Araştırma Makalesi
BibTex RIS Kaynak Göster

Detecting acetone from breath using a PrFeO3-doped PANi/TiO2-coated PAN nanofiber sensor for non-invasive diabetic diagnosis

Yıl 2023, Cilt: 3 Sayı: 2, 153 - 166, 31.07.2023
https://doi.org/10.29228/JIENS.70059

Öz

Polyacrylonitrile (PAN) nanofibers doped with varying concentrations of perovskite praseodymium ferrite (PrFeO3) nanoparticles synthesized by calcination were successfully manufactured using a simple electrospinning process. The nanofibers were coated with layers of polyaniline-titanium dioxide (PANi-TiO2) combination using an air brush. The structure, morphology, and electrical characteristics of the nanoparticles and nanofibers were characterized by SEM, FT-IR, and electrical measurement methods. The results indicated that the produced nanofibers exhibited a strong in vitro interaction and selectivity against acetone gas, a biomarker of diabetes. Perovskite nanoparticle doped PAN nanofibers have shown approximately 43% change in resistance with acetone gas exposure. These findings suggest that PrFeO3-doped nanofibers hold promise as potential candidates for acetone gas sensors in non-invasive diabetes monitoring.

Destekleyen Kurum

TUBITAK

Proje Numarası

TUBITAK BIDEB 1139B411901869

Kaynakça

  • Webber S, International Diabetes Federation - Diabetes Atlas, 10th Edition 2021, 2013. https://doi.org/10.1016/j.diabres.2013.10.013.
  • World Health Organization, Global Report on Diabetes, Isbn. 978 (2016) 88. https://doi.org/ISBN 978 92 4 156525 7.
  • Baharuddin AA, Ang BC, Haseeb ASMA, Wong YC, Wong YH (2019) Advances in chemiresistive sensors for acetone gas detection. Materials Science in Semiconductor Processing 103 104616 https://doi.org/10.1016/j.mssp.2019.104616.
  • Shokrekhodaei M and Quinones S (2020) Review of Non-Invasive Glucose Sensing Techniques. Sensors (Switzerland) 1251 https://sci-hub.scihubtw.tw/10.3390/s20051251
  • Masikini M, Chowdhury M, Nemraoui O (2020) Review—Metal Oxides: Application in Exhaled Breath Acetone Chemiresistive Sensors. Journal of The Electrochemical Society 167 037537 https://doi.org/10.1149/1945-7111/ab64bc.
  • Rowley WR, Bezold C, Arikan Y, Byrne E, Krohe S (2017) Diabetes 2030: Insights from Yesterday, Today, and Future Trends. Population Health Management 20 6–12 https://doi.org/10.1089/pop.2015.0181.
  • Jang C, Park JK, Lee HJ, Yun GH, Yook JG (2018) Temperature-corrected fluidic glucose sensor based on microwave resonator. Sensors (Switzerland) 18 1–12 https://doi.org/10.3390/s18113850.
  • Classification and diagnosis of diabetes: Standards of medical care in Diabetes-2018, Diabetes Care. 41 (2018) S13–S27. https://diabetesjournals.org/care/article/41/Supplement_1/S13/30088/2-Classification-and-Diagnosis-of-Diabetes
  • Köksal Atış Ş and Önder A (2020) Yeni Tanı Diyabetes Mellitus Hastalarında Sınıflandırma ve Tedavi Yönetimi. Hitit Medical Journal 3 (2020) 62–66
  • WHO, Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus: Abbreviated Report of a WHO Consultation. Approved by the Guidelines Review Committee., World Health Organization. (2011) 299–309.
  • I. Classification, Standards of medical care in diabetes-2014, Diabetes Care. 37 (2014) 14–80. https://doi.org/10.2337/dc14-S014.
  • Abacı A, Böber E, Büyükgebiz A (2007) Tip 1 Diyabet. Güncel Pediatri 5 1–10 https://dergipark.org.tr/en/pub/pediatri/667492.
  • Mishra BK (2013) Chemistry of Diabetes and its Impact. Academic Voices: A Multidisciplinary Journal 2 16–22 https://doi.org/10.3126/av.v2i1.8279.
  • Yuan Y, Chen Z, Zhao X, Sun M, Li Y, Wang Z, Wang C (2017) Continuous Monitoring of Breath Acetone, Blood Glucose and Blood Ketone in 20 Type 1 Diabetic Outpatients Over 30 Days. Journal of Analytical & Bioanalytical Techniques 08 https://doi.org/10.4172/2155-9872.1000386.
  • Güntner AT, Kompalla JF, Landis H, Theodore SJ, Geidl B, Sievi NA, Kohler M, Pratsinis SE, Gerber PA (2018) Guiding ketogenic diet with breath acetone sensors. Sensors (Switzerland) 18 1–12 https://doi.org/10.3390/s18113655
  • Wang C, Mbi A, Shepherd M (2010)A study on breath acetone in diabetic patients using a cavity ringdown breath analyzer: Exploring correlations of breath acetone with blood glucose and glycohemoglobin A1C. IEEE Sensors Journal 10 54–63 https://doi.org/10.1109/JSEN.2009.2035730
  • Musa-Veloso K, Likhodii SS, Rarama E, Benoit S, Liu YMC, Chartrand D, Curtis R, Carmant L, Lortie A, Comeau FJE, Cunnane SC (2006) Breath acetone predicts plasma ketone bodies in children with epilepsy on a ketogenic diet. Nutrition 22 1–8 https://doi.org/10.1016/j.nut.2005.04.008
  • Puchalska P and Crawford PA (2017) Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metabolism 25 262–284 https://doi.org/10.1016/j.cmet.2016.12.022
