Synthesis of multiarm star block copolymer based on host-guest inclusion complexation
Yıl 2022,
Cilt: 2 Sayı: 1, 1 - 15, 31.01.2022
Neşe Çakır Yiğit
Gürkan Hızal
Ümit Tunca
Öz
Supramolecular multiarm star block copolymer ((CD-PEG)p-(Ada-PS)n-polyDVB) was prepared by host-guest interaction of -cyclodextrin ( -CD) end functionalized polyethylene glycol (-CD-PEG) and adamantane peripherally functionalized multiarm star polymer ((Ada-PS)n-polyDVB). The -CD-PEG was synthesized by copper-catalyzed azide/alkyne cycloaddition reaction (CuAAC) of alkyne functional PEG with mono azide functional β-CD (β-CD-N3). Adamantane functional polystyrene (Ada-PS) was prepared by atom transfer radical polymerization (ATRP) of styrene (St) and was allowed to react with divinyl benzene (DVB) as a linking agent giving (Ada-PS)n-polyDVB multiarm star polymer. The structures of -CD-PEG and (Ada-PS)n-polyDVB multiarm star formation were determined by 1H NMR and GPC. 2D ROESY NMR and DLS analysis of (CD-PEG)p-(Ada-PS)n-polyDVB were carried out to validate the formation of the inclusion complex. The evidence of increased molecular weights and size distributions supported the supramolecular multiarm star block copolymer formation.
Kaynakça
- Gao H, Matyjaszewski K (2007) Low-polydispersity star polymers with core functionality by crosslinking macromonomers using functional ATRP initiators. Macromolecules 40(3):399–401. https://doi.org/10.1021/ma062640d
- Gao H, Matyjaszewski K (2008) Synthesis of star polymers by a new, ‘‘Core-First’’ method: sequential polymerization of cross-linker and monomer. Macromolecules 41(4):1118–1125. https://doi.org/10.1021/ma702560f
- Hadjichristidis N (1999) Synthesis of miktoarm star (-star) polymers. J Polym Sci, Part A: Polym Chem 37(7):857–871. https://doi.org/10.1002/(SICI)1099-0518(19990401)37:7<857::AID-POLA1>3.0.CO;2-P
- Hadjichristidis N, Pitsikalis M, Pispas S, Iatrou H (2001) Polymers with complex architecture by living anionic polymerization. Chem Rev 101(12):3747–3792. https://doi.org/10.1021/cr9901337
- Blencowe A, Tan JF, Goh TK, Qiao GG (2009) Core cross-linked star polymers via controlled radical polymerisation. Polymer 50(1):5–32. https://doi.org/10.1016/j.polymer.2008.09.049
- Ren JM, McKenzie TG, Fu Q, Wong EHH, Xu J, An Z, Shanmugam S, Davis TP, Boyer C, Qiao GG (2016) Star polymers. Chem Rev 116(12):6743–6836. https://doi.org/10.1021/acs.chemrev.6b00008
- Kuckling D, Wycisk A (2013) Stimuli-responsive star polymers. J Polym Sci, Part A: Polym Chem 51(14):2980–2994. https://doi.org/10.1002/pola.26696
- Altintas O, Vogt AP, Barner-Kowollik C, Tunca U (2012) Constructing star polymers via modular
ligation strategies. Polym Chem UK 3(1):34. https://doi.org/10.1039/c1py00249j
- Altintas, O, Schulze-Suenninghausen, D, Luy, B, Barner-Kowollik, C (2013). Facile Preparation of Supramolecular H-Shaped (Ter)polymers via Multiple Hydrogen Bonding. Acs Macro Lett 2(3):211-216. https://doi.org/10.1021/mz400066r
- Fustin, C. A, Guillet, P, Schubert, U. S, Gohy, J. F (2007). Metallo-Supramolecular Block Copolymers. Advanced Materials 19(13):1665-1673. https://doi.org/10.1002/adma.200602170
- Chen, G, Jiang, M (2011). Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chemical Society reviews 40(5):2254-2266. https://doi.org/10.1039/C0CS00153H
- Zou, C, Zhao, P, Ge, J, Lei, Y, Luo, P (2012). -Cyclodextrin modified anionic and
