Araştırma Makalesi
BibTex RIS Kaynak Göster

Strategic Solvent System Tuning for the Development of PVDF and TPU Nanofibers

Yıl 2024, Cilt: 4 Sayı: 1, 162 - 174, 31.01.2024
https://doi.org/10.61112/jiens.1372248

Öz

In this study, we have achieved the successful fabrication of polyvinylidene fluoride (PVDF) and thermoplastic polyurethane (TPU) nanofiber samples. The key element of our investigation revolved around the manipulation of solvent systems, specifically by varying the dimethyl formamide (DMF) to acetone ratio. Our primary objective was to explore the intricate interplay between the chosen solvent system and the resultant fiber morphology. To accomplish this, we employed a multifaceted approach, which encompassed the utilization of scanning electron microscopy (SEM) to provide a comprehensive visual representation of the nanofiber structures and dimensional measurements to quantify their physical attributes. Furthermore, fourier-transform infrared (FT-IR) spectroscopy was employed to delve into the molecular-level alterations induced by the solvent systems on the macromolecular morphology of the polymer nanofibers. This systematic examination not only contributes to a deeper understanding of the nanofiber fabrication process but also holds significant potential for various applications in the realm of materials science and nanotechnology.

Kaynakça

  • Yun KM, Suryamas AB, Iskandar F, Bao L, Niinuma H, Okuyama K (2010) Morphology optimization of polymer nanofiber for applications in aerosol particle filtration. Separation and Purification Technology, 75, 340–345. http://doi:10.1016/j.seppur.2010.09.002
  • Kenry, Lim CT (2017) Nanofiber technology: current status and emerging developments. Progress in Polymer Science, 70, 1–17. http://doi:10.1016/j.progpolymsci.2017.03.002
  • Chen H, Huang M, Liu Y, Meng L, Ma M (2020) Functionalized electrospun nanofiber membranes for water treatment: A review. Science of the Total Environment, 739, 139944. http://doi:10.1016/j.scitotenv.2020.139944.
  • Wang P, Wang Y, Tong L (2013) Functionalized polymer nanofibers: A versatile platform for manipulating light at the nanoscale. Light: Science and Applications, 2. http://doi:10.1038/lsa.2013.58
  • Klein KL, Melechko AV, McKnight TE, Retterer ST, Rack PD, Fowlkes JD, Joy DC, Simpson ML (2008) Surface characterization and functionalization of carbon nanofibers. Journal of Applied Physics, 103 http://doi:10.1063/1.2840049
  • Qin XH, Wang SY (2006) Filtration properties of electrospinning nanofibers. Journal of Applied Polymer Science, 102, 1285–1290. http://doi:10.1002/app.24361
  • Zhang Q, Welch J, Park H, Wu CY, Sigmund W, Marijnissen JCM (2010) Improvement in nanofiber filtration by multiple thin layers of nanofiber mats. Journal of Aerosol Science, 41, 230–236. http://doi:10.1016/J.JAEROSCI.2009.10.001
  • Sundarrajan S, Tan KL, Lim SH, Ramakrishna S (2014) Electrospun nanofibers for air filtration applications. Procedia Engineering, 75, 159–163. http://doi:10.1016/j.proeng.2013.11.034
  • Zhu LF, Zheng Y, Fan J, Yao Y, Ahmad Z, Chang MW (2019) A novel core-shell nanofiber drug delivery system intended for the synergistic treatment of melanoma. European Journal of Pharmaceutical Sciences, 137, 105002. http://doi:10.1016/j.ejps.2019.105002
  • Deepak A, Goyal AK, Rath G (2018) Nanofiber in transmucosal drug delivery. Journal of Drug Delivery Science and Technology, 43, 379–387. http://doi:10.1016/j.jddst.2017.11.008
  • Goyal, R, Macri LK, Kaplan HM, Kohn J (2016) Nanoparticles and nanofibers for topical drug delivery. Journal of Controlled Release, 240, 77–92. http://doi:10.1016/j.jconrel.2015.10.049
  • Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL (2007) Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Advanced Drug Delivery Reviews, 59, 1413–1433. http://doi:10.1016/j.addr.2007.04.022
  • Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials, 24, 2077–2082. http://doi:10.1016/S0142-9612(02)00635-X