  • Güntner AT, Sievi NA, Theodore SJ, Gulich T, Kohler M, Pratsinis SE (2017) Noninvasive Body Fat Burn Monitoring from Exhaled Acetone with Si-doped WO3-sensing Nanoparticles. Analytical Chemistry 89 10578–10584 https://doi.org/10.1021/acs.analchem.7b02843
  • Wang Z and Wang C (2013) Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements. Journal of Breath Research 7 https://doi.org/10.1088/1752-7155/7/3/037109
  • Bovey F, Cros J, Tuzson B, Seyssel K, Schneiter P, Emmenegger L, Tappy L (2018) Breath acetone as a marker of energy balance: an exploratory study in healthy humans. Nutrition and Diabetes 8 https://doi.org/10.1038/s41387-018-0058-5
  • Afreen S and Zhu JJ (2019) Rethinking EBAD: Evolution of smart noninvasive detection of diabetes. TrAC - Trends in Analytical Chemistry 118 477–487 https://doi.org/10.1016/j.trac.2019.06.011
  • Konvalina G and Haick H (2014) Sensors for Breath Testing : From Nanomaterials to Comprehensive Disease Sensors for Breath Testing : From Nanomaterials to Comprehensive Disease Detection. Accounts of Chemical Research 47 1 66-76 https://doi.org/10.1021/ar400070m
  • Rydosz A (2018) Sensors for enhanced detection of acetone as a potential tool for noninvasive diabetes monitoring. Sensors (Switzerland) 18 (2018) 1–14 https://doi.org/10.3390/s18072298
  • Rydosz A (2015) A negative correlation between blood glucose and acetone measured in healthy and type 1 diabetes mellitus patient breath. Journal of Diabetes Science and Technology 9 881–884 https://doi.org/10.1177/1932296815572366
  • Diskin AM, Španěl P, Smith D (2003) Time variation of ammonia, acetone, isoprene and ethanol in breath: A quantitative SIFT-MS study over 30 days. Physiological Measurement 24 107–119 https://doi.org/10.1088/0967-3334/24/1/308
  • Wang X, Qin H, Pei J, Chen Y, Li L, Xie J, Hu J (2016)Sensing performances to low concentration acetone for palladium doped LaFeO3 sensors. Journal of Rare Earths 34 704–710. https://doi.org/10.1016/S1002-0721(16)60082-0.
  • Amann A and Smith D (2013) Volatile Biomarkers: Non-Invasive Diagnosis in Physiology and Medicine. Elsevier. https://doi.org/10.1016/C2012-0-01274-4
  • Deng C, Zhang J, Yu X, Zhang W, Zhang X (2004) Determination of acetone in human breath by gas chromatography–mass spectrometry and solid-phase microextraction with on-fiber derivatization. Journal of Chromatography B 810 269–275 https://doi.org/10.1016/j.jchromb.2004.08.013
  • Fergus JW, (2007)Perovskite oxides for semiconductor-based gas sensors. Sensors and Actuators B: Chemical 123 1169–1179 https://doi.org/10.1016/j.snb.2006.10.051
  • Shankar P and Rayappan JBB (2015) Gas sensing mechanism of metal oxides: The role of ambient atmosphere, type of semiconductor and gases - A review. Science Letters Journal 4 126 http://www.cognizure.com/scilett.aspx?p=200638572
  • Minh TDC, Blake DR, Galassetti PR (2012) The clinical potential of exhaled breath analysis for diabetes mellitus. Diabetes Research and Clinical Practice 97 195–205. https://doi.org/10.1016/j.diabres.2012.02.006
  • Miekisch W, Schubert JK, Noeldge-Schomburg GFE (2004) Diagnostic potential of breath analysis - Focus on volatile organic compounds. Clinica Chimica Acta 347 25–39 https://doi.org/10.1016/j.cccn.2004.04.023
  • Lourenço C and Turner C (2014) Breath Analysis in Disease Diagnosis: Methodological Considerations and Applications. Metabolites 4 465–498 https://doi.org/10.3390/metabo4020465
  • Li J, Smeeton TM, Zanola M, Barrett J, Berryman-Bousquet V (2018) A compact breath acetone analyser based on an ultraviolet light emitting diode. Sensors and Actuators B: Chemical 273 76–82 https://doi.org/10.1016/j.snb.2018.05.114
  • Prabhakar A, Quach A, Zhang H, Terrera M, Jackemeyer D, Xian X, Tsow F, Tao N, Forzani ES (2015) Acetone as biomarker for ketosis buildup capability - A study in healthy individuals under combined high fat and starvation diets. Nutrition Journal 14 https://doi.org/10.1186/s12937-015-0028-x
  • King J, Kupferthaler A, Unterkofler K, Koc H, Teschl S, Teschl G, Miekisch W, Schubert J, Hinterhuber H, Amann A (2009) Isoprene and acetone concentration profiles during exercise on an ergometer Journal of Breath Research 3 027006 https://doi.org/10.1088/1752-7155/3/2/027006
  • Blaikie TPJ, Edge JA, Hancock G, Lunn D, Megson C, Peverall R, Richmond G, Ritchie GAD, Taylor D (2014) Comparison of breath gases, including acetone, with blood glucose and blood ketones in children and adolescents with type 1 diabetes. Journal of Breath Research 8 046010 https://doi.org/10.1088/1752-7155/8/4/046010
  • Do JS and Wang SH (2013) On the sensitivity of conductimetric acetone gas sensor based on polypyrrole and polyaniline conducting polymers. Sensors and Actuators B: Chemical 185 39–46 https://doi.org/10.1016/j.snb.2013.04.080
