Enkapsüle edilmiş kenevir tohumu yağının antimikrobiyal aktivite çalışmaları
Yıl 2025,
Cilt: 10 Sayı: 4, 94 - 107, 31.12.2025
Merve Nur Özdemir
,
Ertugrul Osman Bursalıoğlu
,
Derya Doğanay
,
Ahmet Arif Kurt
,
İsmail Aslan
Öz
Giriş: Bu çalışmada Cannabis sativa bitkisinin tohumlarından elde edilen yağın stabilizasyon, emilim ve dağılım etkisini arttıracak lipozom ve lipozom- jel formülasyonlarının antimikrobiyal etkinliğini ne ölçüde etkilediğini değerlendirmek amaçlanmıştır.
Gereç ve Yöntem: Çalışmamda antimiktobiyal etken olarak Kenevir Tohumu Yağı kullanıldı. Mikroorganizma olarak Candida albicans araştırıldı. Kenevir tohumu yağından 8 farklı formülasyon hazırlanarak yayma plak yöntemiyle etki incelendi.
Bulgular: Kenevir Tohumu Yağının formülasyon uygulamaları ve kontrol gruplarına göre en etkili sonuçlar, Carbopol® Ultrez 30 içeren lipozomal formülasyonda gözlendi. C. albicans ile yapılan yayma ekim çalışmasında, Kenevir Tohumu Yağını formülasyonları ve kontrol gruplarının bir hafta süresince yapılan incelemelerde çoğalmasının sınırlandığı belirlenmiştir.
Sonuç: Hazırlanan Kenevir Tohumu Yağı formülasyonları, çalışmada kullanılan C. albicans’ a çoğalmasını büyük oranda önleyici etkisi olduğu tespit edildi. Ulaşılan bu sonuçlara bakıldığı zaman, Kenevir Tohmu Yağının ve C. albicans’ ın faydalanıldığı çalışmalara zemin hazırlayacaktır.
Etik Beyan
bu çalışma için etik kurul gerekmediği için, etik kurul izni alınmadı
Teşekkür
makalede emeği olan tüm yazarlara teşekkür ederiz
Kaynakça
-
Siniscalco Gigliano G, “Identification of C. sativa L. (Cannabaceae) using restriction profiles of the Internal Transcribed Spacer II (ITS2). Sci. Justice. 1998;. 38 (4):225–230. doi: 10.1016/S1355-0306(98)72116-1.
-
Kumar P, Mahato DK, Kamle M, Borah R, et al. Pharmacological properties, therapeutic potential, and legal status of C. sativa L.: An overview. Phyther. Res. 2021; 35 11 (): 6010–6029. doi:10.1002/ptr.7213.
-
Monthony AS, Page SR, Hesami M, and Jones AMP, The past, present and future of C. sativa tissue culture. Plants. 2021; 10 (1): 1–29. doi:10.3390/plants10010185.
-
Clarke RC and Merlin MD. Letter to the Editor: Small, Ernest. 2015. Evolution and Classification of C. sativa (Marijuana, Hemp) in Relation to Human Utilization. Botanical Review. 2015; 81(3): 295–305. doi: 10.1007/s12229-015-9158-2.
-
Saroya AS. The Phytocannabinoids. 2017. doi: 10.1201/9781315367071-34.
-
Saloner A and Bernstein N. Nitrogen supply affects cannabinoid and terpenoid profile in medical cannabis (C. sativa L.). Ind. Crops Prod. 2020; 167: 113516. doi: 10.1016/j.indcrop.2021.113516.
-
Pollio A. The Name of Cannabis: A Short Guide for Nonbotanists. Cannabis Cannabinoid Res. 2016; 1(1):234–238. doi: 10.1089/can.2016.0027.
-
Dunford NT. Hemp and flaxseed oil: Properties and applications for use in food. Elsevier Ltd., 2015. doi: 10.1016/B978-1-78242-376-8.00002-8.
-
Appendino G, Gibbons S, Giana A, Pagani A, et al. Antibacterial cannabinoids from Cannabis sativa: a structure-activity study. J Nat Prod. 2008; 71(8):1427-30. doi: 10.1021/np8002673. Epub 2008 Aug 6. PMID: 18681481.