  • Zhang L, Lou J, Tong L (2011) Micro/nanofiber optical sensors. Photonic Sensors, 1, 31–42. http://doi:10.1007/s13320-010-0022-z
  • Aussawasathien D, Dong JH, Dai L (2005) Electrospun polymer nanofiber sensors. Synthetic Metals, 154, 37–40. http://doi:10.1016/j.synthmet.2005.07.018
  • Virji S, Huang J, Kaner RB, Weiller BH (2004) Polyaniline nanofiber gas sensors: Examination of response mechanisms. Nano Letters, 4, 491–496. http://doi:10.1021/nl035122e
  • ALTIN Y, BEDELOĞLU A (2020) Polyacrylonitrile Nanofiber Optimization as Precursor of Carbon Nanofibers for Supercapacitors. Journal of Innovative Science and Engineering (JISE), 4, 69–83. http://doi:10.38088/jise.726792
  • Ünsal ÖF, Altın Y, Çelik Bedeloğlu A (2020) Poly(vinylidene fluoride) nanofiber-based piezoelectric nanogenerators using reduced graphene oxide/polyaniline. Journal of Applied Polymer Science, 137, 1–14. http://doi:10.1002/app.48517
  • Zhang X, Lu Y (2014) Centrifugal spinning: An alternative approach to fabricate nanofibers at high speed and low cost. Polymer Reviews, 54, 677–701. http://doi:10.1080/15583724.2014.935858
  • Kiyak EY, Cakmak E (2014) Nanofiber Production Methods. Electronic Journal of Textile Technologies Tekstil, 8, 49–6049.
  • Ziabari M, Mottaghitalab V, Haghi AK (2010) A new approach for optimization of electrospun nanofiber formation process. Korean Journal of Chemical Engineering, 27, 340–354. http://doi:10.1007/s11814-009-0309-1.
  • Alghoraibi I, Alomari S (2018) Different Methods for Nanofiber Design and Fabrication. In: Barhoum A, Bechelany M, Makhlouf A (eds) Handbook of Nanofibers. Springer, Cham. https://doi.org/10.1007/978-3-319-42789-8_11-2
  • Ibrahim H M, Klingner A (2020) A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polymer Testing, 90, 106647. http://doi:10.1016/j.polymertesting.2020.106647
  • Homayoni H, Ravandi SAH, Valizadeh M (2009) Electrospinning of chitosan nanofibers: Processing optimization. Carbohydrate Polymers, 77, 656–661. http://doi:10.1016/j.carbpol.2009.02.008
  • Katti DS, Robinson KW, Ko FK, Laurencin CT (2004) Bioresorbable nanofiber-based systems for wound healing and drug delivery: Optimization of fabrication parameters. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 70, 286–296. http://doi:10.1002/jbm.b.30041
  • Angammana CJ, Jayaram SH (2011) Analysis of the effects of solution conductivity on electrospinning process and fiber morphology. IEEE Transactions on Industry Applications, 47, 1109–1117. http://doi:10.1109/TIA.2011.2127431
  • Abbas JA, Said IA, Mohamed MA, Yasin SA, Ali ZA, Ahmed IH (2018) Electrospinning of polyethylene terephthalate (PET) nanofibers: Optimization study using taguchi design of experiment. IOP Conference Series: Materials Science and Engineering, 454. http://doi:10.1088/1757-899X/454/1/012130
  • Yao L, Lee C, Kim J (2010) Fabrication of electrospun meta-aramid nanofibers in different solvent systems. Fibers and Polymers, 11, 1032–1040. http://doi:10.1007/s12221-010-1032-6
  • Tan SH, Inai R, Kotaki M, Ramakrishna S (2005) Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer, 46, 6128–6134. http://doi:10.1016/j.polymer.2005.05.068
  • Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. Journal of Applied Polymer Science, 116, 2658–2667. http://doi:10.1002/app.
  • Dong X, Lu D, Harris TAL, Escobar IC (2021) Polymers and solvents used in membrane fabrication: A review focusing on sustainable membrane development. Membranes, 11. http://doi:10.3390/membranes11050309.
  • Lei T, Yu L, Wang L, Yang F, Sun D (2015) Predicting polymorphism of electrospun polyvinylidene fluoride membranes by their morphologies. Journal of Macromolecular Science, Part B: Physics, 54, 91–101. http://doi:10.1080/00222348.2014.983853
  • Lasprilla-Botero J, Álvarez-Láinez M, Lagaron JM (2018) The influence of electrospinning parameters and solvent selection on the morphology and diameter of polyimide nanofibers. Materials Today Communications, 14, 1–9. http://doi:10.1016/j.mtcomm.2017.12.003