  • Liu S, Zhang F, Li H, Chen T, Wang Y (2012) Acetone detection properties of single crystalline tungsten oxide plates synthesized by hydrothermal method using cetyltrimethyl ammonium bromide supermolecular template. Sensors and Actuators B: Chemical 162 259–268 https://doi.org/10.1016/j.snb.2011.12.076
  • Huang Z, Zhang A, Zhang Q, Pan S, Cui D (2019) Electrochemical Biosensor Based on Dewdrop-Like Platinum Nanoparticles-Decorated Silver Nanoflowers Nanocomposites for H 2 O 2 and Glucose Detection. Journal of The Electrochemical Society 166 B1138–B1145 https://doi.org/10.1149/2.0471913JES/XML
  • Staden RIS, Popa-Tudor I, Ionescu-Tirgoviste C, Stoica RA, Magerusan L (2019) Molecular Enantiorecognition of D- and L-Glucose in Urine and Whole Blood Samples. Journal of The Electrochemical Society 166 B3109–B3115 https://doi.org/10.1149/2.0211909JES/XML
  • IDF, Eighth edition 2017, 2017. https://www.idf.org/aboutdiabetes/type-2-diabetes.html.
  • Makaram P, Owens D, Aceros J (2014) Trends in Nanomaterial-Based Non-Invasive Diabetes Sensing Technologies. Diagnostics 4 27–46 https://doi.org/10.3390/diagnostics4020027
  • Standards of medical care in diabetes-2010, Diabetes Care. 33 (2010). https://doi.org/10.2337/dc10-S011.
  • Alonso M and Sanchez JM (2013) Analytical challenges in breath analysis and its application to exposure monitoring. TrAC - Trends in Analytical Chemistry 44 78–89 https://doi.org/10.1016/j.trac.2012.11.011
  • Rooth G and Ostenson S (1966) Acetone in alveolar air, and the control of diabetes. Lancet 2 1102–1105. https://doi.org/10.1016/s0140-6736(66)92194-5
  • Tassopoulos CN, Barnett D, Fraser TR (1969) Breath-acetone and blood-sugar measurements in diabetes. Lancet 293 1282–1286 https://doi.org/10.1016/s0140-6736(69)92222-3
  • Kim KH, Jahan SA, Kabir E (2012) A review of breath analysis for diagnosis of human health. TrAC - Trends in Analytical Chemistry 33 1–8 https://doi.org/10.1016/j.trac.2011.09.013
  • Kupferthaler A, King J, Amann A, Hinterhuber H, Hackner H, Hogl B (2010) Acetone and isoprene concentration profiles in normal human sleep. Memo - Magazine of European Medical Oncology 3 6–7 http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed11&NEWS=N&AN=70264318
  • Saasa V, Malwela V, Beukes M, Mokgotho M, Liu CP, Mwakikunga B (2018) Sensing Technologies for Detection of Acetone in Human Breath for Diabetes Diagnosis and Monitoring. Diagnostics 8 12 https://doi.org/10.3390/diagnostics8010012
  • Tomer VK, Singh K, Kaur H, Shorie M, Sabherwal P (2017) Rapid acetone detection using indium loaded WO3/SnO2 nanohybrid sensor. Sensors and Actuators B: Chemical 253 703–713 https://doi.org/10.1016/j.snb.2017.06.179
  • Hung CM, Le DTT, Van Hieu N (2017) On-chip growth of semiconductor metal oxide nanowires for gas sensors: A review. Journal of Science: Advanced Materials and Devices 2 263–285 https://doi.org/10.1016/j.jsamd.2017.07.009
  • Wong YC, Ang BC, Haseeb ASMA, Baharuddin AA, Wong YH (2020) Review—Conducting Polymers as Chemiresistive Gas Sensing Materials: A Review. Journal of The Electrochemical Society 167 037503 https://doi.org/10.1149/2.0032003jes
  • Righettoni M, Amann A, Pratsinis SE (2015) Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors. Materials Today 18 163–171 https://doi.org/10.1016/j.mattod.2014.08.017
  • Korotcenkov G (2007) Metal oxides for solid-state gas sensors: What determines our choice?. Materials Science and Engineering B: Solid-State Materials for Advanced Technology 139 1–23 https://doi.org/10.1016/j.mseb.2007.01.044
  • Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong C, Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S (2011) Semiconducting metal oxides as sensors for environmentally hazardous gases. Sensors and Actuators B: Chemical 160 580–591 https://doi.org/10.1016/j.snb.2011.08.032
  • Li SM, Zhang LX, Zhu MY, Ji GJ, Zhao LX, Yin J, Bie LJ (2017) Acetone sensing of ZnO nanosheets synthesized using room-temperature precipitation. Sensors and Actuators B: Chemical 249 611–623 https://doi.org/10.1016/j.snb.2017.04.007
  • Navale ST, Yang ZB, Liu C, Cao PJ, Patil VB, Ramgir NS, Mane RS, Stadler FJ (2018) Enhanced acetone sensing properties of titanium dioxide nanoparticles with a sub-ppm detection limit. Sensors and Actuators B: Chemical 255 1701–1710 https://doi.org/10.1016/j.snb.2017.08.186
  • Giang HT, Duy HT, Ngan PQ, Thai GH, Thu DTA, Thu DT, Toan NN (2011) Hydrocarbon gas sensing of nano-crystalline perovskite oxides LnFeO 3 (Ln = La, Nd and Sm). Sensors and Actuators B: Chemical 158 246–251 https://doi.org/10.1016/j.snb.2011.06.013
  • Song P, Wang Q, Zhang Z, Yang Z (2010) Synthesis and gas sensing properties of biomorphic LaFeO3 hollow fibers templated from cotton. Sensors and Actuators B: Chemical 147 248–254 https://doi.org/10.1016/j.snb.2010.03.006
  • Fan K, Qin H, Wang L, Ju L, Hu J (2013) CO2 gas sensors based on La1-xSrxFeO 3 nanocrystalline powders. Sensors and Actuators B: Chemical 177 265–269 https://doi.org/10.1016/j.snb.2012.11.004
