Preparation and compatibilization effect of β-cyclodextrin end-functionalized polystyrene for immiscible PCL/PS blends
Yıl 2023,
, 111 - 126, 31.07.2023
Neşe Çakır Yiğit
Öz
The compatibilizing effect of β-cyclodextrin end-functionalized polystyrene (β-CD-PS) on immiscible PCL/PS blends has been studied using 2D NOESY NMR and DSC techniques. The β-CD-PS was obtained via copper(I)-catalyzed azide-alkyne click reaction (CuAAC) of mono azide functional β-CD (β-CD-N3) and low molecular weight PS as a compatibilizer. The preparation of inclusion complexes based on β-CD and PCL (equimolar ratio) was investigated, aiming to reduce the interfaces of PCLand PS and compatibilizer the immiscible PCL/PS mixture. Compatibilization was visually observed when turbid PCL/PS solutions became clear upon heating and extended stirring. Several solutions were prepared with PCL/PS contents ranging from 100/0, 70/30, 50/50, and 30/70 (wt%) with β-CD-PS contents (equivalent to PCL moles) by solution casting technique. The 30/70 PCL/PS blend containing stoichiometric 1:1 inclusion complex of β-CD and PCL showed significant changes in DSC analysis. Moreover, 2-fold and 4-fold β-CD-PS (stoichiometric 2:1 and 4:1 β-CD:PCL) were tested to 50/50 PCL/PS blends to observe the amount of compatibilizer for obtaining good miscibility.
Destekleyen Kurum
Yalova University Scientific Research Unit
Proje Numarası
2019/AP/0020
Teşekkür
The author is grateful to Prof. Dr. Gürkan Hızal, Prof. Dr. Ümit Tunca, and Prof. Dr. Hakan Durmaz to provide the laboratory facilities during the synthesis of the compatibilizer (-CD-PS).
Kaynakça
- Rameshwaram J, Yang Y-S, Jeon H (2005) Structure–property relationships of nanocomposite-like polymer blends with ultrahigh viscosity ratios. Polymer 46 (15):5569-5579. https://doi.org/10.1016/j.polymer.2005.05.033
- Ajitha A, Thomas S (2020) Compatibilization of polymer blends, Compatibilization of Polymer Blends, Elsevier, 640.
- Holsti‐Miettinen R, Seppälä J, Ikkala O (1992) Effects of compatibilizers on the properties of polyamide/polypropylene blends. Polymer Eng Sci 32(13):868-877. https://doi.org/10.1002/pen.760321306
- DeLeo C L, Velankar S S (2008) Morphology and rheology of compatibilized polymer blends: Diblock compatibilizers vs crosslinked reactive compatibilizers. Journal of Rheology 52(6):1385-1404. https://doi.org/10.1122/1.2995857
- Koning C, Van Duin M, Pagnoulle C, Jerome R (1998) Strategies for compatibilization of polymer blends. Progress in Polymer Science 23(4):707-757. https://doi.org/10.1016/S0079-6700(97)00054-3
- Patrício T, Bártolo P (2013) Thermal stability of PCL/PLA blends produced by physical blending process. Procedia Engineering 59:292-297. https://doi.org/10.1016/j.proeng.2013.05.124
- Wang H, Dong W, Li Y (2015) Compatibilization of immiscible polymer blends using in situ formed janus nanomicelles by reactive blending. ACS Macro Letters 4(12):1398-1403. https://doi.org/10.1021/acsmacrolett.5b00763
- Lokensgard E (2016) Industrial plastics: theory and applications: Cengage Learning.
