Araştırma Makalesi
BibTex RIS Kaynak Göster

Eğilme ve Eksenel Kuvvet Etkisindeki Başlık Levhalı Kutu Kesitlerin İncelenmesi

Yıl 2024, Cilt: 6 Sayı: 2, 159 - 177, 31.12.2024
https://doi.org/10.60093/jiciviltech.1497584

Öz

Yapı sistemi üzerinde birleşim tasarımından genel yapı tasarımına dek, süneklik özelliklerinin sağlanması gerekir. Ülkemizde yaygın olarak tercih edilen kutu kesitli profillerin iç kuvvetler tesiri altında oluşan ani kapasitelerin kayıplarına ve gevrek kırılmalarına yol açarak telafi edilemez hasarlara neden olabilir. Bu nedenle yapı elemanlarının tasarımlarında gerçekleşebilecek burkulma durumunun dikkate alınarak tasarımları yapılmalıdır. Yapılan bu çalışmada, kutu profillerin lokal burkulmalarının önlenmesi amacıyla başlık levhalarıyla güçlendirilmiştir. Bu güçlendirmenin eksenel kuvvet etkisi altındaki kutu kesitli profillerde kaynaklı birleşim lokal burkulmaları ve taşıma kapasitesi üzerindeki etkileri incelenmiştir. Analizler, tersinir statik artımsal yükler etkisinde sayısal olarak yapılmıştır. Kaynak dikişinde meydana gelmesi olası yırtılmalar önlendiğinde başlık levhasıyla güçlendirme tekniğinin etkili sonuçlar verdiği görülmüştür.

Kaynakça

  • Berman, W.J., Bruneau, M. (2007). Experimental and analytical investigation of tubular links for eccentrically braced frames, Engineering Structures, 29(8), 1929-1938. https://doi.org/10.1016/j.engstruct.2006.10.012
  • Chao, S-H., Goel, S.C. (2006). Performance-based design of eccentrically braced frames using target drift and yield mechanism as performance criteria, Engineering Journal, 43(4), 173-199. https://doi.org/10.62913/engj.v43i4.893
  • Chopra, A.K., Goel R.K. (1999). Capacity–Demand–Diagram methods for estimating seismic deformation of inelastic structures, Earthquake Spectra, 15(4), 637-656. https://doi.org/10.1193/1.1586065
  • Dicleli, M., Mehta, A. (2007). Simulation of inelastic cyclic buckling behavior of steel box sections, Computers & Structures, 85(7-8), 446-457. https://doi.org/10.1016/j.compstruc.2006.09.010
  • Foutch, D.A., Yun, S.Y. (2002). Modeling of steel moment frames for seismic loads, Journal of Constructional Steel Research, 58(5-8), 529-564. https://doi.org/10.1016/S0143-974X(01)00078-5
  • Gioncu, V. (2000). Framed structures. ductility and seismic response general report, Journal of Constructional Steel Research, 55(1-3), 125-154. https://doi.org/10.1016/S0143-974X(99)00081-4
  • Gioncu, V., Mazzolani, F. (2002). Ductility of seismic resistant steel structures, Spon press, Biddles ltd., 694s. USA and Canada.
  • Jian, W., Guang, T.W. (2022). Experimental seismic behavior of RHS column-to-I beam connection with additional plates, Iranian Journal of Science and Technology, 46(3), 2053-2065. https://doi.org/10.1007/s40996-021-00770-0
  • Mahin, S., Malley, J., Hamburger, R., (2002). Overwiev of the Fema/Sac program for reduction of earthquake hazards in steel moment frame structures, Journal of Constructional Steel Research, 58(5-8), 511-528. https://doi.org/10.1016/S0143-974X(01)00088-8
  • Mashiri, F.R., Zhao, X.L. (2004). Plastic mechanism analysis of welded thin-walled T-joints made up of circular braces and square chords under in-plane bending, Thin-Walled Structures, 42(5), 759–783. https://doi.org/10.1016/j.tws.2003.12.010
  • Mashiri, F.R., Zhao, X.L. (2010). Square hollow section (SHS) T-joints with concrete-filled chords subjected to in-plane fatigue loading in the brace, Thin-Walled Structures, 48(2), 150–158. https://doi.org/10.1016/j.tws.2009.07.010
  • Nakashima, M., Matsumiya, T., Liu, D., Suita, K., Liu, D. (2005). Test on full-scale three-storey steel moment frame and assessment of ability of numerical simulation to trace cyclic inelastic behaviour, Earthquake Engineering & Structural Dynamics 35(1), 3-19. https://doi.org/10.1002/eqe.528
  • Yun, S.-Y., Hamburger, R.O., Cornell, C.A., Foutch, D.A., (2002). Seismic performance evaluation for steel moment frames, Journal of Structural Engineering, 128(4), 534-54. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(534)
  • Zhao, B., Liu, C., Lin, S. (2024). Comparison of in-plane flexural seismic behavior between traditional RHS X-joints and eccentric RHS X-joints. In Structures 60, 105835. https://doi.org/10.1016/j.istruc.2023.105835
  • Zhao, X.L. (2000). Deformation limit and ultimate strength of welded T-joints in cold-formed rhs sections, Journal of Constructional Steel Research, 53(2). 149–165. https://doi.org/10.1016/S0143-974X(99)00063-2

Investigation of Box Sections with Heading Plates Under the Effect of Flexural and Axial Force