-
VanDolah HJ, Bauer BA, and Mauck KF. Clinicians’ Guide to Cannabidiol and Hemp Oils. Mayo Clin. Proc. 2019; 94(9): 1840–1851. doi: 10.1016/j.mayocp.2019.01.003.
-
Ali EMM, Almagboul AZI, Khogali SME. and a Gergeir UM. Antimicrobial Activity of C. sativa L . Chinese Med. 2012; 3: 61–64.
-
Maule WJ. Medical uses of marijuana (C. sativa ): Fact or fallacy?. Br. J. Biomed. Sci. 2015; 72(2): 85–91. doi: 10.1080/09674845.2015.11666802.
-
Chen C, and Pan Z. Cannabidiol and terpenes from hemp – ingredients for future foods and processing technologies. J. Futur. Foods. 2021; 1(2): 113–127. doi: 10.1016/j.jfutfo.2022.01.001.
-
Kriese U, Schumann E, Weber WE, Beyer M, et al. . Oil content, tocopherol composition and fatty acid patterns of the seeds of 51 Cannabis sativa L. genotypes. Euphytica. 2004; 137(3): 339-351.
-
Calzolari D, Rocchetti G, Lucini L, & Amaducci S. The variety, terroir, and harvest types affect the yield and the phenolic and sterolic profiles of hemp seed oil. Food Research International. 2021;142: 110212.
-
Anwar F, Latif S, and Ashraf M, Analytical Characterization of Hemp ( C. sativa ) Seed Oil from Different Agro-ecological Zones of Pakistan. 2006; . 83 (4): 323-329.
-
Yang Y, Lewis MM, Bello AM, Wasilewski E, et al. C. sativa ( Hemp ) Seeds , D 9 -Tetrahydrocannabinol , and Potential Overdose. 2017; 2: 274– 281. doi: 10.1089/can.2017.0040.
-
Callaway JC. Hempseed as a nutritional resource An overview. 2004; 65–72.
-
Özdemir E, Aslan İ, Çakıc, B, Türker B, et al. Microbiological property evaluation of natural essential oils used in green cosmetic industry. Current Perspectives on Medicinal and Aromatic Plants, 2018; 1(2):111-116.
-
Naglik JR, Gaffen SL, and Hube B. ScienceDirect Candidalysin : discovery and function in Candida albicans infections. Curr. Opin. Microbiol. 2019; 52100–109. doi: 10.1016/j.mib.2019.06.002.
-
Corrêa JL, Veiga FF, Jarros IC, Costa MI, et al. Propolis extract has bioactivity on the wall and cell membrane of
-
Candida albicans. Journal of Ethnopharmacology. 2020; 256: 112791.
-
Tong Y and Tang J. Candida albicans infection and intestinal immunity. Microbiol. Res. 2017; 198: 27–35. doi: 10.1016/j.micres.2017.02.002.
-
Eggimann P, Garbino J, and Pittet D. Reviews Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect Dis. 2003; 3: 685–702.
-
Naglik JR, Moyes DL, Wächtler B, Hube, B. Candida albicans interactions with epithelial cells and mucosal immunity. 2011; 13(12-13), 963-976. doi: 10.1016/j.micinf.2011.06.009.
-
Dadar M, Tiwari R, Karthik K, Chakraborty S, et al. Microbial Pathogenesis Candida albicans - Biology , molecular characterization , pathogenicity , and advances in diagnosis and control – An update. Microb. Pthogenes.. 2018; 117: 128–138. doi: 10.1016/j.micpath.2018.02.028.
-
Brown GD, Kaplan DH, Brown GD, and Kaplan DH. Candida albicans Morphology and Dendritic Cell Article Candida albicans Morphology and Dendritic Cell Subsets Determine T Helper Cell Differentiation. immunity. 2015; 42(2): 356–366. doi: 10.1016/.2015.01.008.
-
Polke M, Hube B, and Jacobsen ID. Candida Survival Strategies. 2015; 91. Elsevier Ltd,. doi: 10.1016/bs.aambs.2014.12.002.
-
Limon JJ, Skalski JH, and Underhill DM. Review Commensal Fungi in Health and Disease. Cell Host Microbe. 2017; 22(2): 156–165. doi: 10.1016/j.chom.2017.07.002.
-
Kaushik P, Dowling K, Barrow CJ, and Adhikari B. Microencapsulation of omega-3 fatty acids: A review of microencapsulation and characterization methods. J. Funct. Foods. 2015; 19:868–881. doi: 10.1016/j.jff.2014.06.029.
