suitability of corncob ash as a supplementary cementitious material. International Journal of Materials Science and Engineering, 4(4), 215-228. https://doi.org/10.17706/ijmse.2016.4.4.215-228
-
Kumari, S., Chander, D., & Walia, R. (2018). Durability and strength analysis of concrete by partial replacement of cement with corn cob ash and rice husk ash. International Journal of Research in Advent Technology, 6(7), 1593-1601.
-
Le, H. T., Nguyen, S. T., & Ludwig, H. M. (2014). A study on high performance fine-grained concrete containing rice husk ash. International Journal of Concrete Structures and Materials, 8(4), 301–307. https://doi.org/10.1007/s40069-014-0078-z
-
Mehta, P. K., & Monteiro, P. J. M. (2014). Concrete: Microstructure, properties, and materials (4th ed.). New York: McGraw-Hill Education.
-
Noori, A. N., Salman, H. K., Numan, H. A., & Al-Dlaemee, S. A. H. (2023). Effect of Iraqi’s rice husk ash on the mechanical properties of cement mortar: An experimental investigation. AIP Conference Proceedings, 2787(1), 080042. https://doi.org/10.1063/5.0149200
-
Olafusi, O. S., Kupolati, W. K., Sadiku, E. R., Snyman, J., and Ndambuki, J. M. (2018). Characterization of corncob ash (CCA) as a pozzolanic material. International Journal of Civil Engineering and Technology (IJCIET), 9(12), 1016-1024.
-
Olaleye, O. T. (2022). Performance of corncob ash pozzolan in concrete samples. Quest Journals: Journal of Architecture and Civil Engineering, 7(12), 15–20. ISSN (Online): 2321-8193.
-
Olaniyi, A. (2022). Strength characteristics of rice husk and corn cob ash blended cement concrete. Sustainability in Environment, 7(1), 102-110. https://doi.org/10.22158/se.v7n1p102
-
Siddika, A., Mamun, M. A., Alyousef, R., and Mohammadhosseini, H. (2021). State-of-the-art-review on rice husk ash: A supplementary cementitious material in concrete. Journal of King Saud University – Engineering Sciences, 32(5), 294-307. https://doi.org/10.1016/j.jksues.2020.10.006
-
Siddique, R., & Khan, M. I. (2011). Supplementary cementing materials. Dordrecht: Springer.
-
Singh, B. (2018). Rice husk ash. In R. Siddique & M. I. Khan (Eds.), Waste and supplementary cementitious materials in concrete: characterization, properties and applications (pp. 417–460). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-08-102156-9.00013-4
-
Tiseo, I. (2025). Cement industry emissions worldwide – Statistics & Facts. Statista. Retrieved October 26, 2025, from https://www.statista.com/topics/11056/cement-industry-emissions-worldwide/