  • Halaui R, Zussman E, Khalfin R, Semiat R, Cohen Y (2017) Polymeric microtubes for water filtration by co-axial electrospinning technique. Polymers for Advanced Technologies, 28, 570–582. http://doi:10.1002/pat.3794
  • Boaretti C, Roso M, Lorenzetti A, Modesti M (2015) Synthesis and process optimization of electrospun PEEK-sulfonated nanofibers by response surface methodology. Materials, 8, 4096–4117. http://doi:10.3390/ma8074096
  • Lei J, Yao G, Sun Z, Wang B, Yu C, Zheng S (2019) Fabrication of a novel antibacterial TPU nanofiber membrane containing Cu-loaded zeolite and its antibacterial activity toward Escherichia coli. Journal of Materials Science, 54, 11682–11693. http://doi:10.1007/s10853-019-03727-x
  • Cui Z, Lin J, Zhan C, Wu J, Shen S, Si J, Wang Q (2020) Biomimetic composite scaffolds based on surface modification of polydopamine on ultrasonication induced cellulose nanofibrils (CNF) adsorbing onto electrospun thermoplastic polyurethane (TPU) nanofibers. Journal of Biomaterials Science, Polymer Edition, 31, 561–577. http://doi:10.1080/09205063.2019.1705534
  • Lin L, Choi Y, Chen T, Kim H, Lee KS, Kang J, Lyu L, Gao J, Piao Y (2021) Superhydrophobic and wearable TPU based nanofiber strain sensor with outstanding sensitivity for high-quality body motion monitoring. Chemical Engineering Journal, 419, 129513. http://doi:10.1016/j.cej.2021.129513
  • Beniwal A, Sunny (2020) Novel TPU/Fe2O3 and TPU/Fe2O3/PPy nanocomposites synthesized using electrospun nanofibers investigated for analyte sensing applications at room temperature. Sensors and Actuators, B: Chemical, 304, 127384. http://doi:10.1016/j.snb.2019.127384
  • Avossa J, Herwig G, Toncelli C, Itel F, Rossi RM (2022) Electrospinning based on benign solvents: current definitions, implications and strategies. Green Chemistry, 24, 2347–2375. http://doi:10.1039/d1gc04252a
  • Barick AK, Tripathy DK (2010) Effect of nanofiber on material properties of vapor-grown carbon nanofiber reinforced thermoplastic polyurethane (TPU/CNF) nanocomposites prepared by melt compounding. Composites Part A: Applied Science and Manufacturing, 41, 1471–1482. http://doi:10.1016/j.compositesa.2010.06.009
  • Chen C, Bai Z, Cao Y, Dong M, Jiang K, Zhou Y, Tao Y, Gu S, Xu J, Yin X, Xu W (2020) Enhanced piezoelectric performance of BiCl3/PVDF nanofibers-based nanogenerators. Composites Science and Technology, 192, 108100. http://doi:10.1016/j.compscitech.2020.108100
  • Liao Y, Wang R, Tian M, Qiu C, Fane AG (2013) Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. Journal of Membrane Science, 425–426, 30–39. http://doi:10.1016/j.memsci.2012.09.023
  • Pisarenko T, Papež N, Sobola D, Ţălu Ş, Částková K, Škarvada P, Macků R, Ščasnovič E, Kaštyl J (2022) Comprehensive Characterization of PVDF Nanofibers at Macro-and Nanolevel. Polymers, 14, 7–9. http://doi:10.3390/polym14030593.
  • Poorvisha R, Suriyaraj SP, Thavamani P, Naidu R, Megharaj M, Bhattacharyya A, Selvakumar R (2015) Synthesis and characterisation of 3-dimensional hydroxyapatite nanostructures using a thermoplastic polyurethane nanofiber sacrificial template. RSC Advances, 5, 97773–97780. http://doi:10.1039/c5ra18593a.
  • Si J, Deng Yi, Gong C, Cui Z, Wang Q (2023) Preparation and characterization of deacetylated cellulose acetate/thermoplastic polyurethane nanofiber membranes modified with graphene oxide for methylene blue and Cr (VI) adsorption. Polymer Engineering and Science, 63, 3891–3905. http://doi:10.1002/pen.26494.
  • Li W, Lu L, Yan F, Palasantzas G, Loos K, Pei Y (2023) High-performance triboelectric nanogenerators based on TPU/mica nanofiber with enhanced tribo-positivity. Nano Energy, 114, 108629. http://doi:10.1016/j.nanoen.2023.108629