-
Langer R, Drug Delivery Systems, 1991;16(9). doi: 10.1557/S0883769400056050.
-
Tomsone L, Galoburda R, Kruma Z, Durrieu V, et al. Microencapsulation of horseradish (Armoracia rusticana L.) juice using spray-drying. Foods. 2020; 9(9): 1–17. doi: 10.3390/foods9091332.
-
Krajišnik D, Calija B, and Cekić N. Polymeric Microparticles and Inorganic Micro/ Nanoparticulate Drug Carriers: An Overview and Pharmaceutical Application. Microsized and Nanosized Carriers for Nonsteroidal Anti-Inflammatory Drugs. 2017; 31-67. doi: 10.1016/B978-0-12-804017-1.00002-9.
-
Garavand F, Jalai-Jivan M, Assadpour E, and Jafari SM. Encapsulation of phenoliccompounds within nano/microemulsion systems: A review. Food Chem. 2021; 364: 130376. doi: 10.1016/j.foodchem.2021.130376.
-
Gbassi GK and Vandamme T. Probiotic encapsulation technology: From microencapsulation to release into the gut. Pharmaceutics. 2012; 4(1): 149–163. doi: 10.3390/pharmaceutics4010149.
-
Martins E, Poncelet D, Rodrigues RC and Renard D. Oil encapsulation techniques using alginate as encapsulating agent: applications and drawbacks. J. Microencapsul. 2017; 34(8): 754-771. doi: 10.1080/02652048.2017.1403495.
-
Samad A, Sultana Y, and Aqil M. Liposomal Drug Delivery Systems: An Update Review. Curr. Drug Deliv. 2007; 4(4): 297–305. doi: 10.2174/156720107782151269.
-
Akbarzadeh A, Rezaei-sadabady R, Davaran S, Joo SW, et al. Liposome : classification , prepNew aspects of liposomesaration , and applications. Nanoscale Res. Lett. 2013; 8(102): 1–9. http://www.nanoscalereslett.com/content/8/1/102
-
Guimarães D, Cavaco-Paulo A, and Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm. 2021; 601: 120571. doi:10.1016/j.ijpharm.2021.120571.
-
Patil YP and Jadhav S. Novel methods for liposome preparation. Chem. Phys. Lipids. 2014; 177: 8–18. doi: 10.1016/j.chemphyslip.2013.10.011.
-
Sharma A and Sharma US. Liposomes in drug delivery: Progress and limitations. Int. J. Pharm. 1997; 154(2): 123–140. doi: 10.1016/S0378-5173(97)00135-X.
-
Penoy N, Grignard B, Evrard B, and Piel G. A supercritical fluid technology for liposome production and comparison with the film hydration method. Int. J. Pharm. 2021; 592: 1–10. doi: 10.1016/j.ijpharm.2020.120093.
-
Batzri S and Korn ED. Single bilayer liposomes prepared without sonication. BBA -Biomembr. 1973; 298(4): 1015–1019. doi: 10.1016/0005-2736(73)90408-2.
-
Huang X, Caddell R, Yu BO, Xu S, et al. Ultrasound-enhanced microfluidic synthesis of liposomes. Anticancer research. 2010; 30(2): 463-466.
-
Mendez R and Banerjee S. Sonication-based basic protocol for liposome synthesis. Methods Mol. Biol. 2017; 1609: 255–260. doi: 10.1007/978-1-4939-6996-8_21.
-
Maja L, Željko K, and Mateja P. Sustainable technologies for liposome preparation. J. Supercrit. Fluids. 2020; 165: 104984. doi: 10.1016/j.supflu.2020.104984.
-
Thabet Y, Elsabahy M, and Eissa NG. Methods for preparation of niosomes: A focus on thinfilm hydration method. Methods. 2021; 199: 9–15. doi:10.1016/j.ymeth.2021.05.004.
-
Kazakov S. Liposome-Nanogel Structures for Future Pharmaceutical Applications: An Updated Review. Curr. Pharm. Des. 2016; 22 (10): 1391–1413. doi:10.2174/1381612822666160125114733.
-
Ozen F, Solmaz G, Aslan I, Duman G, et al. Novel liposomal incorporation of natural oil extracts from Asian herbs for use in oral biofilm therapy. Current Opinion in Biotechnology. 2011; 22:S118.
