Araştırma Makalesi
BibTex RIS Kaynak Göster

Granüler Malzemelerin Direkt Kayma Tepkisi Üzerindeki Parçacık Şekli ve Boyut Özelliklerinin Etkilerinin Çok Ölçekli DEM İncelemesi

Yıl 2025, Cilt: 7 Sayı: 2, 251 - 266, 31.12.2025
https://doi.org/10.60093/jiciviltech.1814761

Öz

Bu çalışma, granüler malzemelerin kayma davranışı üzerindeki tanecik şekli, boyutu ve boyut dağılımı etkilerini Ayrık Elemanlar Yöntemi (Discrete Element Method, DEM) tabanlı çok ölçekli bir yaklaşımla incelemektedir. İlk olarak, literatürdeki doğrudan kesme deneyi verileriyle doğrulanan bir DEM modeli geliştirilmiş, ardından sistematik biçimde farklı tanecik özelliklerine sahip yedi model analiz edilmiştir. Tanecik şeklinin etkisini belirlemek amacıyla, eş hacimli ancak farklı küresellik ve yuvarlaklık değerlerine sahip taneciklerden oluşan modeller oluşturulmuştur. Tanecik boyutu ve boyut dağılımının etkilerini değerlendirmek için farklı çaplara ve gradasyon katsayılarına (Cᵤ) sahip modeller analiz edilmiştir. Sonuçlar, tanecik şeklinin granüler sistemlerin hem makro hem mikro ölçekli davranışı üzerinde en belirleyici parametre olduğunu göstermiştir. Azalan küresellik ve yuvarlaklık, tepe dayanımını artırırken kesme sürecinde temas ağının daha hızlı çözülmesine yol açmıştır. Tanecik boyutu dayanımı ikinci derecede etkilemiş, bu etki çap azaldıkça artmış ancak belirli bir eşik değerin altında azalmıştır. Boyut dağılımı sınırlı bir etki göstermiş, tekdüzelik azaldıkça dilatansın hafifçe arttığı gözlenmiştir. Elde edilen bulgular, tanecik şeklinin granüler sistemlerin dayanım ve deformasyon mekanizmalarını belirleyen temel unsur olduğunu ortaya koymuştur.

