Araştırma Makalesi
BibTex RIS Kaynak Göster

Feedback linearization-based cascade control of an underactuated rotary inverted pendulum system

Yıl 2023, , 191 - 204, 31.07.2023
https://doi.org/10.29228/JIENS.70384

Öz

The cascaded control is a multi-loop control structure that is particularly favored to improve performance against disturbances. It is usually a feedback control consisting of an inner loop (slave controller) and an outer loop (master controller), where the set point of the slave controller is set by this master controller. In this paper, a cascaded control strategy is employed to control a rotary inverted pendulum system with nonlinear dynamics due to gravitational, Coriolis and centripetal forces acting on it. Herein, a feedback linearization-based Proportional-Derivative (PD) controller is used for the slave controller and a linear quadratic regulator is used for the master controller. The feedback linearization employed in the inner loop has a relative degree of two and has unstable zero dynamics. These unstable dynamics are addressed in the main controller design and the whole cascaded control becomes stable. In the nonlinear dynamic equation of the inverted pendulum, the torque applied to the pendulum is formulated as a disturbance factor. The proposed feedback linearization-based cascade controller is compared with two different controllers in the presence of disturbances and shown to perform better.

Kaynakça

  • Aguilar-Ibáñez C, Mendoza-Mendoza J, Dávila J (2014) Stabilization of the cart pole system: by sliding mode control. Nonlinear Dyn 78:2769–2777. https://doi.org/10.1007/s11071-014-1624-6
  • Manrique Escobar CA, Pappalardo CM, Guida D (2020) A parametric study of a deep reinforcement learning control system applied to the swing-up problem of the cart-pole. Appl Sci-Basel 10(24):9013. https://doi.org/10.3390/app10249013
  • Inoue A, Deng MC (2009) Non-linear control of under-actuated mechanical systems. Int J Modell Identif Control 6(1):32-39. https://doi.org/10.1504/IJMIC.2009.023528
  • Mehedi IM, Al-Saggaf UM, Mansouri R, Bettayeb M (2019) Stabilization of a double inverted rotary pendulum through fractional order integral control scheme. Int J Adv Rob Syst 16(4). https://doi.org/10.1177/1729881419846741
  • Peng Z, Xin X, Liu Y (2023) Energy-based swing-up control for a two-link underactuated robot with flexible first joint. Nonlinear Dyn 111:289–302. https://doi.org/10.1007/s11071-022-07831-7
  • Güneş U, Sel A, Kürkçü B, Kasnakoğlu C (2020) A comparison of H-infinity-synthesis and feedback linearization for rotary inverted pendulum. 11th International Conference on Mechanical and Aerospace Engineering (ICMAE), Athens, GREECE, Jul. 14–17. https://doi.org/10.1109/ICMAE50897.2020.9178849
  • Soydemir MU, Şahin S, Bulucu P, Kocaoğlu A, Güzeliş C (2019) Learning feedback linearization based stable robust adaptive NARMA controller design for rotary inverted pendulum. 11th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 795-799. https://doi.org/10.23919/ELECO47770.2019.8990417
  • Bulucu P, Soydemir MU, Şahin S, Kocaoğlu A, Güzeliş C (2019) Performance analysis of stable adaptive NARMA controller scheme for furuta pendulum. 23rd International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 350-354. https://doi.org/10.1109/ICSTCC.2019.8885779
  • Akhtaruzzaman M, Shafie AA (2010) Modeling and control of a rotary inverted pendulum using various methods, comparative assessment and result analysis. IEEE International Conference on Mechatronics and Automation, Xi'an, China, 1342-1347. https://doi.org/10.1109/ICMA.2010.5589450
  • Demirtaş M, Altun Y, İstanbullu A (2013) Virtual laboratory for sliding mode and PID control of rotary inverted pendulum. Comput Appl Eng Educ 21: 400-409. https://doi.org/10.1002/cae.20484
  • Tang TF, Chong SH, Pang KK (2019) Stabilisation of a rotary inverted pendulum system with double-PID and LQR control: experimental verification. Int J Autom Control 14(1):18. https://doi.org/10.1504/IJAAC.2020.103799
  • Nath V and Mitra R (2014) Swing-up and control of rotary inverted pendulum using pole placement with integrator. Recent Advances in Engineering and Computational Sciences (RAECS), Chandigarh, India, 1-5. https://doi.org/10.1109/RAECS.2014.6799545.
  • Park M, Kim YJ, Lee JJ (2011) Swing-up and LQR stabilization of a rotary inverted pendulum. Artif Life Rob 16, 94–97. https://doi.org/10.1007/s10015-011-0897-9
  • Nghi HV, Nhien DP, Ba DX (2022) A LQR neural network control approach for fast stabilizing rotary inverted pendulums. Int J Precis Eng Manuf 23:45–56. https://doi.org/10.1007/s12541-021-00606-x
  • Oh SK, Jung SH, Pedrycz W (2009) Design of optimized fuzzy cascade controllers by means of hierarchical fair competition-based genetic algorithms. Expert Syst Appl 36(9):11641-11651. https://doi.org/10.1016/j.eswa.2009.03.027
  • Nguyen NP, Oh H, Kim Y, Moon J, Yang J, Chen WH (2020) Fuzzy-based super-twisting sliding mode stabilization control for under-actuated rotary inverted pendulum systems. IEEE Access 8:185079-185092. https://doi.org/10.1109/ACCESS.2020.3029095
  • Yiğit İ (2017) Model free sliding mode stabilizing control of a real rotary inverted pendulum. J Vib Control 23(10):1645–1662. https://doi.org/10.1177/1077546315598031
  • Balula S (2016) Nonlinear control of an inverted pendulum. Dissertation, Tecnico Lisboa
  • Khalil HK (2015) Nonlinear control. Pearson Educ., New York, USA
  • Lewis FL, Vrabie D, Syrmos VL (2012) Optimal control. Wiley, New York, USA
  • Das S, Pan I, Halder K, Das S, Gupta A (2013) LQR based improved discrete PID controller design via optimum selection of weighting matrices using fractional order integral performance index. Appl Math Modell 37(6):4253-4268. https://doi.org/10.1016/j.apm.2012.09.022
  • Kumar EV, Jerome J (2013) LQR based optimal tuning of PID controller for trajectory tracking of magnetic levitation system. Procedia Eng 64:254-264. https://doi.org/10.1016/j.proeng.2013.09.097