  • Pavezi KJP, Rocha A, Bonafé EG, Martins AF (2020) Electrospinning-electrospraying of poly(acid lactic) solutions in binary chloroform/formic acid and chloroform/acetic acid mixtures. Journal of Molecular Liquids, 320, 114448. http://doi:10.1016/j.molliq.2020.114448
  • Tang C, Ye S, Liu H (2007) Electrospinning of poly(styrene-co-maleic anhydride) (SMA) and water-swelling behavior of crosslinked/hydrolyzed SMA hydrogel nanofibers. Polymer, 48, 4482–4491. http://doi:10.1016/j.polymer.2007.05.041
  • Sharma D, Satapathy BK (2022) Optimization and physical performance evaluation of electrospun nanofibrous mats of PLA, PCL and their blends. Journal of Industrial Textiles, 51, 6640S-6665S. http://doi:10.1177/1528083720944502.
  • Yang W, Li Y, Feng L, Hou Y, Wang S, Yang B, Hu X, Zhang W, Ramakrishna S (2020) GO/Bi2S3 doped PVDF/TPU nanofiber membrane with enhanced photothermal performance. International Journal of Molecular Sciences, 21, 1–13. http://doi:10.3390/ijms21124224
  • Le B, Omran N, Hassanin AH, Kandas I, Gamal M, Shehata N, Shyha I (2023) Flexible piezoelectric PVDF/TPU nanofibrous membranes produced by solution blow spinning. Journal of Materials Research and Technology, 24, 5032–5041. http://doi:10.1016/j.jmrt.2023.04.051
  • Elnabawy E, Hassanain AH, Shehata N, Popelka A, Nair R, Yousef S, Kandas I (2019) Piezoelastic PVDF/TPU nanofibrous composite membrane: Fabrication and characterization. Polymers, 11. http://doi:10.3390/polym11101634
  • Adeli B, Gharehaghaji AA, Jeddi AAA (2021) A feasibility study on production and optimization of PVDF/PU polyblend nanofiber layers using expert design analysis. Iranian Polymer Journal (English Edition), 30, 535–545. http://doi:10.1007/s13726-021-00910-3
  • Ünsal ÖF, Çelik Bedeloğlu A (2023) Nanofiber mat-based highly compact piezoelectric-triboelectric hybrid nanogenerators. Express Polymer Letters, 17, 564–579.
  • Ünsal ÖF, Çelik Bedeloğlu A (2023) Three-Dimensional Piezoelectric-Triboelectric Hybrid Nanogenerators for Mechanical Energy Harvesting. ACS Applied Nano Materials, 6(16), 14656-14668.
  • Nguyen NQ, Chen TF, Lo CT (2021) Confined crystallization and chain conformational change in electrospun poly(ethylene oxide) nanofibers. Polymer Journal, 53, 895–905. http://doi:10.1038/s41428-021-00492-0
  • El-Hadi AM, Mohan SD, Davis FJ, Mitchell GR (2014) Enhancing the crystallization and orientation of electrospinning poly (lactic acid) (PLLA) by combining with additives. Journal of Polymer Research, 21. http://doi:10.1007/s10965-014-0605-2
  • Stephens JS, Chase DB, Rabolt JF (2004) Effect of the electrospinning process on polymer crystallization chain conformation in nylon-6 and nylon-12. Macromolecules, 37, 877–881. http://doi:10.1021/ma0351569
  • Li B, Liu Y, Wei S, Huang Y, Yang S, Xue Y, Xuan H, Yuan H (2020) A solvent system involved fabricating electrospun polyurethane nanofibers for biomedical applications. Polymers, 12, 1–12. http://doi:10.3390/polym12123038
  • Arik N, Horzum N, Truong YB (2022) Development and Characterizations of Engineered Electrospun Bio-Based Polyurethane Containing Essential Oils. Membranes, 12, 1–16. http://doi:10.3390/membranes12020209
  • Jimenez GA, Jana SC (2009) Composites of Carbon Nanofibers and ThermoplasticPolyurethanes With Shape-Memory Properties Preparedby Chaotic Mixing. Polymer Engineerıng And Science, 49, 2020–2030. http://doi:10.1002/pen
  • Shepelin NA, Glushenkov AM, Lussini VC, Fox PJ, Dicinoski GW, Shapter JG, Ellis AV (2019) New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting. Energy and Environmental Science, 12, 1143–1176. http://doi:10.1039/c8ee03006e
  • Li J, Meng Q, Li W, Zhang Z (2011) Influence of crystalline properties on the dielectric and energy storage properties of poly(vinylidene fluoride). Journal of Applied Polymer Science, 122, 1659–1668. http://doi:10.1002/app.34020
  • Gee S, Johnson B, Smith AL (2018) Optimizing electrospinning parameters for piezoelectric PVDF nanofiber membranes. Journal of Membrane Science, 563, 804–812. http://doi:10.1016/j.memsci.2018.06.050

