Araştırma Makalesi
BibTex RIS Kaynak Göster

Reusability of pre-treatment water obtained via textile wastewater by coagulation and filtration methods in reactive and disperse dyeing

Yıl 2024, Cilt: 4 Sayı: 2, 298 - 313, 31.07.2024
https://doi.org/10.61112/jiens.1367185

Öz

Besides high-water consumption in the textile industry, color, quantity, and variety of chemicals in discharged wastewater draws attention both in terms of environmental and economic aspects. Therefore, efficient, and reliable treatment techniques are needed. In this context, coagulation is a very important step in the treatment of wastewater. In this study, water recovery from textile wastewater taken from different discharge points was investigated by using coagulation and filtration methods. Iron (III) chloride hexahydrate (FeCl3.6H2O) was used as a coagulant. The optimum conditions were determined by studying the effect of different coagulant dosages and pH values. The filtration process was performed using 12-25 µm and <2 µm porous filters. Laboratory-scale reactive and disperse dyeing processes have been carried out to demonstrate the reusability of wastewater. At the end of the study, pollution removal efficiencies were determined as 91.1% for suspended solids, 64.7% for color and 72.1% for chemical oxygen demand. The findings of this study showed that coagulation and filtration will be useful processes for the enterprise in the pre-treatment of textile wastewater. It has been determined that the obtained pre-treatment waters can be used in disperse and reactive dyeing. Despite the pollution load in the pre-treatment water, it has been determined that dyeing errors do not occur, especially in reactive dyeing. This study revealed the effect of the pollution load in the pre-treatment water obtained by recovery methods from the wastewater discharged from textile dyehouse processes on the dyeing processes. In this study, it was aimed to emphasize that in order to reduce the water footprint, wastewater discharged from chemical processes can be classified and recycled and that pre-treatment water can be reused despite the pollution it contains.