  • Naseri M and Ghasemi R (2016) Structure and physical properties of Fe6 O8/ba Fe6 O11 nanostructure. Journal of Magnetism and Magnetic Materials 406 200–206 https://doi.org/10.1016/j.jmmm.2016.01.019
  • Anajafi Z, Naseri M, Neri G (2020) Acetone sensing behavior of p-SmFeO3/n-ZnO nanocomposite synthesized by thermal treatment method. Sensors and Actuators B: Chemical 304 https://doi.org/10.1016/j.snb.2019.127252
  • Hao P, Lin Z, Song P, Yang Z, Wang Z (2020) Hydrothermal preparation and acetone-sensing properties of Ni-doped porous LaFeO3 microspheres. Journal of Materials Science: Materials in Electronics 31 6679–6689 https://doi.org/10.1007/s10854-020-03224-x
  • Zhang YH, Li YL, Gong FL, Xie KF, Liu M, Zhang HL, Fang SM (2020) Al doped narcissus-like ZnO for enhanced NO2 sensing performance: An experimental and DFT investigation. Sensors and Actuators B: Chemical 305 127489 https://doi.org/10.1016/j.snb.2019.127489
  • Ma L, Ma SY, Shen XF, Wang TT, Jiang XH, Chen Q, Qiang Z, Yang HM, Chen H (2018) PrFeO3 hollow nanofibers as a highly efficient gas sensor for acetone detection. Sensors and Actuators B: Chemical 255 2546–2554 https://doi.org/10.1016/j.snb.2017.09.060
  • Pei S, Ma S, Xu X, Xu X, Almamoun O (2021) Modulated PrFeO3 by doping Sm3+ for enhanced acetone sensing properties. Journal of Alloys and Compounds 856 158274 https://doi.org/10.1016/j.jallcom.2020.158274
  • Bulut U, Oyku Sayin V, Altin Y, Can Cevher S, Cirpan A, Celik Bedeloglu A, Soylemez S (2023) A flexible carbon nanofiber and conjugated polymer-based electrode for glucose sensing. Microchemical Journal 184 108148. https://doi.org/10.1016/j.microc.2022.108148
  • Virji S, Huang J, Kaner RB, Weiller BH (2004) Polyaniline nanofiber gas sensors: Examination of response mechanisms. Nano Letters 4 491–496 https://doi.org/10.1021/nl035122e
  • Ding B, Wang M, Yu J, Sun G (2009) Gas sensors based on electrospun nanofibers. Sensors 9 1609–1624 https://doi.org/10.3390/s90301609
  • Gupta N, Sharma S, Mir IA, Kumar D (2006) Advances in sensors based on conducting polymers. Journal of Scientific and Industrial Research 65 549–557
  • Wang Y, Liu A, Han Y, Li T (2020) Sensors based on conductive polymers and their composites: a review. Polymer International 69 7–17 https://doi.org/10.1002/pi.5907
  • Pirsa S (2017) Chemiresistive gas sensors based on conducting polymers. In Khosrow-Pour M (ed) Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications, Engineering Science Reference, 1–3, pp. 543–574 https://doi.org/10.4018/978-1-5225-1798-6.ch022
  • Tang P, Xie X, Chen H, Lv C, Ding Y ( 2019) Synthesis of Nanoparticulate PrFeO3 by Sol–Gel Method and its Visible-Light Photocatalytic Activity. Ferroelectrics 546 181–187 https://doi.org/10.1080/00150193.2019.1592470
  • Jin LN, Shao F, Jin C, Zhang JN, Liu P, Guo MX, Bian SW (2017) High-performance textile supercapacitor electrode materials enhanced with three-dimensional carbon nanotubes/graphene conductive network and in situ polymerized polyaniline. Electrochimica Acta 249 387–394 https://doi.org/10.1016/j.electacta.2017.08.035
  • Kim NH, Choi SJ, Kim SJ, Cho HJ, Jang JS, Koo WT, Kim M, Kim ID (2016) Highly sensitive and selective acetone sensing performance of WO3 nanofibers functionalized by Rh2O3 nanoparticles. Sensors and Actuators B: Chemical 224 185–192 https://doi.org/10.1016/j.snb.2015.10.021
  • Tijare SN, Bakardjieva S, Subrt S, Joshi MV, Rayalu SS, Hishita S, Labhsetwar N (2014) Synthesis and visible light photocatalytic activity of nanocrystalline PrFeO 3 perovskite for hydrogen generation in ethanol-water system. Journal of Chemical Sciences 126 517–525 https://doi.org/10.1007/s12039-014-0596-x
  • Altin Y and Celik Bedeloglu (2021) A Polyacrylonitrile/polyvinyl alcohol-based porous carbon nanofiber electrodes for supercapacitor applications. International Journal of Energy Research 45 16497–16510 https://doi.org/10.1002/ER.6896
  • Chireh M and Naseri M ( 2019) Effect of calcination temperature on the physical properties of LiFe 5 O 8 nanostructures. Advanced Powder Technology 30 952–960 https://doi.org/10.1016/j.apt.2019.02.009
  • Zhang H, Xiao J, Chen J, Zhang L, Zhang Y, Jin P (2022) Au modified PrFeO3 with hollow tubular structure can be efficient sensing material for H2S detection. Frontiers in Bioengineering and Biotechnology 10 1–12 https://doi.org/10.3389/fbioe.2022.969870
  • Mirzaei A, Majhi SM, Kim HW, Kim SS (2022) Metal oxide-based nanofibers and their gas-sensing applications. In Esposito V and MArani D (ed) Metal Oxide-Based Nanofibers and Their Applications, Elsevier, pp. 139–158 https://doi.org/10.1016/B978-0-12-820629-4.00008-4
Yıl 2023, Cilt: 3 Sayı: 2, 153 - 166, 31.07.2023
https://doi.org/10.29228/JIENS.70059