-
Ethemoglu MS, Seker FB, Akkaya H, Kilic E, et al. Anticonvulsant activity of resveratrol-loaded liposomes in vivo. Neuroscience. 2017; 357:12-19.
-
Mirab F, Wang Y, Farhadi H, and Majd S. Preparation of Gel-Liposome Nanoparticles for Drug Delivery Applications. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS. 2019; 3935–3938. doi: 10.1109/EMBC.2019.8856639.
-
Hong JS, Stavis SM, Depaoli Lacerda S, Locascio LE, et al. Microfluidic directed self-assembly of liposome-hydrogel hybrid nanoparticles. Langmuir. 2010; 26 (13): 11581–11588. doi: 10.1021/la100879p.
-
Lupo N, Fidahic U, Hetényi G, Griesser J, et al. Inhibitory effect of emulsifiers in sedds on protease activity: Just an illusion. Int. J. Pharm. 2017; 526 (1–2): 23–30. doi: 10.1016/j.ijpharm.2017.04.058.
-
Fresno MJC, Ramírez AD, and Jiménez MM. Systematic study of the flow behaviour and mechanical properties of Carbopol® UltrezTM 10 hydroalcoholic gels. Eur. J. Pharm. Biopharm. 2002; 54: 3329–335. doi: 10.1016/S0939-6411(02)00080-2.
-
Krongrawa W, Limmatvapirat S, Pongnimitprasert N, Meetam P, et al. Formulation and evaluation of gels containing coconut kernel extract for topical application. Asian J. Pharm. Sci. 2018; 13 (5): 415–424. doi: 10.1016/j.ajps.2018.01.005
-
Pozo-Antonio JS, Ramil A, Rivas T, López AJ, et al. Effectiveness of chemical, mechanical and laser cleaning methods of sulphated black crusts developed on granite. Constr. Build. Mater. 2016; 112: 682–690. doi: 10.1016/j.conbuildmat.2016.02.195.
-
Günal M, Ayla Ş, Bedri N, Beker M, et al. The effects of topical liposomal resveratrol on incisional and excisional wound healing process. Turkderm Turkish Archives of Dermatology and Venereology. 2019; 53(4): 128-134.
Aslan İ, & Kurt AA. In-vitro comparison release study of novel liposome and conventional formulation containing Rosmarinus officinalis extract. Current Perspectives on Medicinal and Aromatic Plants. 2021; 4(1):13-21.
Antimicrobial activity studies of encapsulated hemp seed oil
Yıl 2025,
Cilt: 10 Sayı: 4, 94 - 107, 31.12.2025
Merve Nur Özdemir
,
Ertugrul Osman Bursalıoğlu
,
Derya Doğanay
,
Ahmet Arif Kurt
,
İsmail Aslan
Öz
Objective: In this study, it was aimed to evaluate to what extent the oil obtained from the seeds of the C. sativa plant affects the antimicrobial activity of liposome and liposome-gel formulations that will increase the stabilization, absorption and dispersion effect.
Materials and Method: Hemp Seed Oil was used as an antimicrobial agent in our study. C. albicans was investigated as a microorganism. Eight different formulations were prepared from cannabis seed oil and the effect was examined by the spread plate method.
Results: The most effective results were observed in the liposomal formulation containing Carbopol® Ultrez 30 compared to the formulation applications and control groups of Cannabis Seed Oil. In a smear sowing study with C. albicans, it was determined that the growth of Cannabis Seed Oil formulations and control groups was limited during one-week examinations.
Conlusion: It was determined that the prepared Cannabis Seed Oil formulations had a highly inhibitory effect on the proliferation of C. albicans used in the study. Considering these results, it will lay the groundwork for studies that benefit from Cannabis Seed Oil and C. albicans.
Etik Beyan
There is no ethics committee requirement for the scope of this study.
Teşekkür
We would like to thank all authors who contributed to this article.
Kaynakça
-
Siniscalco Gigliano G, “Identification of C. sativa L. (Cannabaceae) using restriction profiles of the Internal Transcribed Spacer II (ITS2). Sci. Justice. 1998;. 38 (4):225–230. doi: 10.1016/S1355-0306(98)72116-1.