Yıl 2024, Cilt: 6 Sayı: 2, 159 - 177, 31.12.2024
https://doi.org/10.60093/jiciviltech.1497584

Öz

Ductility needs to be ensured in the building system, from connection design to overall structure design. For the RHS profiles that are commonly used in general, the sudden loss of capacity and brittle fractures that occur under the influence of internal forces may cause irreversible damage. For this reason, the design of structural elements should be made with the consideration of the possible buckling conditions. In this study, RHS profiles are strengthened with endplates in order to prevent local buckling. The effects of this reinforcement on local buckling and carrying capacity of welded joints in RHS profiles under the influence of axial force are examined. Analyzes are made numerically under the influence of cyclic static incremental loads. It has been observed that the strengthening technique with the endplate gives effective results when possible fractures in the weld seam are prevented.

Kaynakça

  • Berman, W.J., Bruneau, M. (2007). Experimental and analytical investigation of tubular links for eccentrically braced frames, Engineering Structures, 29(8), 1929-1938. https://doi.org/10.1016/j.engstruct.2006.10.012
  • Chao, S-H., Goel, S.C. (2006). Performance-based design of eccentrically braced frames using target drift and yield mechanism as performance criteria, Engineering Journal, 43(4), 173-199. https://doi.org/10.62913/engj.v43i4.893
  • Chopra, A.K., Goel R.K. (1999). Capacity–Demand–Diagram methods for estimating seismic deformation of inelastic structures, Earthquake Spectra, 15(4), 637-656. https://doi.org/10.1193/1.1586065
  • Dicleli, M., Mehta, A. (2007). Simulation of inelastic cyclic buckling behavior of steel box sections, Computers & Structures, 85(7-8), 446-457. https://doi.org/10.1016/j.compstruc.2006.09.010
  • Foutch, D.A., Yun, S.Y. (2002). Modeling of steel moment frames for seismic loads, Journal of Constructional Steel Research, 58(5-8), 529-564. https://doi.org/10.1016/S0143-974X(01)00078-5
  • Gioncu, V. (2000). Framed structures. ductility and seismic response general report, Journal of Constructional Steel Research, 55(1-3), 125-154. https://doi.org/10.1016/S0143-974X(99)00081-4
  • Gioncu, V., Mazzolani, F. (2002). Ductility of seismic resistant steel structures, Spon press, Biddles ltd., 694s. USA and Canada.
  • Jian, W., Guang, T.W. (2022). Experimental seismic behavior of RHS column-to-I beam connection with additional plates, Iranian Journal of Science and Technology, 46(3), 2053-2065. https://doi.org/10.1007/s40996-021-00770-0
  • Mahin, S., Malley, J., Hamburger, R., (2002). Overwiev of the Fema/Sac program for reduction of earthquake hazards in steel moment frame structures, Journal of Constructional Steel Research, 58(5-8), 511-528. https://doi.org/10.1016/S0143-974X(01)00088-8
  • Mashiri, F.R., Zhao, X.L. (2004). Plastic mechanism analysis of welded thin-walled T-joints made up of circular braces and square chords under in-plane bending, Thin-Walled Structures, 42(5), 759–783. https://doi.org/10.1016/j.tws.2003.12.010
  • Mashiri, F.R., Zhao, X.L. (2010). Square hollow section (SHS) T-joints with concrete-filled chords subjected to in-plane fatigue loading in the brace, Thin-Walled Structures, 48(2), 150–158. https://doi.org/10.1016/j.tws.2009.07.010
  • Nakashima, M., Matsumiya, T., Liu, D., Suita, K., Liu, D. (2005). Test on full-scale three-storey steel moment frame and assessment of ability of numerical simulation to trace cyclic inelastic behaviour, Earthquake Engineering & Structural Dynamics 35(1), 3-19. https://doi.org/10.1002/eqe.528
  • Yun, S.-Y., Hamburger, R.O., Cornell, C.A., Foutch, D.A., (2002). Seismic performance evaluation for steel moment frames, Journal of Structural Engineering, 128(4), 534-54. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(534)
  • Zhao, B., Liu, C., Lin, S. (2024). Comparison of in-plane flexural seismic behavior between traditional RHS X-joints and eccentric RHS X-joints. In Structures 60, 105835. https://doi.org/10.1016/j.istruc.2023.105835
  • Zhao, X.L. (2000). Deformation limit and ultimate strength of welded T-joints in cold-formed rhs sections, Journal of Constructional Steel Research, 53(2). 149–165. https://doi.org/10.1016/S0143-974X(99)00063-2
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapı Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

İlyas Devran Çelik 0000-0001-9011-4041

Mustafa Bedirhan Ay 0000-0002-7478-3322

Gülsüm Beyza Yavuz 0009-0002-3828-905X

Kılıç Yasin Arslan 0000-0002-4433-9204

Erken Görünüm Tarihi 31 Aralık 2024
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 10 Haziran 2024
Kabul Tarihi 16 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 6 Sayı: 2

Kaynak Göster

APA Çelik, İ. D., Ay, M. B., Yavuz, G. B., Arslan, K. Y. (2024). Eğilme ve Eksenel Kuvvet Etkisindeki Başlık Levhalı Kutu Kesitlerin İncelenmesi. Journal of Innovations in Civil Engineering and Technology, 6(2), 159-177. https://doi.org/10.60093/jiciviltech.1497584