Öz

Proje Numarası

TUBITAK BIDEB 1139B411901869

Kaynakça

  • Webber S, International Diabetes Federation - Diabetes Atlas, 10th Edition 2021, 2013. https://doi.org/10.1016/j.diabres.2013.10.013.
  • World Health Organization, Global Report on Diabetes, Isbn. 978 (2016) 88. https://doi.org/ISBN 978 92 4 156525 7.
  • Baharuddin AA, Ang BC, Haseeb ASMA, Wong YC, Wong YH (2019) Advances in chemiresistive sensors for acetone gas detection. Materials Science in Semiconductor Processing 103 104616 https://doi.org/10.1016/j.mssp.2019.104616.
  • Shokrekhodaei M and Quinones S (2020) Review of Non-Invasive Glucose Sensing Techniques. Sensors (Switzerland) 1251 https://sci-hub.scihubtw.tw/10.3390/s20051251
  • Masikini M, Chowdhury M, Nemraoui O (2020) Review—Metal Oxides: Application in Exhaled Breath Acetone Chemiresistive Sensors. Journal of The Electrochemical Society 167 037537 https://doi.org/10.1149/1945-7111/ab64bc.
  • Rowley WR, Bezold C, Arikan Y, Byrne E, Krohe S (2017) Diabetes 2030: Insights from Yesterday, Today, and Future Trends. Population Health Management 20 6–12 https://doi.org/10.1089/pop.2015.0181.
  • Jang C, Park JK, Lee HJ, Yun GH, Yook JG (2018) Temperature-corrected fluidic glucose sensor based on microwave resonator. Sensors (Switzerland) 18 1–12 https://doi.org/10.3390/s18113850.
  • Classification and diagnosis of diabetes: Standards of medical care in Diabetes-2018, Diabetes Care. 41 (2018) S13–S27. https://diabetesjournals.org/care/article/41/Supplement_1/S13/30088/2-Classification-and-Diagnosis-of-Diabetes
  • Köksal Atış Ş and Önder A (2020) Yeni Tanı Diyabetes Mellitus Hastalarında Sınıflandırma ve Tedavi Yönetimi. Hitit Medical Journal 3 (2020) 62–66
  • WHO, Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus: Abbreviated Report of a WHO Consultation. Approved by the Guidelines Review Committee., World Health Organization. (2011) 299–309.
  • I. Classification, Standards of medical care in diabetes-2014, Diabetes Care. 37 (2014) 14–80. https://doi.org/10.2337/dc14-S014.
  • Abacı A, Böber E, Büyükgebiz A (2007) Tip 1 Diyabet. Güncel Pediatri 5 1–10 https://dergipark.org.tr/en/pub/pediatri/667492.
  • Mishra BK (2013) Chemistry of Diabetes and its Impact. Academic Voices: A Multidisciplinary Journal 2 16–22 https://doi.org/10.3126/av.v2i1.8279.
  • Yuan Y, Chen Z, Zhao X, Sun M, Li Y, Wang Z, Wang C (2017) Continuous Monitoring of Breath Acetone, Blood Glucose and Blood Ketone in 20 Type 1 Diabetic Outpatients Over 30 Days. Journal of Analytical & Bioanalytical Techniques 08 https://doi.org/10.4172/2155-9872.1000386.
  • Güntner AT, Kompalla JF, Landis H, Theodore SJ, Geidl B, Sievi NA, Kohler M, Pratsinis SE, Gerber PA (2018) Guiding ketogenic diet with breath acetone sensors. Sensors (Switzerland) 18 1–12 https://doi.org/10.3390/s18113655
  • Wang C, Mbi A, Shepherd M (2010)A study on breath acetone in diabetic patients using a cavity ringdown breath analyzer: Exploring correlations of breath acetone with blood glucose and glycohemoglobin A1C. IEEE Sensors Journal 10 54–63 https://doi.org/10.1109/JSEN.2009.2035730
  • Musa-Veloso K, Likhodii SS, Rarama E, Benoit S, Liu YMC, Chartrand D, Curtis R, Carmant L, Lortie A, Comeau FJE, Cunnane SC (2006) Breath acetone predicts plasma ketone bodies in children with epilepsy on a ketogenic diet. Nutrition 22 1–8 https://doi.org/10.1016/j.nut.2005.04.008
  • Puchalska P and Crawford PA (2017) Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metabolism 25 262–284 https://doi.org/10.1016/j.cmet.2016.12.022
  • Güntner AT, Sievi NA, Theodore SJ, Gulich T, Kohler M, Pratsinis SE (2017) Noninvasive Body Fat Burn Monitoring from Exhaled Acetone with Si-doped WO3-sensing Nanoparticles. Analytical Chemistry 89 10578–10584 https://doi.org/10.1021/acs.analchem.7b02843
  • Wang Z and Wang C (2013) Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements. Journal of Breath Research 7 https://doi.org/10.1088/1752-7155/7/3/037109
  • Bovey F, Cros J, Tuzson B, Seyssel K, Schneiter P, Emmenegger L, Tappy L (2018) Breath acetone as a marker of energy balance: an exploratory study in healthy humans. Nutrition and Diabetes 8 https://doi.org/10.1038/s41387-018-0058-5
  • Afreen S and Zhu JJ (2019) Rethinking EBAD: Evolution of smart noninvasive detection of diabetes. TrAC - Trends in Analytical Chemistry 118 477–487 https://doi.org/10.1016/j.trac.2019.06.011
  • Konvalina G and Haick H (2014) Sensors for Breath Testing : From Nanomaterials to Comprehensive Disease Sensors for Breath Testing : From Nanomaterials to Comprehensive Disease Detection. Accounts of Chemical Research 47 1 66-76 https://doi.org/10.1021/ar400070m