cationic acrylamide polymers for enhancing oil recovery. Carbohydr. Polym 87(1):607–613. https://doi.org/10.1016/j.carbpol.2011.08.031
- Xiao, H, Cezar, N (2005). Cationic-modified cyclodextrin nanosphere/anionic
polymer as flocculation/sorption systems. Colloid Interface Sci 283(2):406–413. https://doi.org/10.1016/j.jcis.2004.09.008
- Stadermann, J, Komber, H, Erber, M, Däbritz, F, Ritter, H, Voit, B (2011). Diblock Copolymer Formation via Self-Assembly of Cyclodextrin and Adamantyl End-Functionalized Polymers. Macromolecules 44(9):3250-3259. https://doi.org/10.1021/ma200048a
- Zeng, J, Shi, K, Zhang, Y, Sun, X, Zhang, B (2008). Construction and micellization of a noncovalent double hydrophilic block copolymer. Chem Commun 32:3753-3755. https://doi.org/10.1039/B806858E
- Liu, H, Zhang, Y, Hu, J, Li, C, Liu, S (2009). Multi-Responsive Supramolecular Double Hydrophilic Diblock Copolymer Driven by Host-Guest Inclusion Complexation between β-Cyclodextrin and Adamantyl Moieties. Macromol Chem Phys 210: 2125-2137. https://doi.org/10.1002/macp.200900279
- Bertrand, A, Stenzel, M, Fleury, E, Bernard, J (2012). Host–guest driven supramolecular assembly of reversible comb-shaped polymers in aqueous solution. Polym Chem 3(2):377-383. https://doi.org/10.1039/C1PY00478F
- Zhang, Z.-X, Liu, X, Xu, F. J, Loh, X. J, Kang, E.-T, Neoh, K.-G, Li, J (2008). Pseudo-Block Copolymer Based on Star-Shaped Poly(N-isopropylacrylamide) with a β-Cyclodextrin Core and Guest-Bearing PEG: Controlling Thermoresponsivity through Supramolecular Self-Assembly. Macromolecules 41(16):5967-5970. https://doi.org/10.1021/ma8009646
- Setijadi, E, Tao, L, Liu, J, Jia, Z, Boyer, C, Davis, T. P (2009). Biodegradable star polymers functionalized with beta-cyclodextrin inclusion complexes. Biomacromolecules 10(9):2699-2707. https://doi.org/10.1021/bm900646g
- Schmidt, B. V. K. J, Hetzer, M, Ritter, H, Barner-Kowollik, C (2013). UV Light and Temperature Responsive Supramolecular ABA Triblock Copolymers via Reversible Cyclodextrin Complexation. Macromolecules 46(3):1054-1065. https://doi.org/10.1021/ma302386w
- Schmidt, B. V. K. J, Hetzer, M, Ritter, H, Barner-Kowollik, C (2012). Miktoarm star polymers via cyclodextrin-driven supramolecular self-assembly. Polym Chem-Uk 3(11):3064-3067. https://doi.org/10.1039/C2PY20214J
- Schmidt, B. V. K. J, Rudolph, T, Hetzer, M, Ritter, H, Schacher, F. H, Barner-Kowollik, C (2012). Supramolecular three-armed star polymers via cyclodextrin host–guest self-assembly. Polym Chem-Uk 3(11):3139-3145. https://doi.org/10.1039/C2PY20293J
- Schmidt, B. V. K. J, Barner-Kowollik, C (2014). Supramolecular X- and H-shaped star block copolymers via cyclodextrin-driven supramolecular self-assembly. Polym Chem-Uk 5(7):2461-2472. https://doi.org/10.1039/C3PY01580G
- Huan, X, Wang, D, Dong, R, Tu, C, Zhu, B, Yan, D, Zhu, X (2012). Supramolecular ABC Miktoarm Star Terpolymer Based on Host–Guest Inclusion Complexation. Macromolecules 45(15):5941-5947. https://doi.org/10.1021/ma300693h
- Cakir, N, Hizal, G, Becer C. R (2015). Supramolecular glycopolymers with thermo-responsive self-assembly and lectin binding. Polym Chem-Uk 6 (37):6623-6631. https://doi.org/10.1039/C5PY00939A
- Durmaz, H, Dag, A, Altintas, O, Erdogan, T, Hizal, G, Tunca, U (2007). One-Pot Synthesis of ABC Type Triblock Copolymers via in situ Click [3 + 2] and Diels−Alder [4 + 2] Reactions. Macromolecules 40 (2): 191-198. https://doi.org/10.1021/ma061819l