- Zhang Y, Huang Y, Mai K (2005) Crystallization and dynamic mechanical properties of polypropylene/polystyrene blends modified with maleic anhydride and styrene. Journal of Applied Polymer Science 96(6):2038-2045. https://doi.org/10.1002/app.21658
- Lv Q, Wu D, Xie H, Peng S, Chen Y, Xu C (2016) Crystallization of poly (ε-caprolactone) in its immiscible blend with polylactide: insight into the role of annealing histories. RSC Advances 6(44):37721-37730. https://doi.org/10.1039/C6RA07752H
- Na Y-H, He Y, Shuai X, Kikkawa Y, Doi Y, Inoue Y (2002) Compatibilization effect of poly (ε-caprolactone)-b-poly (ethylene glycol) block copolymers and phase morphology analysis in immiscible poly (lactide)/poly (ε-caprolactone) blends. Biomacromolecules 3(6):1179-1186. https://doi.org/10.1021/bm020050r
- Chun Y, Kyung Y, Jung H, Kim W (2000) Thermal and rheological properties of poly (ϵ-caprolactone) and polystyrene blends. Polymer 41(24):8729-8733. https://doi.org/10.1016/S0032-3861(00)00263-9
- Shabana H, Olley R, Bassett D, Jungnickel B-J (2000) Phase separation induced by crystallization in blends of polycaprolactone and polystyrene: an investigation by etching and electron microscopy. Polymer 41(14):5513-5523. https://doi.org/10.1016/S0032-3861(99)00713-2
- Ma M, He Z, Yang J, Wang Q, Chen F, Wang K, Zhang Q, Deng H, Fu Q (2011) Vertical phase separation and liquid-liquid dewetting of thin PS/PCL blend films during spin coating. Langmuir 27(3):1056-1063. https://doi.org/10.1021/la104003p
- Ma M, He Z, Li Y, Chen F, Wang K, Zhang Q, Deng H, Fu Q (2012) Surface phase separation, dewetting feature size, and crystal morphology in thin films of polystyrene/poly (ε-caprolactone) blend. Journal of Colloid Interface Science 387(1):262-269. https://doi.org/10.1016/j.jcis.2012.07.087
- Silva L I, Montoya Rojo U M, Riccardi C C (2017) Phase separation and segregation morphology of PCL/PS blends: Quantitative effect of the crystallization temperature, composition, and molecular weight of PS. Polymer Engineering Science 57(10):1062-1072. https://doi.org/10.1002/pen.24480
- Ho R-M, Chiang Y-W, Lin C-C, Bai S (2002) Block copolymer self-assembly ınduced compatibilization of PCL/PS− PEP blends. Macromolecules 35(4):1299-1306. https://doi.org/10.1021/ma011381j
- Harada A, Takashima Y, Yamaguchi H (2009) Cyclodextrin-based supramolecular polymers. Chemical Society Reviews 38(4):875-882. https://doi.org/10.1039/B705458K
- Poulson B G, Alsulami Q A, Sharfalddin A, El Agammy E F, Mouffouk F, Emwas A-H, Jaremko L, Jaremko M (2022) Cyclodextrins: structural, chemical, and physical properties, and applications. Polysaccharides 3(1):1-31. https://doi.org/10.3390/polysaccharides3010001
- Cakir Yigit N, Hızal G, Tunca U (2022) Synthesis of multiarm star block copolymer based on host-guest inclusion complexation. Journal of Innovative Engineering and Natural Science 2(1):1-16. https://doi.org/10.29228/JIENS.54191
- Okumura H, Kawaguchi Y, Harada A (2001) Preparation and characterization of inclusion complexes of poly (dimethylsiloxane)s with cyclodextrins. Macromolecules 34(18):6338-6343. https://doi.org/10.1021/ma010516i
- Kawaguchi Y, Nishiyama T, Okada M, Kamachi M, Harada A (2000) Complex formation of poly (ε-caprolactone) with cyclodextrins. Macromolecules 33(12):4472-4477. https://doi.org/10.1021/ma992103b
- Busche B J, Tonelli A E, Balik C M (2010) Morphology of polystyrene/poly (dimethyl siloxane) blends compatibilized with star polymers containing a γ–cyclodextrin core and polystyrene arms. Polymer 51(6):1465-1471. https://doi.org/10.1016/j.polymer.2010.01.019
- Balik C, Tonelli A, Libert R (2012) Compatibilization of polymer blends with star polymers containing a gamma-cyclodextrin core and polystyrene arms. APS March Meeting Abstracts 2012:Q48. 005.
- Sharma D, Dhingra S, Banerjee A, Saha S, Bhattacharyya J, Satapathy B K (2022) Designing suture-proof cell-attachable copolymer-mediated and curcumin-β-cyclodextrin inclusion complex loaded aliphatic polyester-based electrospun antibacterial constructs. International Journal of Biological Macromolecules 216:397-413.
- Busche B J, Tonelli A E, Balik C M (2010) Compatibilization of polystyrene/poly (dimethyl siloxane) solutions with star polymers containing a γ-cyclodextrin core and polystyrene arms. Polymer 51(2):454-462. https://doi.org/10.1016/j.polymer.2009.11.069
- Cakir N, Hizal G, Becer C R (2015) Supramolecular glycopolymers with thermo-responsive self-assembly and lectin binding. Polymer Chemistry 6(37):6623-6631. https://doi.org/10.1039/C5PY00939A
- Durmaz H, Dag A, Erdogan E, Demirel A L, Hizal G, Tunca U (2010) Multiarm star block and multiarm star mixed‐block copolymers via azide‐alkyne click reaction. Journal of Polymer Science Part A: Polymer Chemistry 48(1):99-108. https://doi.org/10.1002/pola.23765