  • Rydosz A (2018) Sensors for enhanced detection of acetone as a potential tool for noninvasive diabetes monitoring. Sensors (Switzerland) 18 (2018) 1–14 https://doi.org/10.3390/s18072298
  • Rydosz A (2015) A negative correlation between blood glucose and acetone measured in healthy and type 1 diabetes mellitus patient breath. Journal of Diabetes Science and Technology 9 881–884 https://doi.org/10.1177/1932296815572366
  • Diskin AM, Španěl P, Smith D (2003) Time variation of ammonia, acetone, isoprene and ethanol in breath: A quantitative SIFT-MS study over 30 days. Physiological Measurement 24 107–119 https://doi.org/10.1088/0967-3334/24/1/308
  • Wang X, Qin H, Pei J, Chen Y, Li L, Xie J, Hu J (2016)Sensing performances to low concentration acetone for palladium doped LaFeO3 sensors. Journal of Rare Earths 34 704–710. https://doi.org/10.1016/S1002-0721(16)60082-0.
  • Amann A and Smith D (2013) Volatile Biomarkers: Non-Invasive Diagnosis in Physiology and Medicine. Elsevier. https://doi.org/10.1016/C2012-0-01274-4
  • Deng C, Zhang J, Yu X, Zhang W, Zhang X (2004) Determination of acetone in human breath by gas chromatography–mass spectrometry and solid-phase microextraction with on-fiber derivatization. Journal of Chromatography B 810 269–275 https://doi.org/10.1016/j.jchromb.2004.08.013
  • Fergus JW, (2007)Perovskite oxides for semiconductor-based gas sensors. Sensors and Actuators B: Chemical 123 1169–1179 https://doi.org/10.1016/j.snb.2006.10.051
  • Shankar P and Rayappan JBB (2015) Gas sensing mechanism of metal oxides: The role of ambient atmosphere, type of semiconductor and gases - A review. Science Letters Journal 4 126 http://www.cognizure.com/scilett.aspx?p=200638572
  • Minh TDC, Blake DR, Galassetti PR (2012) The clinical potential of exhaled breath analysis for diabetes mellitus. Diabetes Research and Clinical Practice 97 195–205. https://doi.org/10.1016/j.diabres.2012.02.006
  • Miekisch W, Schubert JK, Noeldge-Schomburg GFE (2004) Diagnostic potential of breath analysis - Focus on volatile organic compounds. Clinica Chimica Acta 347 25–39 https://doi.org/10.1016/j.cccn.2004.04.023
  • Lourenço C and Turner C (2014) Breath Analysis in Disease Diagnosis: Methodological Considerations and Applications. Metabolites 4 465–498 https://doi.org/10.3390/metabo4020465
  • Li J, Smeeton TM, Zanola M, Barrett J, Berryman-Bousquet V (2018) A compact breath acetone analyser based on an ultraviolet light emitting diode. Sensors and Actuators B: Chemical 273 76–82 https://doi.org/10.1016/j.snb.2018.05.114
  • Prabhakar A, Quach A, Zhang H, Terrera M, Jackemeyer D, Xian X, Tsow F, Tao N, Forzani ES (2015) Acetone as biomarker for ketosis buildup capability - A study in healthy individuals under combined high fat and starvation diets. Nutrition Journal 14 https://doi.org/10.1186/s12937-015-0028-x
  • King J, Kupferthaler A, Unterkofler K, Koc H, Teschl S, Teschl G, Miekisch W, Schubert J, Hinterhuber H, Amann A (2009) Isoprene and acetone concentration profiles during exercise on an ergometer Journal of Breath Research 3 027006 https://doi.org/10.1088/1752-7155/3/2/027006
  • Blaikie TPJ, Edge JA, Hancock G, Lunn D, Megson C, Peverall R, Richmond G, Ritchie GAD, Taylor D (2014) Comparison of breath gases, including acetone, with blood glucose and blood ketones in children and adolescents with type 1 diabetes. Journal of Breath Research 8 046010 https://doi.org/10.1088/1752-7155/8/4/046010
  • Do JS and Wang SH (2013) On the sensitivity of conductimetric acetone gas sensor based on polypyrrole and polyaniline conducting polymers. Sensors and Actuators B: Chemical 185 39–46 https://doi.org/10.1016/j.snb.2013.04.080
  • Liu S, Zhang F, Li H, Chen T, Wang Y (2012) Acetone detection properties of single crystalline tungsten oxide plates synthesized by hydrothermal method using cetyltrimethyl ammonium bromide supermolecular template. Sensors and Actuators B: Chemical 162 259–268 https://doi.org/10.1016/j.snb.2011.12.076
  • Huang Z, Zhang A, Zhang Q, Pan S, Cui D (2019) Electrochemical Biosensor Based on Dewdrop-Like Platinum Nanoparticles-Decorated Silver Nanoflowers Nanocomposites for H 2 O 2 and Glucose Detection. Journal of The Electrochemical Society 166 B1138–B1145 https://doi.org/10.1149/2.0471913JES/XML
  • Staden RIS, Popa-Tudor I, Ionescu-Tirgoviste C, Stoica RA, Magerusan L (2019) Molecular Enantiorecognition of D- and L-Glucose in Urine and Whole Blood Samples. Journal of The Electrochemical Society 166 B3109–B3115 https://doi.org/10.1149/2.0211909JES/XML
  • IDF, Eighth edition 2017, 2017. https://www.idf.org/aboutdiabetes/type-2-diabetes.html.
  • Makaram P, Owens D, Aceros J (2014) Trends in Nanomaterial-Based Non-Invasive Diabetes Sensing Technologies. Diagnostics 4 27–46 https://doi.org/10.3390/diagnostics4020027