PVDF ve TPU Nanoliflerinin Geliştirilmesi için Stratejik Solvent Sistemi Optimizasyonu

Yıl 2024, Cilt: 4 Sayı: 1, 162 - 174, 31.01.2024
https://doi.org/10.61112/jiens.1372248

Öz

Bu çalışmada, poliviniliden florür (PVDF) ve termoplastik poliüretan (TPU) nanolif örnekleri başarılı bir şekilde üretilmiştir. Araştırmamızın ana unsuru, çözücü sistemlerin manipülasyonu esasına dayanarak özellikle dimetilformamid (DMF) ile aseton oranının değiştirilmesiyle ilgilidir. Hedeflenen temel amaç ise seçilen çözücü sistemi ile sonuçta oluşan fiber morfolojisi arasındaki karmaşık etkileşimi keşfetmek olarak belirlenmiştir. Bu bağlamda farklı çözücü sistemleri kullanılarak elektro-üretim yoluyla üretilmiş nanolifli yapılar taramalı elektron mikroskobu ile görüntülenmiş, elde edilen görüntüler üzerinden boyutsal ölçümler gerçekleştirilerek veriler analiz edilmiştir. Ayrıca, Fourier dönüşümü kızılötesi (FT-IR) spektroskopisi kullanılarak çözücü sistemlerin polimer nanofiberlerin makromoleküler morfolojisi üzerindeki değişiklikler tespit edilmiştir. Bu sistemli inceleme, nanofiber üretim sürecinin daha derin bir şekilde ortaya koymuş tur.