-
Kumar P, Mahato DK, Kamle M, Borah R, et al. Pharmacological properties, therapeutic potential, and legal status of C. sativa L.: An overview. Phyther. Res. 2021; 35 11 (): 6010–6029. doi:10.1002/ptr.7213.
-
Monthony AS, Page SR, Hesami M, and Jones AMP, The past, present and future of C. sativa tissue culture. Plants. 2021; 10 (1): 1–29. doi:10.3390/plants10010185.
-
Clarke RC and Merlin MD. Letter to the Editor: Small, Ernest. 2015. Evolution and Classification of C. sativa (Marijuana, Hemp) in Relation to Human Utilization. Botanical Review. 2015; 81(3): 295–305. doi: 10.1007/s12229-015-9158-2.
-
Saroya AS. The Phytocannabinoids. 2017. doi: 10.1201/9781315367071-34.
-
Saloner A and Bernstein N. Nitrogen supply affects cannabinoid and terpenoid profile in medical cannabis (C. sativa L.). Ind. Crops Prod. 2020; 167: 113516. doi: 10.1016/j.indcrop.2021.113516.
-
Pollio A. The Name of Cannabis: A Short Guide for Nonbotanists. Cannabis Cannabinoid Res. 2016; 1(1):234–238. doi: 10.1089/can.2016.0027.
-
Dunford NT. Hemp and flaxseed oil: Properties and applications for use in food. Elsevier Ltd., 2015. doi: 10.1016/B978-1-78242-376-8.00002-8.
-
Appendino G, Gibbons S, Giana A, Pagani A, et al. Antibacterial cannabinoids from Cannabis sativa: a structure-activity study. J Nat Prod. 2008; 71(8):1427-30. doi: 10.1021/np8002673. Epub 2008 Aug 6. PMID: 18681481.
-
VanDolah HJ, Bauer BA, and Mauck KF. Clinicians’ Guide to Cannabidiol and Hemp Oils. Mayo Clin. Proc. 2019; 94(9): 1840–1851. doi: 10.1016/j.mayocp.2019.01.003.
-
Ali EMM, Almagboul AZI, Khogali SME. and a Gergeir UM. Antimicrobial Activity of C. sativa L . Chinese Med. 2012; 3: 61–64.
-
Maule WJ. Medical uses of marijuana (C. sativa ): Fact or fallacy?. Br. J. Biomed. Sci. 2015; 72(2): 85–91. doi: 10.1080/09674845.2015.11666802.
-
Chen C, and Pan Z. Cannabidiol and terpenes from hemp – ingredients for future foods and processing technologies. J. Futur. Foods. 2021; 1(2): 113–127. doi: 10.1016/j.jfutfo.2022.01.001.
-
Kriese U, Schumann E, Weber WE, Beyer M, et al. . Oil content, tocopherol composition and fatty acid patterns of the seeds of 51 Cannabis sativa L. genotypes. Euphytica. 2004; 137(3): 339-351.
-
Calzolari D, Rocchetti G, Lucini L, & Amaducci S. The variety, terroir, and harvest types affect the yield and the phenolic and sterolic profiles of hemp seed oil. Food Research International. 2021;142: 110212.
-
Anwar F, Latif S, and Ashraf M, Analytical Characterization of Hemp ( C. sativa ) Seed Oil from Different Agro-ecological Zones of Pakistan. 2006; . 83 (4): 323-329.
-
Yang Y, Lewis MM, Bello AM, Wasilewski E, et al. C. sativa ( Hemp ) Seeds , D 9 -Tetrahydrocannabinol , and Potential Overdose. 2017; 2: 274– 281. doi: 10.1089/can.2017.0040.
-
Callaway JC. Hempseed as a nutritional resource An overview. 2004; 65–72.
-
Özdemir E, Aslan İ, Çakıc, B, Türker B, et al. Microbiological property evaluation of natural essential oils used in green cosmetic industry. Current Perspectives on Medicinal and Aromatic Plants, 2018; 1(2):111-116.
-
Naglik JR, Gaffen SL, and Hube B. ScienceDirect Candidalysin : discovery and function in Candida albicans infections. Curr. Opin. Microbiol. 2019; 52100–109. doi: 10.1016/j.mib.2019.06.002.
-
Corrêa JL, Veiga FF, Jarros IC, Costa MI, et al. Propolis extract has bioactivity on the wall and cell membrane of
-
Candida albicans. Journal of Ethnopharmacology. 2020; 256: 112791.