  • Standards of medical care in diabetes-2010, Diabetes Care. 33 (2010). https://doi.org/10.2337/dc10-S011.
  • Alonso M and Sanchez JM (2013) Analytical challenges in breath analysis and its application to exposure monitoring. TrAC - Trends in Analytical Chemistry 44 78–89 https://doi.org/10.1016/j.trac.2012.11.011
  • Rooth G and Ostenson S (1966) Acetone in alveolar air, and the control of diabetes. Lancet 2 1102–1105. https://doi.org/10.1016/s0140-6736(66)92194-5
  • Tassopoulos CN, Barnett D, Fraser TR (1969) Breath-acetone and blood-sugar measurements in diabetes. Lancet 293 1282–1286 https://doi.org/10.1016/s0140-6736(69)92222-3
  • Kim KH, Jahan SA, Kabir E (2012) A review of breath analysis for diagnosis of human health. TrAC - Trends in Analytical Chemistry 33 1–8 https://doi.org/10.1016/j.trac.2011.09.013
  • Kupferthaler A, King J, Amann A, Hinterhuber H, Hackner H, Hogl B (2010) Acetone and isoprene concentration profiles in normal human sleep. Memo - Magazine of European Medical Oncology 3 6–7 http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed11&NEWS=N&AN=70264318
  • Saasa V, Malwela V, Beukes M, Mokgotho M, Liu CP, Mwakikunga B (2018) Sensing Technologies for Detection of Acetone in Human Breath for Diabetes Diagnosis and Monitoring. Diagnostics 8 12 https://doi.org/10.3390/diagnostics8010012
  • Tomer VK, Singh K, Kaur H, Shorie M, Sabherwal P (2017) Rapid acetone detection using indium loaded WO3/SnO2 nanohybrid sensor. Sensors and Actuators B: Chemical 253 703–713 https://doi.org/10.1016/j.snb.2017.06.179
  • Hung CM, Le DTT, Van Hieu N (2017) On-chip growth of semiconductor metal oxide nanowires for gas sensors: A review. Journal of Science: Advanced Materials and Devices 2 263–285 https://doi.org/10.1016/j.jsamd.2017.07.009
  • Wong YC, Ang BC, Haseeb ASMA, Baharuddin AA, Wong YH (2020) Review—Conducting Polymers as Chemiresistive Gas Sensing Materials: A Review. Journal of The Electrochemical Society 167 037503 https://doi.org/10.1149/2.0032003jes
  • Righettoni M, Amann A, Pratsinis SE (2015) Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors. Materials Today 18 163–171 https://doi.org/10.1016/j.mattod.2014.08.017
  • Korotcenkov G (2007) Metal oxides for solid-state gas sensors: What determines our choice?. Materials Science and Engineering B: Solid-State Materials for Advanced Technology 139 1–23 https://doi.org/10.1016/j.mseb.2007.01.044
  • Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong C, Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S (2011) Semiconducting metal oxides as sensors for environmentally hazardous gases. Sensors and Actuators B: Chemical 160 580–591 https://doi.org/10.1016/j.snb.2011.08.032
  • Li SM, Zhang LX, Zhu MY, Ji GJ, Zhao LX, Yin J, Bie LJ (2017) Acetone sensing of ZnO nanosheets synthesized using room-temperature precipitation. Sensors and Actuators B: Chemical 249 611–623 https://doi.org/10.1016/j.snb.2017.04.007
  • Navale ST, Yang ZB, Liu C, Cao PJ, Patil VB, Ramgir NS, Mane RS, Stadler FJ (2018) Enhanced acetone sensing properties of titanium dioxide nanoparticles with a sub-ppm detection limit. Sensors and Actuators B: Chemical 255 1701–1710 https://doi.org/10.1016/j.snb.2017.08.186
  • Giang HT, Duy HT, Ngan PQ, Thai GH, Thu DTA, Thu DT, Toan NN (2011) Hydrocarbon gas sensing of nano-crystalline perovskite oxides LnFeO 3 (Ln = La, Nd and Sm). Sensors and Actuators B: Chemical 158 246–251 https://doi.org/10.1016/j.snb.2011.06.013
  • Song P, Wang Q, Zhang Z, Yang Z (2010) Synthesis and gas sensing properties of biomorphic LaFeO3 hollow fibers templated from cotton. Sensors and Actuators B: Chemical 147 248–254 https://doi.org/10.1016/j.snb.2010.03.006
  • Fan K, Qin H, Wang L, Ju L, Hu J (2013) CO2 gas sensors based on La1-xSrxFeO 3 nanocrystalline powders. Sensors and Actuators B: Chemical 177 265–269 https://doi.org/10.1016/j.snb.2012.11.004
  • Naseri M and Ghasemi R (2016) Structure and physical properties of Fe6 O8/ba Fe6 O11 nanostructure. Journal of Magnetism and Magnetic Materials 406 200–206 https://doi.org/10.1016/j.jmmm.2016.01.019
  • Anajafi Z, Naseri M, Neri G (2020) Acetone sensing behavior of p-SmFeO3/n-ZnO nanocomposite synthesized by thermal treatment method. Sensors and Actuators B: Chemical 304 https://doi.org/10.1016/j.snb.2019.127252
  • Hao P, Lin Z, Song P, Yang Z, Wang Z (2020) Hydrothermal preparation and acetone-sensing properties of Ni-doped porous LaFeO3 microspheres. Journal of Materials Science: Materials in Electronics 31 6679–6689 https://doi.org/10.1007/s10854-020-03224-x