Kaynakça

  • Yun KM, Suryamas AB, Iskandar F, Bao L, Niinuma H, Okuyama K (2010) Morphology optimization of polymer nanofiber for applications in aerosol particle filtration. Separation and Purification Technology, 75, 340–345. http://doi:10.1016/j.seppur.2010.09.002
  • Kenry, Lim CT (2017) Nanofiber technology: current status and emerging developments. Progress in Polymer Science, 70, 1–17. http://doi:10.1016/j.progpolymsci.2017.03.002
  • Chen H, Huang M, Liu Y, Meng L, Ma M (2020) Functionalized electrospun nanofiber membranes for water treatment: A review. Science of the Total Environment, 739, 139944. http://doi:10.1016/j.scitotenv.2020.139944.
  • Wang P, Wang Y, Tong L (2013) Functionalized polymer nanofibers: A versatile platform for manipulating light at the nanoscale. Light: Science and Applications, 2. http://doi:10.1038/lsa.2013.58
  • Klein KL, Melechko AV, McKnight TE, Retterer ST, Rack PD, Fowlkes JD, Joy DC, Simpson ML (2008) Surface characterization and functionalization of carbon nanofibers. Journal of Applied Physics, 103 http://doi:10.1063/1.2840049
  • Qin XH, Wang SY (2006) Filtration properties of electrospinning nanofibers. Journal of Applied Polymer Science, 102, 1285–1290. http://doi:10.1002/app.24361
  • Zhang Q, Welch J, Park H, Wu CY, Sigmund W, Marijnissen JCM (2010) Improvement in nanofiber filtration by multiple thin layers of nanofiber mats. Journal of Aerosol Science, 41, 230–236. http://doi:10.1016/J.JAEROSCI.2009.10.001
  • Sundarrajan S, Tan KL, Lim SH, Ramakrishna S (2014) Electrospun nanofibers for air filtration applications. Procedia Engineering, 75, 159–163. http://doi:10.1016/j.proeng.2013.11.034
  • Zhu LF, Zheng Y, Fan J, Yao Y, Ahmad Z, Chang MW (2019) A novel core-shell nanofiber drug delivery system intended for the synergistic treatment of melanoma. European Journal of Pharmaceutical Sciences, 137, 105002. http://doi:10.1016/j.ejps.2019.105002
  • Deepak A, Goyal AK, Rath G (2018) Nanofiber in transmucosal drug delivery. Journal of Drug Delivery Science and Technology, 43, 379–387. http://doi:10.1016/j.jddst.2017.11.008
  • Goyal, R, Macri LK, Kaplan HM, Kohn J (2016) Nanoparticles and nanofibers for topical drug delivery. Journal of Controlled Release, 240, 77–92. http://doi:10.1016/j.jconrel.2015.10.049
  • Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL (2007) Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Advanced Drug Delivery Reviews, 59, 1413–1433. http://doi:10.1016/j.addr.2007.04.022
  • Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials, 24, 2077–2082. http://doi:10.1016/S0142-9612(02)00635-X
  • Zhang L, Lou J, Tong L (2011) Micro/nanofiber optical sensors. Photonic Sensors, 1, 31–42. http://doi:10.1007/s13320-010-0022-z
  • Aussawasathien D, Dong JH, Dai L (2005) Electrospun polymer nanofiber sensors. Synthetic Metals, 154, 37–40. http://doi:10.1016/j.synthmet.2005.07.018
  • Virji S, Huang J, Kaner RB, Weiller BH (2004) Polyaniline nanofiber gas sensors: Examination of response mechanisms. Nano Letters, 4, 491–496. http://doi:10.1021/nl035122e
  • ALTIN Y, BEDELOĞLU A (2020) Polyacrylonitrile Nanofiber Optimization as Precursor of Carbon Nanofibers for Supercapacitors. Journal of Innovative Science and Engineering (JISE), 4, 69–83. http://doi:10.38088/jise.726792
  • Ünsal ÖF, Altın Y, Çelik Bedeloğlu A (2020) Poly(vinylidene fluoride) nanofiber-based piezoelectric nanogenerators using reduced graphene oxide/polyaniline. Journal of Applied Polymer Science, 137, 1–14. http://doi:10.1002/app.48517
  • Zhang X, Lu Y (2014) Centrifugal spinning: An alternative approach to fabricate nanofibers at high speed and low cost. Polymer Reviews, 54, 677–701. http://doi:10.1080/15583724.2014.935858
  • Kiyak EY, Cakmak E (2014) Nanofiber Production Methods. Electronic Journal of Textile Technologies Tekstil, 8, 49–6049.
  • Ziabari M, Mottaghitalab V, Haghi AK (2010) A new approach for optimization of electrospun nanofiber formation process. Korean Journal of Chemical Engineering, 27, 340–354. http://doi:10.1007/s11814-009-0309-1.
  • Alghoraibi I, Alomari S (2018) Different Methods for Nanofiber Design and Fabrication. In: Barhoum A, Bechelany M, Makhlouf A (eds) Handbook of Nanofibers. Springer, Cham. https://doi.org/10.1007/978-3-319-42789-8_11-2
  • Ibrahim H M, Klingner A (2020) A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polymer Testing, 90, 106647. http://doi:10.1016/j.polymertesting.2020.106647
  • Homayoni H, Ravandi SAH, Valizadeh M (2009) Electrospinning of chitosan nanofibers: Processing optimization. Carbohydrate Polymers, 77, 656–661. http://doi:10.1016/j.carbpol.2009.02.008
  • Katti DS, Robinson KW, Ko FK, Laurencin CT (2004) Bioresorbable nanofiber-based systems for wound healing and drug delivery: Optimization of fabrication parameters. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 70, 286–296. http://doi:10.1002/jbm.b.30041