Destekleyen Kurum

Harput Tekstil R&D Center

Proje Numarası

HRPT-PR-K26

Kaynakça

  • http://www.undocuments.net/wced-ocf.htm. Accessed 21 March 2023
  • Vadicherla T, Saravanan D (2014) Textiles and apparel development using recycled and reclaimed fibers. In: Muthu SS (ed) Roadmap to Sustainable Textiles and Clothing Eco-friendly Raw Materials, Technologies, and Processing Methods, Springer Science- Business Media, Singapore, pp 139-160
  • Elkington J (2004) Enter the triple bottom line. In: Henriques A, Richardson J (eds.) The Triple Bottom Line: Does It All Add Up?, London, UK, pp 1–16
  • Shen B (2014) Sustainable fashion supply chain: Lessons from H&M, 6(9), 6236- 6249.
  • Wang Y (2006) Recycling in Textiles, Woodhead Publishing Ltd., Cambridge, UK. 248p.
  • Lu JJ, Hamouda H (2014) Current status of fiber waste recycling and its future. Advanced Materials Research 878:122-131.
  • Burçin Ü (2017) Konfeksiyon Atıklarının Geri Kazanımı ve Katma Değerli Ürün Eldesinde Değerlendirilmesi. Doktora Tezi, Ege Üniversitesi
  • Choudhury AKR (2014) Environmental impacts of the textile industry and its assessment through life cycle assessment. In: Muthu SS (ed) Roadmap to Sustainable Textiles and Clothing - Environmental and Social Aspectsof Textiles and Clothing Supply Chain, Springer Science-Business Media, Singapore, pp 1-39
  • Fletcher K (2009) Systems change for sustainability in textiles. In: Blackburn RS (ed) Sustainable Textiles: Life Cycle and Environmental Impact, Woodhead, Cambridge, pp 369-380
  • http://www.oecotextiles.com/PDF/textile_industry_hazards.pdf. Accessed 21 March 2023
  • Patel H, Vashi RT (2010) Treatment of Textile Wastewater by Adsorption and Coagulation, E-Journal of Chemistry, 7. 4, ISSN 0973-4945 1468-1476.
  • Mehta P (2012) Treating Textile Effluents by Coagulation - Flocculation Method Using Different Dosing Compositions, Advances in Applied Science Research, 3. 4, ISSN 0976-8610 2514-2517.
  • Buthelezi P, Olaniran AO, Pillay B (2012) Textile Dye Removal from Wastewater Effluents Using Bioflocculants Produced by Indigenous Bacterial Isolates, Molecules, 17. ISSN 1420-3049 14260-14274.
  • Namal OÖ (2017) Tekstil Endüstrisi Atıksularının Arıtımında Kullanılan Proseslerin Araştırılması, Nevşehir Bilim ve Teknoloji Dergisi, 6. 388-396.
  • Seif H, Malak M (2001) Textile Wastewater Treatment, Sixth International Water Technology Conference, Alexandria. Egypt. 608-614.
  • Tzoupanos ND, Zouboulıs AI (2008) Coagulation-Flocculation Processes in Water/Wastewater Treatment: The Application of New Generation of Chemical Reagents, 6th IASME/WSEAS International Conference on Heat Transfer, Thermal Engineering and Environment (HTE'08), Rhodes. Greece. ISSN 1790-5095 309-317.
  • Sahu OP, Chaudharı PK (2013) Review on Chemical treatment of Industrial Waste Water, J. Appl. Sci. Environ. Manage., 17. 2, ISSN 1119-8362 241-257.
  • Ahmed K, Emad S.B, Khaled Z (2021) Coagulation/flocculation process for textile mill effluent treatment: experimental and numerical perspectives, International Journal of Sustainable Engineering. 14. 5, 983-995.
  • Sankalp R, Hemant S, Jayanta B (2023) Treatment of textile industry wastewater based on coagulation-flocculation aided sedimentation followed by adsorption: Process studies in an industrial ecology concept, Science of The Total Environment. 857. 2, 159464, ISSN 0048-9697.
  • Mert Y, Semir G, Bekir Y (2020) Atıksu Arıtma Tesislerinde Arıtma Çamurları ve Bertaraf Uygulamaları, European Journal of Science and Technology. 18. 895-904.
  • Ahmad K.B, Khalid Z (2021) Hybrid treatment system for real textile wastewater remediation based on coagulation/flocculation, adsorption and filtration processes: Performance and economic evaluation, Journal of Water Process Engineering. 40. 101963, ISSN 2214-7144.
  • Groves G.R, Buckely C.A, Turnbull R.H (1979) Closed Looped Recycle System for Textile Effluents. J. Water pollution Control Federation. 51, pp. 499-517.
  • Bonono L, Malpei F, Mezzanotte V, Rozzi A, Bianehi R (1995) Possibilities of Treatment and Reuse of wastewater in Textile Industrial Settlements of Northern Italy. Proc. WEFTEC, 68th Annual Conference and Exposition of the Water Environmental Federation, pp. 539-548.
  • Mehrotra R, Prasad S, Srivastav B.K (1995) Removal of Color from Dey-House Effluents by Physico-Chemical Processes. Proc. 3rd Int. Conference Appropriate Management Technologies for Developing Countries, Nagpur, India. pp. 617-629.
  • Holkar C.R, Jadhav A.J, Pinjari D.V, Mahamuni N.M, Pandit A.B (2016) A critical review on textile wastewater treatments: possible approaches, J. Environ. Manag., 182. 351-366.
  • Verma A.K, Dash R.R, Bhunia P (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters, J. Environ. Manag., 93. 1, 154-168.
  • Gürtekin E (2012) Koagülasyon / Flokülasyon Prosesiyle Peyniraltı Suyunun Fizikokimyasal Arıtılabilirliği, AKÜ FEBİD 11, 025402, 17-22.
  • Can Y (2014) Tekstil Sektöründe Su Kullanımı ve Atık Su Yönetimi, 2nd International Symposium on Environment and Morality, Adiyaman-Turkey. 820-826.
  • Rana S, Suresh S (2017) Comparison of Different Coagulants for Reduction of COD from Textile Industry Wastewater, Materials Today: Proceedings. 4. 2, 567–574.
  • Naghan D.J, Motevalli M.D, Mirzaei N, Javid A, Ghaffari H.R, Ahmadpour M, Moradi M, Sharafi K (2015) Efficiency comparison of alum and ferric chloride coagulants in removal of dye and organic material from industrial wastewater-a case study, Bulg. Chem. Commun. 47. 206-210.

Tekstil atık suyundan koagülasyon ve filtrasyon yöntemleriyle elde edilen ön arıtma suyunun reaktif ve dispers boyamalarda yeniden kullanılabilirliği

Yıl 2024, Cilt: 4 Sayı: 2, 298 - 313, 31.07.2024
https://doi.org/10.61112/jiens.1367185