-
Tong Y and Tang J. Candida albicans infection and intestinal immunity. Microbiol. Res. 2017; 198: 27–35. doi: 10.1016/j.micres.2017.02.002.
-
Eggimann P, Garbino J, and Pittet D. Reviews Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect Dis. 2003; 3: 685–702.
-
Naglik JR, Moyes DL, Wächtler B, Hube, B. Candida albicans interactions with epithelial cells and mucosal immunity. 2011; 13(12-13), 963-976. doi: 10.1016/j.micinf.2011.06.009.
-
Dadar M, Tiwari R, Karthik K, Chakraborty S, et al. Microbial Pathogenesis Candida albicans - Biology , molecular characterization , pathogenicity , and advances in diagnosis and control – An update. Microb. Pthogenes.. 2018; 117: 128–138. doi: 10.1016/j.micpath.2018.02.028.
-
Brown GD, Kaplan DH, Brown GD, and Kaplan DH. Candida albicans Morphology and Dendritic Cell Article Candida albicans Morphology and Dendritic Cell Subsets Determine T Helper Cell Differentiation. immunity. 2015; 42(2): 356–366. doi: 10.1016/.2015.01.008.
-
Polke M, Hube B, and Jacobsen ID. Candida Survival Strategies. 2015; 91. Elsevier Ltd,. doi: 10.1016/bs.aambs.2014.12.002.
-
Limon JJ, Skalski JH, and Underhill DM. Review Commensal Fungi in Health and Disease. Cell Host Microbe. 2017; 22(2): 156–165. doi: 10.1016/j.chom.2017.07.002.
-
Kaushik P, Dowling K, Barrow CJ, and Adhikari B. Microencapsulation of omega-3 fatty acids: A review of microencapsulation and characterization methods. J. Funct. Foods. 2015; 19:868–881. doi: 10.1016/j.jff.2014.06.029.
-
Langer R, Drug Delivery Systems, 1991;16(9). doi: 10.1557/S0883769400056050.
-
Tomsone L, Galoburda R, Kruma Z, Durrieu V, et al. Microencapsulation of horseradish (Armoracia rusticana L.) juice using spray-drying. Foods. 2020; 9(9): 1–17. doi: 10.3390/foods9091332.
-
Krajišnik D, Calija B, and Cekić N. Polymeric Microparticles and Inorganic Micro/ Nanoparticulate Drug Carriers: An Overview and Pharmaceutical Application. Microsized and Nanosized Carriers for Nonsteroidal Anti-Inflammatory Drugs. 2017; 31-67. doi: 10.1016/B978-0-12-804017-1.00002-9.
-
Garavand F, Jalai-Jivan M, Assadpour E, and Jafari SM. Encapsulation of phenoliccompounds within nano/microemulsion systems: A review. Food Chem. 2021; 364: 130376. doi: 10.1016/j.foodchem.2021.130376.
-
Gbassi GK and Vandamme T. Probiotic encapsulation technology: From microencapsulation to release into the gut. Pharmaceutics. 2012; 4(1): 149–163. doi: 10.3390/pharmaceutics4010149.
-
Martins E, Poncelet D, Rodrigues RC and Renard D. Oil encapsulation techniques using alginate as encapsulating agent: applications and drawbacks. J. Microencapsul. 2017; 34(8): 754-771. doi: 10.1080/02652048.2017.1403495.
-
Samad A, Sultana Y, and Aqil M. Liposomal Drug Delivery Systems: An Update Review. Curr. Drug Deliv. 2007; 4(4): 297–305. doi: 10.2174/156720107782151269.
-
Akbarzadeh A, Rezaei-sadabady R, Davaran S, Joo SW, et al. Liposome : classification , prepNew aspects of liposomesaration , and applications. Nanoscale Res. Lett. 2013; 8(102): 1–9. http://www.nanoscalereslett.com/content/8/1/102
-
Guimarães D, Cavaco-Paulo A, and Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm. 2021; 601: 120571. doi:10.1016/j.ijpharm.2021.120571.
-
Patil YP and Jadhav S. Novel methods for liposome preparation. Chem. Phys. Lipids. 2014; 177: 8–18. doi: 10.1016/j.chemphyslip.2013.10.011.