  • Angammana CJ, Jayaram SH (2011) Analysis of the effects of solution conductivity on electrospinning process and fiber morphology. IEEE Transactions on Industry Applications, 47, 1109–1117. http://doi:10.1109/TIA.2011.2127431
  • Abbas JA, Said IA, Mohamed MA, Yasin SA, Ali ZA, Ahmed IH (2018) Electrospinning of polyethylene terephthalate (PET) nanofibers: Optimization study using taguchi design of experiment. IOP Conference Series: Materials Science and Engineering, 454. http://doi:10.1088/1757-899X/454/1/012130
  • Yao L, Lee C, Kim J (2010) Fabrication of electrospun meta-aramid nanofibers in different solvent systems. Fibers and Polymers, 11, 1032–1040. http://doi:10.1007/s12221-010-1032-6
  • Tan SH, Inai R, Kotaki M, Ramakrishna S (2005) Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer, 46, 6128–6134. http://doi:10.1016/j.polymer.2005.05.068
  • Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. Journal of Applied Polymer Science, 116, 2658–2667. http://doi:10.1002/app.
  • Dong X, Lu D, Harris TAL, Escobar IC (2021) Polymers and solvents used in membrane fabrication: A review focusing on sustainable membrane development. Membranes, 11. http://doi:10.3390/membranes11050309.
  • Lei T, Yu L, Wang L, Yang F, Sun D (2015) Predicting polymorphism of electrospun polyvinylidene fluoride membranes by their morphologies. Journal of Macromolecular Science, Part B: Physics, 54, 91–101. http://doi:10.1080/00222348.2014.983853
  • Lasprilla-Botero J, Álvarez-Láinez M, Lagaron JM (2018) The influence of electrospinning parameters and solvent selection on the morphology and diameter of polyimide nanofibers. Materials Today Communications, 14, 1–9. http://doi:10.1016/j.mtcomm.2017.12.003
  • Halaui R, Zussman E, Khalfin R, Semiat R, Cohen Y (2017) Polymeric microtubes for water filtration by co-axial electrospinning technique. Polymers for Advanced Technologies, 28, 570–582. http://doi:10.1002/pat.3794
  • Boaretti C, Roso M, Lorenzetti A, Modesti M (2015) Synthesis and process optimization of electrospun PEEK-sulfonated nanofibers by response surface methodology. Materials, 8, 4096–4117. http://doi:10.3390/ma8074096
  • Lei J, Yao G, Sun Z, Wang B, Yu C, Zheng S (2019) Fabrication of a novel antibacterial TPU nanofiber membrane containing Cu-loaded zeolite and its antibacterial activity toward Escherichia coli. Journal of Materials Science, 54, 11682–11693. http://doi:10.1007/s10853-019-03727-x
  • Cui Z, Lin J, Zhan C, Wu J, Shen S, Si J, Wang Q (2020) Biomimetic composite scaffolds based on surface modification of polydopamine on ultrasonication induced cellulose nanofibrils (CNF) adsorbing onto electrospun thermoplastic polyurethane (TPU) nanofibers. Journal of Biomaterials Science, Polymer Edition, 31, 561–577. http://doi:10.1080/09205063.2019.1705534
  • Lin L, Choi Y, Chen T, Kim H, Lee KS, Kang J, Lyu L, Gao J, Piao Y (2021) Superhydrophobic and wearable TPU based nanofiber strain sensor with outstanding sensitivity for high-quality body motion monitoring. Chemical Engineering Journal, 419, 129513. http://doi:10.1016/j.cej.2021.129513
  • Beniwal A, Sunny (2020) Novel TPU/Fe2O3 and TPU/Fe2O3/PPy nanocomposites synthesized using electrospun nanofibers investigated for analyte sensing applications at room temperature. Sensors and Actuators, B: Chemical, 304, 127384. http://doi:10.1016/j.snb.2019.127384
  • Avossa J, Herwig G, Toncelli C, Itel F, Rossi RM (2022) Electrospinning based on benign solvents: current definitions, implications and strategies. Green Chemistry, 24, 2347–2375. http://doi:10.1039/d1gc04252a
  • Barick AK, Tripathy DK (2010) Effect of nanofiber on material properties of vapor-grown carbon nanofiber reinforced thermoplastic polyurethane (TPU/CNF) nanocomposites prepared by melt compounding. Composites Part A: Applied Science and Manufacturing, 41, 1471–1482. http://doi:10.1016/j.compositesa.2010.06.009
  • Chen C, Bai Z, Cao Y, Dong M, Jiang K, Zhou Y, Tao Y, Gu S, Xu J, Yin X, Xu W (2020) Enhanced piezoelectric performance of BiCl3/PVDF nanofibers-based nanogenerators. Composites Science and Technology, 192, 108100. http://doi:10.1016/j.compscitech.2020.108100
  • Liao Y, Wang R, Tian M, Qiu C, Fane AG (2013) Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. Journal of Membrane Science, 425–426, 30–39. http://doi:10.1016/j.memsci.2012.09.023
  • Pisarenko T, Papež N, Sobola D, Ţălu Ş, Částková K, Škarvada P, Macků R, Ščasnovič E, Kaštyl J (2022) Comprehensive Characterization of PVDF Nanofibers at Macro-and Nanolevel. Polymers, 14, 7–9. http://doi:10.3390/polym14030593.
  • Poorvisha R, Suriyaraj SP, Thavamani P, Naidu R, Megharaj M, Bhattacharyya A, Selvakumar R (2015) Synthesis and characterisation of 3-dimensional hydroxyapatite nanostructures using a thermoplastic polyurethane nanofiber sacrificial template. RSC Advances, 5, 97773–97780. http://doi:10.1039/c5ra18593a.
  • Si J, Deng Yi, Gong C, Cui Z, Wang Q (2023) Preparation and characterization of deacetylated cellulose acetate/thermoplastic polyurethane nanofiber membranes modified with graphene oxide for methylene blue and Cr (VI) adsorption. Polymer Engineering and Science, 63, 3891–3905. http://doi:10.1002/pen.26494.