Eksik tahrikli döner ters sarkaç sisteminin geribeslemeli doğrusallaştırma tabanlı kademeli kontrolü

Yıl 2023, , 191 - 204, 31.07.2023
https://doi.org/10.29228/JIENS.70384

Öz

Kademeli kontrol, özellikle bozanetkenlere karşı performansı iyileştirmek için tercih edilen çok döngülü bir kontrol yapısıdır. Genellikle, iç döngü kontrolü (bağımlı kontrolör) ve dış döngü kontrolünden (ana kontrolör) oluşan ve bağımlı kontrolörün ayar noktasının, bu ana kontrolör tarafından ayarlandığı bir geri beslemeli kontroldür. Bu çalışmada, üzerine etki eden yerçekimi kuvvetleri, Coriolis ve merkezcil kuvvetlerden dolayı doğrusal olmayan dinamiğe sahip döner ters sarkaç sisteminin denetlenmesinde kademeli kontrol kullanılmıştır. Burada, bağımlı kontrolcü için geribeslemeli doğrusallaştırma tabanlı oransal-türevsel (PD) denetleyici ve ana kontrolcü içinse doğrusal karesel düzenleyici (DKD) kullanılmıştır. İç döngüde kullanılan geri beslemeli doğrusallaştırmanın bağıl derecesi ikidir ve kararsız sıfır dinamiklere sahiptir. Bu kararsız dinamikler ana kontrolcü tasarımında ele alınmış ve kademeli kontrolün kararlı olması sağlanmıştır. Ters sarkacın doğrusal olmayan dinamik denkleminde sarkaca uygulanabilen tork bozanetken olarak formüle edilmiştir. Önerilen geribeslemeli doğrusallaştırma tabanlı kademeli denetleyici, bozan etken varlığında iki farklı denetleyici ile karşılaştırılmış ve daha iyi performans sergilediği gösterilmiştir.