- Cakir, N, Tunca, U, Hizal, G, Durmaz, H (2016). Heterofunctionalized multiarm star polymers via sequential thiol-para-fluoro and thiol-ene double “click” reactions. Macromol Chem Phys 217: 636-645. https://doi.org/10.1002/macp.201500300
- Cakir Yigit, N, Hizal, G, Tunca, U (2018). A powerful tool for preparing peripherally post-functionalized multiarm star block copolymer. Polym Bull 75:3523–3538. https://doi.org/10.1007/s00289-017-2218-5
Yıl 2022,
Cilt: 2 Sayı: 1, 1 - 15, 31.01.2022
Neşe Çakır Yiğit
Gürkan Hızal
Ümit Tunca
Kaynakça
- Gao H, Matyjaszewski K (2007) Low-polydispersity star polymers with core functionality by crosslinking macromonomers using functional ATRP initiators. Macromolecules 40(3):399–401. https://doi.org/10.1021/ma062640d
- Gao H, Matyjaszewski K (2008) Synthesis of star polymers by a new, ‘‘Core-First’’ method: sequential polymerization of cross-linker and monomer. Macromolecules 41(4):1118–1125. https://doi.org/10.1021/ma702560f
- Hadjichristidis N (1999) Synthesis of miktoarm star (-star) polymers. J Polym Sci, Part A: Polym Chem 37(7):857–871. https://doi.org/10.1002/(SICI)1099-0518(19990401)37:7<857::AID-POLA1>3.0.CO;2-P
- Hadjichristidis N, Pitsikalis M, Pispas S, Iatrou H (2001) Polymers with complex architecture by living anionic polymerization. Chem Rev 101(12):3747–3792. https://doi.org/10.1021/cr9901337
- Blencowe A, Tan JF, Goh TK, Qiao GG (2009) Core cross-linked star polymers via controlled radical polymerisation. Polymer 50(1):5–32. https://doi.org/10.1016/j.polymer.2008.09.049
- Ren JM, McKenzie TG, Fu Q, Wong EHH, Xu J, An Z, Shanmugam S, Davis TP, Boyer C, Qiao GG (2016) Star polymers. Chem Rev 116(12):6743–6836. https://doi.org/10.1021/acs.chemrev.6b00008
- Kuckling D, Wycisk A (2013) Stimuli-responsive star polymers. J Polym Sci, Part A: Polym Chem 51(14):2980–2994. https://doi.org/10.1002/pola.26696
- Altintas O, Vogt AP, Barner-Kowollik C, Tunca U (2012) Constructing star polymers via modular
ligation strategies. Polym Chem UK 3(1):34. https://doi.org/10.1039/c1py00249j
- Altintas, O, Schulze-Suenninghausen, D, Luy, B, Barner-Kowollik, C (2013). Facile Preparation of Supramolecular H-Shaped (Ter)polymers via Multiple Hydrogen Bonding. Acs Macro Lett 2(3):211-216. https://doi.org/10.1021/mz400066r
- Fustin, C. A, Guillet, P, Schubert, U. S, Gohy, J. F (2007). Metallo-Supramolecular Block Copolymers. Advanced Materials 19(13):1665-1673. https://doi.org/10.1002/adma.200602170
- Chen, G, Jiang, M (2011). Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chemical Society reviews 40(5):2254-2266. https://doi.org/10.1039/C0CS00153H
- Zou, C, Zhao, P, Ge, J, Lei, Y, Luo, P (2012). -Cyclodextrin modified anionic and
cationic acrylamide polymers for enhancing oil recovery. Carbohydr. Polym 87(1):607–613. https://doi.org/10.1016/j.carbpol.2011.08.031
- Xiao, H, Cezar, N (2005). Cationic-modified cyclodextrin nanosphere/anionic
polymer as flocculation/sorption systems. Colloid Interface Sci 283(2):406–413. https://doi.org/10.1016/j.jcis.2004.09.008
- Stadermann, J, Komber, H, Erber, M, Däbritz, F, Ritter, H, Voit, B (2011). Diblock Copolymer Formation via Self-Assembly of Cyclodextrin and Adamantyl End-Functionalized Polymers. Macromolecules 44(9):3250-3259. https://doi.org/10.1021/ma200048a