  • Li W, Lu L, Yan F, Palasantzas G, Loos K, Pei Y (2023) High-performance triboelectric nanogenerators based on TPU/mica nanofiber with enhanced tribo-positivity. Nano Energy, 114, 108629. http://doi:10.1016/j.nanoen.2023.108629
  • Pavezi KJP, Rocha A, Bonafé EG, Martins AF (2020) Electrospinning-electrospraying of poly(acid lactic) solutions in binary chloroform/formic acid and chloroform/acetic acid mixtures. Journal of Molecular Liquids, 320, 114448. http://doi:10.1016/j.molliq.2020.114448
  • Tang C, Ye S, Liu H (2007) Electrospinning of poly(styrene-co-maleic anhydride) (SMA) and water-swelling behavior of crosslinked/hydrolyzed SMA hydrogel nanofibers. Polymer, 48, 4482–4491. http://doi:10.1016/j.polymer.2007.05.041
  • Sharma D, Satapathy BK (2022) Optimization and physical performance evaluation of electrospun nanofibrous mats of PLA, PCL and their blends. Journal of Industrial Textiles, 51, 6640S-6665S. http://doi:10.1177/1528083720944502.
  • Yang W, Li Y, Feng L, Hou Y, Wang S, Yang B, Hu X, Zhang W, Ramakrishna S (2020) GO/Bi2S3 doped PVDF/TPU nanofiber membrane with enhanced photothermal performance. International Journal of Molecular Sciences, 21, 1–13. http://doi:10.3390/ijms21124224
  • Le B, Omran N, Hassanin AH, Kandas I, Gamal M, Shehata N, Shyha I (2023) Flexible piezoelectric PVDF/TPU nanofibrous membranes produced by solution blow spinning. Journal of Materials Research and Technology, 24, 5032–5041. http://doi:10.1016/j.jmrt.2023.04.051
  • Elnabawy E, Hassanain AH, Shehata N, Popelka A, Nair R, Yousef S, Kandas I (2019) Piezoelastic PVDF/TPU nanofibrous composite membrane: Fabrication and characterization. Polymers, 11. http://doi:10.3390/polym11101634
  • Adeli B, Gharehaghaji AA, Jeddi AAA (2021) A feasibility study on production and optimization of PVDF/PU polyblend nanofiber layers using expert design analysis. Iranian Polymer Journal (English Edition), 30, 535–545. http://doi:10.1007/s13726-021-00910-3
  • Ünsal ÖF, Çelik Bedeloğlu A (2023) Nanofiber mat-based highly compact piezoelectric-triboelectric hybrid nanogenerators. Express Polymer Letters, 17, 564–579.
  • Ünsal ÖF, Çelik Bedeloğlu A (2023) Three-Dimensional Piezoelectric-Triboelectric Hybrid Nanogenerators for Mechanical Energy Harvesting. ACS Applied Nano Materials, 6(16), 14656-14668.
  • Nguyen NQ, Chen TF, Lo CT (2021) Confined crystallization and chain conformational change in electrospun poly(ethylene oxide) nanofibers. Polymer Journal, 53, 895–905. http://doi:10.1038/s41428-021-00492-0
  • El-Hadi AM, Mohan SD, Davis FJ, Mitchell GR (2014) Enhancing the crystallization and orientation of electrospinning poly (lactic acid) (PLLA) by combining with additives. Journal of Polymer Research, 21. http://doi:10.1007/s10965-014-0605-2
  • Stephens JS, Chase DB, Rabolt JF (2004) Effect of the electrospinning process on polymer crystallization chain conformation in nylon-6 and nylon-12. Macromolecules, 37, 877–881. http://doi:10.1021/ma0351569
  • Li B, Liu Y, Wei S, Huang Y, Yang S, Xue Y, Xuan H, Yuan H (2020) A solvent system involved fabricating electrospun polyurethane nanofibers for biomedical applications. Polymers, 12, 1–12. http://doi:10.3390/polym12123038
  • Arik N, Horzum N, Truong YB (2022) Development and Characterizations of Engineered Electrospun Bio-Based Polyurethane Containing Essential Oils. Membranes, 12, 1–16. http://doi:10.3390/membranes12020209
  • Jimenez GA, Jana SC (2009) Composites of Carbon Nanofibers and ThermoplasticPolyurethanes With Shape-Memory Properties Preparedby Chaotic Mixing. Polymer Engineerıng And Science, 49, 2020–2030. http://doi:10.1002/pen
  • Shepelin NA, Glushenkov AM, Lussini VC, Fox PJ, Dicinoski GW, Shapter JG, Ellis AV (2019) New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting. Energy and Environmental Science, 12, 1143–1176. http://doi:10.1039/c8ee03006e
  • Li J, Meng Q, Li W, Zhang Z (2011) Influence of crystalline properties on the dielectric and energy storage properties of poly(vinylidene fluoride). Journal of Applied Polymer Science, 122, 1659–1668. http://doi:10.1002/app.34020
  • Gee S, Johnson B, Smith AL (2018) Optimizing electrospinning parameters for piezoelectric PVDF nanofiber membranes. Journal of Membrane Science, 563, 804–812. http://doi:10.1016/j.memsci.2018.06.050
Toplam 65 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Polimer Bilimi ve Teknolojileri, Polimer Teknolojisi, Polimerler ve Plastikler, Lif Teknolojisi
Bölüm Araştırma Makaleleri
Yazarlar

Ömer Faruk Ünsal 0000-0001-8405-3676

Ayşe Bedeloğlu 0000-0003-2960-5188

Yayımlanma Tarihi 31 Ocak 2024
Gönderilme Tarihi 9 Ekim 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 4 Sayı: 1

Kaynak Göster

APA Ünsal, Ö. F., & Bedeloğlu, A. (2024). Strategic Solvent System Tuning for the Development of PVDF and TPU Nanofibers. Journal of Innovative Engineering and Natural Science, 4(1), 162-174. https://doi.org/10.61112/jiens.1372248