Kaynakça

  • Aguilar-Ibáñez C, Mendoza-Mendoza J, Dávila J (2014) Stabilization of the cart pole system: by sliding mode control. Nonlinear Dyn 78:2769–2777. https://doi.org/10.1007/s11071-014-1624-6
  • Manrique Escobar CA, Pappalardo CM, Guida D (2020) A parametric study of a deep reinforcement learning control system applied to the swing-up problem of the cart-pole. Appl Sci-Basel 10(24):9013. https://doi.org/10.3390/app10249013
  • Inoue A, Deng MC (2009) Non-linear control of under-actuated mechanical systems. Int J Modell Identif Control 6(1):32-39. https://doi.org/10.1504/IJMIC.2009.023528
  • Mehedi IM, Al-Saggaf UM, Mansouri R, Bettayeb M (2019) Stabilization of a double inverted rotary pendulum through fractional order integral control scheme. Int J Adv Rob Syst 16(4). https://doi.org/10.1177/1729881419846741
  • Peng Z, Xin X, Liu Y (2023) Energy-based swing-up control for a two-link underactuated robot with flexible first joint. Nonlinear Dyn 111:289–302. https://doi.org/10.1007/s11071-022-07831-7
  • Güneş U, Sel A, Kürkçü B, Kasnakoğlu C (2020) A comparison of H-infinity-synthesis and feedback linearization for rotary inverted pendulum. 11th International Conference on Mechanical and Aerospace Engineering (ICMAE), Athens, GREECE, Jul. 14–17. https://doi.org/10.1109/ICMAE50897.2020.9178849
  • Soydemir MU, Şahin S, Bulucu P, Kocaoğlu A, Güzeliş C (2019) Learning feedback linearization based stable robust adaptive NARMA controller design for rotary inverted pendulum. 11th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 795-799. https://doi.org/10.23919/ELECO47770.2019.8990417
  • Bulucu P, Soydemir MU, Şahin S, Kocaoğlu A, Güzeliş C (2019) Performance analysis of stable adaptive NARMA controller scheme for furuta pendulum. 23rd International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 350-354. https://doi.org/10.1109/ICSTCC.2019.8885779
  • Akhtaruzzaman M, Shafie AA (2010) Modeling and control of a rotary inverted pendulum using various methods, comparative assessment and result analysis. IEEE International Conference on Mechatronics and Automation, Xi'an, China, 1342-1347. https://doi.org/10.1109/ICMA.2010.5589450
  • Demirtaş M, Altun Y, İstanbullu A (2013) Virtual laboratory for sliding mode and PID control of rotary inverted pendulum. Comput Appl Eng Educ 21: 400-409. https://doi.org/10.1002/cae.20484
  • Tang TF, Chong SH, Pang KK (2019) Stabilisation of a rotary inverted pendulum system with double-PID and LQR control: experimental verification. Int J Autom Control 14(1):18. https://doi.org/10.1504/IJAAC.2020.103799
  • Nath V and Mitra R (2014) Swing-up and control of rotary inverted pendulum using pole placement with integrator. Recent Advances in Engineering and Computational Sciences (RAECS), Chandigarh, India, 1-5. https://doi.org/10.1109/RAECS.2014.6799545.
  • Park M, Kim YJ, Lee JJ (2011) Swing-up and LQR stabilization of a rotary inverted pendulum. Artif Life Rob 16, 94–97. https://doi.org/10.1007/s10015-011-0897-9
  • Nghi HV, Nhien DP, Ba DX (2022) A LQR neural network control approach for fast stabilizing rotary inverted pendulums. Int J Precis Eng Manuf 23:45–56. https://doi.org/10.1007/s12541-021-00606-x
  • Oh SK, Jung SH, Pedrycz W (2009) Design of optimized fuzzy cascade controllers by means of hierarchical fair competition-based genetic algorithms. Expert Syst Appl 36(9):11641-11651. https://doi.org/10.1016/j.eswa.2009.03.027
  • Nguyen NP, Oh H, Kim Y, Moon J, Yang J, Chen WH (2020) Fuzzy-based super-twisting sliding mode stabilization control for under-actuated rotary inverted pendulum systems. IEEE Access 8:185079-185092. https://doi.org/10.1109/ACCESS.2020.3029095
  • Yiğit İ (2017) Model free sliding mode stabilizing control of a real rotary inverted pendulum. J Vib Control 23(10):1645–1662. https://doi.org/10.1177/1077546315598031
  • Balula S (2016) Nonlinear control of an inverted pendulum. Dissertation, Tecnico Lisboa
  • Khalil HK (2015) Nonlinear control. Pearson Educ., New York, USA
  • Lewis FL, Vrabie D, Syrmos VL (2012) Optimal control. Wiley, New York, USA
  • Das S, Pan I, Halder K, Das S, Gupta A (2013) LQR based improved discrete PID controller design via optimum selection of weighting matrices using fractional order integral performance index. Appl Math Modell 37(6):4253-4268. https://doi.org/10.1016/j.apm.2012.09.022
  • Kumar EV, Jerome J (2013) LQR based optimal tuning of PID controller for trajectory tracking of magnetic levitation system. Procedia Eng 64:254-264. https://doi.org/10.1016/j.proeng.2013.09.097
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Makineleri ve Sürücüler
Bölüm Araştırma Makaleleri
Yazarlar

Aykut Kocaoğlu 0000-0001-5151-0463

Yayımlanma Tarihi 31 Temmuz 2023
Gönderilme Tarihi 31 Mayıs 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Kocaoğlu, A. (2023). Eksik tahrikli döner ters sarkaç sisteminin geribeslemeli doğrusallaştırma tabanlı kademeli kontrolü. Journal of Innovative Engineering and Natural Science, 3(2), 191-204. https://doi.org/10.29228/JIENS.70384


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0