-
Sharma A and Sharma US. Liposomes in drug delivery: Progress and limitations. Int. J. Pharm. 1997; 154(2): 123–140. doi: 10.1016/S0378-5173(97)00135-X.
-
Penoy N, Grignard B, Evrard B, and Piel G. A supercritical fluid technology for liposome production and comparison with the film hydration method. Int. J. Pharm. 2021; 592: 1–10. doi: 10.1016/j.ijpharm.2020.120093.
-
Batzri S and Korn ED. Single bilayer liposomes prepared without sonication. BBA -Biomembr. 1973; 298(4): 1015–1019. doi: 10.1016/0005-2736(73)90408-2.
-
Huang X, Caddell R, Yu BO, Xu S, et al. Ultrasound-enhanced microfluidic synthesis of liposomes. Anticancer research. 2010; 30(2): 463-466.
-
Mendez R and Banerjee S. Sonication-based basic protocol for liposome synthesis. Methods Mol. Biol. 2017; 1609: 255–260. doi: 10.1007/978-1-4939-6996-8_21.
-
Maja L, Željko K, and Mateja P. Sustainable technologies for liposome preparation. J. Supercrit. Fluids. 2020; 165: 104984. doi: 10.1016/j.supflu.2020.104984.
-
Thabet Y, Elsabahy M, and Eissa NG. Methods for preparation of niosomes: A focus on thinfilm hydration method. Methods. 2021; 199: 9–15. doi:10.1016/j.ymeth.2021.05.004.
-
Kazakov S. Liposome-Nanogel Structures for Future Pharmaceutical Applications: An Updated Review. Curr. Pharm. Des. 2016; 22 (10): 1391–1413. doi:10.2174/1381612822666160125114733.
-
Ozen F, Solmaz G, Aslan I, Duman G, et al. Novel liposomal incorporation of natural oil extracts from Asian herbs for use in oral biofilm therapy. Current Opinion in Biotechnology. 2011; 22:S118.
-
Ethemoglu MS, Seker FB, Akkaya H, Kilic E, et al. Anticonvulsant activity of resveratrol-loaded liposomes in vivo. Neuroscience. 2017; 357:12-19.
-
Mirab F, Wang Y, Farhadi H, and Majd S. Preparation of Gel-Liposome Nanoparticles for Drug Delivery Applications. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS. 2019; 3935–3938. doi: 10.1109/EMBC.2019.8856639.
-
Hong JS, Stavis SM, Depaoli Lacerda S, Locascio LE, et al. Microfluidic directed self-assembly of liposome-hydrogel hybrid nanoparticles. Langmuir. 2010; 26 (13): 11581–11588. doi: 10.1021/la100879p.
-
Lupo N, Fidahic U, Hetényi G, Griesser J, et al. Inhibitory effect of emulsifiers in sedds on protease activity: Just an illusion. Int. J. Pharm. 2017; 526 (1–2): 23–30. doi: 10.1016/j.ijpharm.2017.04.058.
-
Fresno MJC, Ramírez AD, and Jiménez MM. Systematic study of the flow behaviour and mechanical properties of Carbopol® UltrezTM 10 hydroalcoholic gels. Eur. J. Pharm. Biopharm. 2002; 54: 3329–335. doi: 10.1016/S0939-6411(02)00080-2.
-
Krongrawa W, Limmatvapirat S, Pongnimitprasert N, Meetam P, et al. Formulation and evaluation of gels containing coconut kernel extract for topical application. Asian J. Pharm. Sci. 2018; 13 (5): 415–424. doi: 10.1016/j.ajps.2018.01.005
-
Pozo-Antonio JS, Ramil A, Rivas T, López AJ, et al. Effectiveness of chemical, mechanical and laser cleaning methods of sulphated black crusts developed on granite. Constr. Build. Mater. 2016; 112: 682–690. doi: 10.1016/j.conbuildmat.2016.02.195.
-
Günal M, Ayla Ş, Bedri N, Beker M, et al. The effects of topical liposomal resveratrol on incisional and excisional wound healing process. Turkderm Turkish Archives of Dermatology and Venereology. 2019; 53(4): 128-134.
Aslan İ, & Kurt AA. In-vitro comparison release study of novel liposome and conventional formulation containing Rosmarinus officinalis extract. Current Perspectives on Medicinal and Aromatic Plants. 2021; 4(1):13-21.