Kaynakça

  • Ahmed, S. S., Martinez, A., & DeJong, J. (2024). Gradation and state effects on the strength and dilatancy of coarse-grained soils. E3S Web of Conferences, 544, 13003. https://doi.org/10.1051/e3sconf/202454413003
  • Altair Engineering Inc. (2022). Altair EDEM 2022: Discrete Element Method software for bulk and granular material simulation. Troy, MI, USA: Altair Engineering Inc.
  • Altuhafi, F. N., Coop, M. R., & Georgiannou, V. N. (2016). Effect of Particle Shape on the Mechanical Behavior of Natural Sands. Journal of Geotechnical and Geoenvironmental Engineering, 142(12). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001569
  • Azéma, E., & Radjaï, F. (2010). Stress-strain behavior and geometrical properties of packings of elongated particles. Physical Review E, 81(5), 051304. https://doi.org/10.1103/PhysRevE.81.051304
  • Barton, N., & Kjærnsli, B. (1981). Shear Strength of Rockfill. Journal of the Geotechnical Engineering Division, 107(7), 873–891. https://doi.org/10.1061/AJGEB6.0001167
  • Bisht, M. C., & Bhutani, G. (2023). A New Code for Discrete Element Modelling of the Collapse of Granular Columns—Model Validation. https://doi.org/10.1007/978-981-19-6970-6_7
  • Cao, P., Jiang, M., & Ding, Z. (2020). Effects of particle size on mechanical behaviors of calcareous sand under triaxial conditions. Japanese Geotechnical Society Special Publication, 8(5), 182–187. https://doi.org/10.3208/jgssp.v08.c54
  • Carrasco, S., Cantor, D., Ovalle, C., & Dubois, F. (2025). Particle shape distribution effects on the critical strength of granular materials. Computers and Geotechnics, 177, 106896. https://doi.org/10.1016/j.compgeo.2024.106896
  • Chen, J., Indraratna, B., Vinod, J. S., Ngo, T., & Liu, Y. (2025). Effects of Particle Shape on the Shear Behavior and Breakage of Ballast: A DEM Approach. International Journal of Geomechanics, 25(1). https://doi.org/10.1061/IJGNAI.GMENG-9617
  • Cho, G.-C., Dodds, J., & Santamarina, J. C. (2006). Particle Shape Effects on Packing Density, Stiffness, and Strength: Natural and Crushed Sands. Journal of Geotechnical and Geoenvironmental Engineering, 132(5), 591–602. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591)
  • Cui, L., & O’Sullivan, C. (2006). Exploring the macro- and micro-scale response of an idealised granular material in the direct shear apparatus. Géotechnique, 56(7), 455–468. https://doi.org/10.1680/geot.2006.56.7.455
  • Cundall, P. A., & Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Géotechnique, 29(1), 47–65. https://doi.org/10.1680/geot.1979.29.1.47
  • El-Kassem, B., Salloum, N., Brinz, T., Heider, Y., & Markert, B. (2021). A multivariate regression parametric study on DEM input parameters of free-flowing and cohesive powders with experimental data-based validation. Computational Particle Mechanics, 8(1), 87–111. https://doi.org/10.1007/s40571-020-00315-8
  • Gezgin, A. T., Çinicioğlu, S. F., & Çinicioğlu, Ö. (2023). Discrete Element Modeling of Open Ended Pile Penetration in Granular Medium (in Turkish). 9th Geotechnical Symposium. İstanbul, Türkiye.
  • Gezgin, A. T., Soltanbeigi, B., & Çinicioğlu, Ö. (2022). Techniques to Reduce Computational Time in Discrete Element Method: Penetration Modelling in Granular Soils (in Turkish). 18th National Congress on Soil Mechanics and Geotechnical Engineering. Kayseri, Türkiye.
  • Härtl, J., & Ooi, J. Y. (2008). Experiments and simulations of direct shear tests: porosity, contact friction and bulk friction. Granular Matter, 10(4), 263–271. https://doi.org/10.1007/s10035-008-0085-3
  • Ioannidi, P. I., McLafferty, S., Reber, J. E., Morra, G., & Weatherley, D. (2024). Deformation and Frictional Failure of Granular Media in 3D Analog and Numerical Experiments. Pure and Applied Geophysics, 181(7), 2083–2105. https://doi.org/10.1007/s00024-024-03464-6
  • Iwashita, K., & Oda, M. (1998). Rolling Resistance at Contacts in Simulation of Shear Band Development by DEM. Journal of Engineering Mechanics, 124(3), 285–292. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:3(285)
  • Jiang, M., Yin, Z.-Y., & Shen, Z. (2016). Shear band formation in lunar regolith by discrete element analyses. Granular Matter, 18(2), 32. https://doi.org/10.1007/s10035-016-0635-z
  • Jouannot-Chesney, P., Jernot, J.-P., & Lantuéjoul, C. (2011). Practical Determination of the Coordination Number in Granular Media. Image Analysis & Stereology, 25(1), 55. https://doi.org/10.5566/ias.v25.p55-61
  • La Ragione, L., & Magnanimo, V. (2012). Contact anisotropy and coordination number for a granular assembly: A comparison of distinct-element-method simulations and theory. Physical Review E, 85(3), 031304. https://doi.org/10.1103/PhysRevE.85.031304
  • Marsal, R. J. (1967). Large Scale Testing of Rockfill Materials. Journal of the Soil Mechanics and Foundations Division, 93(2), 27–43. https://doi.org/10.1061/JSFEAQ.0000958
  • Ovalle, C., Frossard, E., Dano, C., Hu, W., Maiolino, S., & Hicher, P.-Y. (2014). The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data. Acta Mechanica, 225(8), 2199–2216. https://doi.org/10.1007/s00707-014-1127-z
  • Thornton, C., & Zhang, L. (2003). Numerical Simulations of the Direct Shear Test. Chemical Engineering & Technology, 26(2), 153–156. https://doi.org/10.1002/ceat.200390022
  • Wang, Z.-Y., Wang, P., Yin, Z.-Y., & Wang, R. (2022). Micromechanical investigation of the particle size effect on the shear strength of uncrushable granular materials. Acta Geotechnica, 17(10), 4277–4296. https://doi.org/10.1007/s11440-022-01501-z
  • Xu, R., Liu, E., & Li, J. (2024). Multiscale Analysis of Mechanical Properties and Kinetic Processes in Dry Granular Flow. Advances in Civil Engineering, 2024(1). https://doi.org/10.1155/adce/4348417
  • Yilmaz, Y., Deng, Y., Chang, C. S., & Gokce, A. (2023). Strength–dilatancy and critical state behaviours of binary mixtures of graded sands influenced by particle size ratio and fines content. Géotechnique, 73(3), 202–217. https://doi.org/10.1680/jgeot.20.P.320
  • Yu, W., Wang, S., & Miao, Y. (2023). Characterizing force-chain network in aggregate blend using discrete element method and complex network theory. Construction and Building Materials, 400, 132724. https://doi.org/10.1016/j.conbuildmat.2023.132724
  • Zhao, L.-L., Zhu, Z.-F., Zhao, Y.-M., Zheng, Q.-J., Xu, F., Wang, W., … Duan, C.-L. (2024). Laboratory-scale validation of a DEM model for the cross-screen processes of wet coals. Powder Technology, 431, 119091. https://doi.org/10.1016/j.powtec.2023.119091