  • Zhang YH, Li YL, Gong FL, Xie KF, Liu M, Zhang HL, Fang SM (2020) Al doped narcissus-like ZnO for enhanced NO2 sensing performance: An experimental and DFT investigation. Sensors and Actuators B: Chemical 305 127489 https://doi.org/10.1016/j.snb.2019.127489
  • Ma L, Ma SY, Shen XF, Wang TT, Jiang XH, Chen Q, Qiang Z, Yang HM, Chen H (2018) PrFeO3 hollow nanofibers as a highly efficient gas sensor for acetone detection. Sensors and Actuators B: Chemical 255 2546–2554 https://doi.org/10.1016/j.snb.2017.09.060
  • Pei S, Ma S, Xu X, Xu X, Almamoun O (2021) Modulated PrFeO3 by doping Sm3+ for enhanced acetone sensing properties. Journal of Alloys and Compounds 856 158274 https://doi.org/10.1016/j.jallcom.2020.158274
  • Bulut U, Oyku Sayin V, Altin Y, Can Cevher S, Cirpan A, Celik Bedeloglu A, Soylemez S (2023) A flexible carbon nanofiber and conjugated polymer-based electrode for glucose sensing. Microchemical Journal 184 108148. https://doi.org/10.1016/j.microc.2022.108148
  • Virji S, Huang J, Kaner RB, Weiller BH (2004) Polyaniline nanofiber gas sensors: Examination of response mechanisms. Nano Letters 4 491–496 https://doi.org/10.1021/nl035122e
  • Ding B, Wang M, Yu J, Sun G (2009) Gas sensors based on electrospun nanofibers. Sensors 9 1609–1624 https://doi.org/10.3390/s90301609
  • Gupta N, Sharma S, Mir IA, Kumar D (2006) Advances in sensors based on conducting polymers. Journal of Scientific and Industrial Research 65 549–557
  • Wang Y, Liu A, Han Y, Li T (2020) Sensors based on conductive polymers and their composites: a review. Polymer International 69 7–17 https://doi.org/10.1002/pi.5907
  • Pirsa S (2017) Chemiresistive gas sensors based on conducting polymers. In Khosrow-Pour M (ed) Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications, Engineering Science Reference, 1–3, pp. 543–574 https://doi.org/10.4018/978-1-5225-1798-6.ch022
  • Tang P, Xie X, Chen H, Lv C, Ding Y ( 2019) Synthesis of Nanoparticulate PrFeO3 by Sol–Gel Method and its Visible-Light Photocatalytic Activity. Ferroelectrics 546 181–187 https://doi.org/10.1080/00150193.2019.1592470
  • Jin LN, Shao F, Jin C, Zhang JN, Liu P, Guo MX, Bian SW (2017) High-performance textile supercapacitor electrode materials enhanced with three-dimensional carbon nanotubes/graphene conductive network and in situ polymerized polyaniline. Electrochimica Acta 249 387–394 https://doi.org/10.1016/j.electacta.2017.08.035
  • Kim NH, Choi SJ, Kim SJ, Cho HJ, Jang JS, Koo WT, Kim M, Kim ID (2016) Highly sensitive and selective acetone sensing performance of WO3 nanofibers functionalized by Rh2O3 nanoparticles. Sensors and Actuators B: Chemical 224 185–192 https://doi.org/10.1016/j.snb.2015.10.021
  • Tijare SN, Bakardjieva S, Subrt S, Joshi MV, Rayalu SS, Hishita S, Labhsetwar N (2014) Synthesis and visible light photocatalytic activity of nanocrystalline PrFeO 3 perovskite for hydrogen generation in ethanol-water system. Journal of Chemical Sciences 126 517–525 https://doi.org/10.1007/s12039-014-0596-x
  • Altin Y and Celik Bedeloglu (2021) A Polyacrylonitrile/polyvinyl alcohol-based porous carbon nanofiber electrodes for supercapacitor applications. International Journal of Energy Research 45 16497–16510 https://doi.org/10.1002/ER.6896
  • Chireh M and Naseri M ( 2019) Effect of calcination temperature on the physical properties of LiFe 5 O 8 nanostructures. Advanced Powder Technology 30 952–960 https://doi.org/10.1016/j.apt.2019.02.009
  • Zhang H, Xiao J, Chen J, Zhang L, Zhang Y, Jin P (2022) Au modified PrFeO3 with hollow tubular structure can be efficient sensing material for H2S detection. Frontiers in Bioengineering and Biotechnology 10 1–12 https://doi.org/10.3389/fbioe.2022.969870
  • Mirzaei A, Majhi SM, Kim HW, Kim SS (2022) Metal oxide-based nanofibers and their gas-sensing applications. In Esposito V and MArani D (ed) Metal Oxide-Based Nanofibers and Their Applications, Elsevier, pp. 139–158 https://doi.org/10.1016/B978-0-12-820629-4.00008-4
Toplam 82 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Lif Teknolojisi
Bölüm Araştırma Makaleleri
Yazarlar

Nesibe Yeşildağ Bu kişi benim 0009-0007-9008-0604

Ömer Faruk Ünsal 0000-0001-8405-3676

Ramazan Gömeç 0009-0009-8755-9782

Ayşe Bedeloğlu 0000-0003-2960-5188

Proje Numarası TUBITAK BIDEB 1139B411901869
Yayımlanma Tarihi 31 Temmuz 2023
Gönderilme Tarihi 15 Mayıs 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 3 Sayı: 2

Kaynak Göster

APA Yeşildağ, N., Ünsal, Ö. F., Gömeç, R., Bedeloğlu, A. (2023). Detecting acetone from breath using a PrFeO3-doped PANi/TiO2-coated PAN nanofiber sensor for non-invasive diabetic diagnosis. Journal of Innovative Engineering and Natural Science, 3(2), 153-166. https://doi.org/10.29228/JIENS.70059