- Zeng, J, Shi, K, Zhang, Y, Sun, X, Zhang, B (2008). Construction and micellization of a noncovalent double hydrophilic block copolymer. Chem Commun 32:3753-3755. https://doi.org/10.1039/B806858E
- Liu, H, Zhang, Y, Hu, J, Li, C, Liu, S (2009). Multi-Responsive Supramolecular Double Hydrophilic Diblock Copolymer Driven by Host-Guest Inclusion Complexation between β-Cyclodextrin and Adamantyl Moieties. Macromol Chem Phys 210: 2125-2137. https://doi.org/10.1002/macp.200900279
- Bertrand, A, Stenzel, M, Fleury, E, Bernard, J (2012). Host–guest driven supramolecular assembly of reversible comb-shaped polymers in aqueous solution. Polym Chem 3(2):377-383. https://doi.org/10.1039/C1PY00478F
- Zhang, Z.-X, Liu, X, Xu, F. J, Loh, X. J, Kang, E.-T, Neoh, K.-G, Li, J (2008). Pseudo-Block Copolymer Based on Star-Shaped Poly(N-isopropylacrylamide) with a β-Cyclodextrin Core and Guest-Bearing PEG: Controlling Thermoresponsivity through Supramolecular Self-Assembly. Macromolecules 41(16):5967-5970. https://doi.org/10.1021/ma8009646
- Setijadi, E, Tao, L, Liu, J, Jia, Z, Boyer, C, Davis, T. P (2009). Biodegradable star polymers functionalized with beta-cyclodextrin inclusion complexes. Biomacromolecules 10(9):2699-2707. https://doi.org/10.1021/bm900646g
- Schmidt, B. V. K. J, Hetzer, M, Ritter, H, Barner-Kowollik, C (2013). UV Light and Temperature Responsive Supramolecular ABA Triblock Copolymers via Reversible Cyclodextrin Complexation. Macromolecules 46(3):1054-1065. https://doi.org/10.1021/ma302386w
- Schmidt, B. V. K. J, Hetzer, M, Ritter, H, Barner-Kowollik, C (2012). Miktoarm star polymers via cyclodextrin-driven supramolecular self-assembly. Polym Chem-Uk 3(11):3064-3067. https://doi.org/10.1039/C2PY20214J
- Schmidt, B. V. K. J, Rudolph, T, Hetzer, M, Ritter, H, Schacher, F. H, Barner-Kowollik, C (2012). Supramolecular three-armed star polymers via cyclodextrin host–guest self-assembly. Polym Chem-Uk 3(11):3139-3145. https://doi.org/10.1039/C2PY20293J
- Schmidt, B. V. K. J, Barner-Kowollik, C (2014). Supramolecular X- and H-shaped star block copolymers via cyclodextrin-driven supramolecular self-assembly. Polym Chem-Uk 5(7):2461-2472. https://doi.org/10.1039/C3PY01580G
- Huan, X, Wang, D, Dong, R, Tu, C, Zhu, B, Yan, D, Zhu, X (2012). Supramolecular ABC Miktoarm Star Terpolymer Based on Host–Guest Inclusion Complexation. Macromolecules 45(15):5941-5947. https://doi.org/10.1021/ma300693h
- Cakir, N, Hizal, G, Becer C. R (2015). Supramolecular glycopolymers with thermo-responsive self-assembly and lectin binding. Polym Chem-Uk 6 (37):6623-6631. https://doi.org/10.1039/C5PY00939A
- Durmaz, H, Dag, A, Altintas, O, Erdogan, T, Hizal, G, Tunca, U (2007). One-Pot Synthesis of ABC Type Triblock Copolymers via in situ Click [3 + 2] and Diels−Alder [4 + 2] Reactions. Macromolecules 40 (2): 191-198. https://doi.org/10.1021/ma061819l
- Cakir, N, Tunca, U, Hizal, G, Durmaz, H (2016). Heterofunctionalized multiarm star polymers via sequential thiol-para-fluoro and thiol-ene double “click” reactions. Macromol Chem Phys 217: 636-645. https://doi.org/10.1002/macp.201500300
- Cakir Yigit, N, Hizal, G, Tunca, U (2018). A powerful tool for preparing peripherally post-functionalized multiarm star block copolymer. Polym Bull 75:3523–3538. https://doi.org/10.1007/s00289-017-2218-5