Multi-scale DEM Investigation of the Effects of Particle Shape and Size Characteristics on the Direct Shear Response of Granular Materials

Yıl 2025, Cilt: 7 Sayı: 2, 251 - 266, 31.12.2025
https://doi.org/10.60093/jiciviltech.1814761

Öz

This study investigates the impact of particle shape, size, and size distribution on the shear behavior of granular materials using a multiscale Discrete Element Method (DEM) approach. A DEM model validated against direct shear test data from the literature was first developed, and seven models with systematically varied particle properties were analyzed. To assess the influence of particle shape, models with equal-volume particles but different sphericity and roundness were used. The effects of particle size and size distribution were investigated through models containing particles of various diameters and gradation coefficients (Cᵤ). The results demonstrated that particle shape exerts the most significant influence on both macro- and microscale behavior. Decreasing sphericity and roundness increased peak shear strength but led to a faster breakdown of contact networks during shearing. Particle size was the second most influential parameter; its effect intensified as size decreased but diminished below a threshold diameter. Particle size distribution showed a minor effect, with a slight increase in dilatancy observed as uniformity decreased. Correlating macroscale stress–strain responses with microscale coordination number changes confirmed that particle shape is the dominant factor controlling the strength and deformation mechanisms of granular systems.

Etik Beyan

The authors declare that they comply with all ethical standards.

Kaynakça

  • Ahmed, S. S., Martinez, A., & DeJong, J. (2024). Gradation and state effects on the strength and dilatancy of coarse-grained soils. E3S Web of Conferences, 544, 13003. https://doi.org/10.1051/e3sconf/202454413003
  • Altair Engineering Inc. (2022). Altair EDEM 2022: Discrete Element Method software for bulk and granular material simulation. Troy, MI, USA: Altair Engineering Inc.
  • Altuhafi, F. N., Coop, M. R., & Georgiannou, V. N. (2016). Effect of Particle Shape on the Mechanical Behavior of Natural Sands. Journal of Geotechnical and Geoenvironmental Engineering, 142(12). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001569
  • Azéma, E., & Radjaï, F. (2010). Stress-strain behavior and geometrical properties of packings of elongated particles. Physical Review E, 81(5), 051304. https://doi.org/10.1103/PhysRevE.81.051304
  • Barton, N., & Kjærnsli, B. (1981). Shear Strength of Rockfill. Journal of the Geotechnical Engineering Division, 107(7), 873–891. https://doi.org/10.1061/AJGEB6.0001167
  • Bisht, M. C., & Bhutani, G. (2023). A New Code for Discrete Element Modelling of the Collapse of Granular Columns—Model Validation. https://doi.org/10.1007/978-981-19-6970-6_7
  • Cao, P., Jiang, M., & Ding, Z. (2020). Effects of particle size on mechanical behaviors of calcareous sand under triaxial conditions. Japanese Geotechnical Society Special Publication, 8(5), 182–187. https://doi.org/10.3208/jgssp.v08.c54
  • Carrasco, S., Cantor, D., Ovalle, C., & Dubois, F. (2025). Particle shape distribution effects on the critical strength of granular materials. Computers and Geotechnics, 177, 106896. https://doi.org/10.1016/j.compgeo.2024.106896
  • Chen, J., Indraratna, B., Vinod, J. S., Ngo, T., & Liu, Y. (2025). Effects of Particle Shape on the Shear Behavior and Breakage of Ballast: A DEM Approach. International Journal of Geomechanics, 25(1). https://doi.org/10.1061/IJGNAI.GMENG-9617
  • Cho, G.-C., Dodds, J., & Santamarina, J. C. (2006). Particle Shape Effects on Packing Density, Stiffness, and Strength: Natural and Crushed Sands. Journal of Geotechnical and Geoenvironmental Engineering, 132(5), 591–602. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591)
  • Cui, L., & O’Sullivan, C. (2006). Exploring the macro- and micro-scale response of an idealised granular material in the direct shear apparatus. Géotechnique, 56(7), 455–468. https://doi.org/10.1680/geot.2006.56.7.455
  • Cundall, P. A., & Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Géotechnique, 29(1), 47–65. https://doi.org/10.1680/geot.1979.29.1.47
  • El-Kassem, B., Salloum, N., Brinz, T., Heider, Y., & Markert, B. (2021). A multivariate regression parametric study on DEM input parameters of free-flowing and cohesive powders with experimental data-based validation. Computational Particle Mechanics, 8(1), 87–111. https://doi.org/10.1007/s40571-020-00315-8
  • Gezgin, A. T., Çinicioğlu, S. F., & Çinicioğlu, Ö. (2023). Discrete Element Modeling of Open Ended Pile Penetration in Granular Medium (in Turkish). 9th Geotechnical Symposium. İstanbul, Türkiye.
  • Gezgin, A. T., Soltanbeigi, B., & Çinicioğlu, Ö. (2022). Techniques to Reduce Computational Time in Discrete Element Method: Penetration Modelling in Granular Soils (in Turkish). 18th National Congress on Soil Mechanics and Geotechnical Engineering. Kayseri, Türkiye.
  • Härtl, J., & Ooi, J. Y. (2008). Experiments and simulations of direct shear tests: porosity, contact friction and bulk friction. Granular Matter, 10(4), 263–271. https://doi.org/10.1007/s10035-008-0085-3
  • Ioannidi, P. I., McLafferty, S., Reber, J. E., Morra, G., & Weatherley, D. (2024). Deformation and Frictional Failure of Granular Media in 3D Analog and Numerical Experiments. Pure and Applied Geophysics, 181(7), 2083–2105. https://doi.org/10.1007/s00024-024-03464-6
  • Iwashita, K., & Oda, M. (1998). Rolling Resistance at Contacts in Simulation of Shear Band Development by DEM. Journal of Engineering Mechanics, 124(3), 285–292. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:3(285)
  • Jiang, M., Yin, Z.-Y., & Shen, Z. (2016). Shear band formation in lunar regolith by discrete element analyses. Granular Matter, 18(2), 32. https://doi.org/10.1007/s10035-016-0635-z
  • Jouannot-Chesney, P., Jernot, J.-P., & Lantuéjoul, C. (2011). Practical Determination of the Coordination Number in Granular Media. Image Analysis & Stereology, 25(1), 55. https://doi.org/10.5566/ias.v25.p55-61
  • La Ragione, L., & Magnanimo, V. (2012). Contact anisotropy and coordination number for a granular assembly: A comparison of distinct-element-method simulations and theory. Physical Review E, 85(3), 031304. https://doi.org/10.1103/PhysRevE.85.031304
  • Marsal, R. J. (1967). Large Scale Testing of Rockfill Materials. Journal of the Soil Mechanics and Foundations Division, 93(2), 27–43. https://doi.org/10.1061/JSFEAQ.0000958
  • Ovalle, C., Frossard, E., Dano, C., Hu, W., Maiolino, S., & Hicher, P.-Y. (2014). The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data. Acta Mechanica, 225(8), 2199–2216. https://doi.org/10.1007/s00707-014-1127-z
  • Thornton, C., & Zhang, L. (2003). Numerical Simulations of the Direct Shear Test. Chemical Engineering & Technology, 26(2), 153–156. https://doi.org/10.1002/ceat.200390022
  • Wang, Z.-Y., Wang, P., Yin, Z.-Y., & Wang, R. (2022). Micromechanical investigation of the particle size effect on the shear strength of uncrushable granular materials. Acta Geotechnica, 17(10), 4277–4296. https://doi.org/10.1007/s11440-022-01501-z
  • Xu, R., Liu, E., & Li, J. (2024). Multiscale Analysis of Mechanical Properties and Kinetic Processes in Dry Granular Flow. Advances in Civil Engineering, 2024(1). https://doi.org/10.1155/adce/4348417
  • Yilmaz, Y., Deng, Y., Chang, C. S., & Gokce, A. (2023). Strength–dilatancy and critical state behaviours of binary mixtures of graded sands influenced by particle size ratio and fines content. Géotechnique, 73(3), 202–217. https://doi.org/10.1680/jgeot.20.P.320
  • Yu, W., Wang, S., & Miao, Y. (2023). Characterizing force-chain network in aggregate blend using discrete element method and complex network theory. Construction and Building Materials, 400, 132724. https://doi.org/10.1016/j.conbuildmat.2023.132724
  • Zhao, L.-L., Zhu, Z.-F., Zhao, Y.-M., Zheng, Q.-J., Xu, F., Wang, W., … Duan, C.-L. (2024). Laboratory-scale validation of a DEM model for the cross-screen processes of wet coals. Powder Technology, 431, 119091. https://doi.org/10.1016/j.powtec.2023.119091
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Ahmet Talha Gezgin 0000-0002-9725-6015

Gönderilme Tarihi 31 Ekim 2025
Kabul Tarihi 29 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 2

Kaynak Göster

APA Gezgin, A. T. (2025). Multi-scale DEM Investigation of the Effects of Particle Shape and Size Characteristics on the Direct Shear Response of Granular Materials. Journal of Innovations in Civil Engineering and Technology, 7(2), 251-266. https://doi.org/10.60093/jiciviltech.1814761