Öz

Tekstil sektöründe yüksek su tüketiminin yanı sıra deşarj edilen atık sudaki kimyasalların rengi, miktarı ve çeşitliliği hem çevresel hem de ekonomik açıdan dikkat çekmektedir. Bu nedenle etkin ve güvenilir tedavi tekniklerine ihtiyaç vardır. Bu bağlamda atık suyun arıtımında pıhtılaşma çok önemli bir adımdır. Bu çalışmada farklı deşarj noktalarından alınan tekstil atık sularından koagülasyon ve filtrasyon yöntemleri kullanılarak su geri kazanımı araştırılmıştır. Pıhtılaştırıcı olarak demir (III) klorür heksahidrat (FeCl3.6H2O) kullanıldı. Optimum koşullar, farklı pıhtılaştırıcı dozajlarının ve pH değerlerinin etkisi incelenerek belirlendi. Filtrasyon işlemi 12-25 µm ve <2 µm gözenekli filtreler kullanılarak gerçekleştirildi. Atık suyun yeniden kullanılabilirliğini göstermek amacıyla laboratuvar ölçeğinde reaktif ve dispers boyama işlemleri gerçekleştirilmiştir. Çalışma sonucunda kirlilik giderim verimleri askıda katı madde için %91,06, renk için %64,68, kimyasal oksijen ihtiyacı için %72,12 olarak belirlendi. Bu çalışmanın bulguları, tekstil atıksularının ön arıtımında koagülasyon ve filtrasyonun işletme açısından faydalı prosesler olacağını göstermiştir. Elde edilen ön arıtma sularının dispers ve reaktif boyamalarda kullanılabileceği belirlenmiştir.

Destekleyen Kurum

Harput Tekstil Ar-Ge Merkezi

Proje Numarası

HRPT-PR-K26

Kaynakça

  • http://www.undocuments.net/wced-ocf.htm. Accessed 21 March 2023
  • Vadicherla T, Saravanan D (2014) Textiles and apparel development using recycled and reclaimed fibers. In: Muthu SS (ed) Roadmap to Sustainable Textiles and Clothing Eco-friendly Raw Materials, Technologies, and Processing Methods, Springer Science- Business Media, Singapore, pp 139-160
  • Elkington J (2004) Enter the triple bottom line. In: Henriques A, Richardson J (eds.) The Triple Bottom Line: Does It All Add Up?, London, UK, pp 1–16
  • Shen B (2014) Sustainable fashion supply chain: Lessons from H&M, 6(9), 6236- 6249.
  • Wang Y (2006) Recycling in Textiles, Woodhead Publishing Ltd., Cambridge, UK. 248p.
  • Lu JJ, Hamouda H (2014) Current status of fiber waste recycling and its future. Advanced Materials Research 878:122-131.
  • Burçin Ü (2017) Konfeksiyon Atıklarının Geri Kazanımı ve Katma Değerli Ürün Eldesinde Değerlendirilmesi. Doktora Tezi, Ege Üniversitesi
  • Choudhury AKR (2014) Environmental impacts of the textile industry and its assessment through life cycle assessment. In: Muthu SS (ed) Roadmap to Sustainable Textiles and Clothing - Environmental and Social Aspectsof Textiles and Clothing Supply Chain, Springer Science-Business Media, Singapore, pp 1-39
  • Fletcher K (2009) Systems change for sustainability in textiles. In: Blackburn RS (ed) Sustainable Textiles: Life Cycle and Environmental Impact, Woodhead, Cambridge, pp 369-380
  • http://www.oecotextiles.com/PDF/textile_industry_hazards.pdf. Accessed 21 March 2023
  • Patel H, Vashi RT (2010) Treatment of Textile Wastewater by Adsorption and Coagulation, E-Journal of Chemistry, 7. 4, ISSN 0973-4945 1468-1476.
  • Mehta P (2012) Treating Textile Effluents by Coagulation - Flocculation Method Using Different Dosing Compositions, Advances in Applied Science Research, 3. 4, ISSN 0976-8610 2514-2517.
  • Buthelezi P, Olaniran AO, Pillay B (2012) Textile Dye Removal from Wastewater Effluents Using Bioflocculants Produced by Indigenous Bacterial Isolates, Molecules, 17. ISSN 1420-3049 14260-14274.
  • Namal OÖ (2017) Tekstil Endüstrisi Atıksularının Arıtımında Kullanılan Proseslerin Araştırılması, Nevşehir Bilim ve Teknoloji Dergisi, 6. 388-396.
  • Seif H, Malak M (2001) Textile Wastewater Treatment, Sixth International Water Technology Conference, Alexandria. Egypt. 608-614.
  • Tzoupanos ND, Zouboulıs AI (2008) Coagulation-Flocculation Processes in Water/Wastewater Treatment: The Application of New Generation of Chemical Reagents, 6th IASME/WSEAS International Conference on Heat Transfer, Thermal Engineering and Environment (HTE'08), Rhodes. Greece. ISSN 1790-5095 309-317.
  • Sahu OP, Chaudharı PK (2013) Review on Chemical treatment of Industrial Waste Water, J. Appl. Sci. Environ. Manage., 17. 2, ISSN 1119-8362 241-257.
  • Ahmed K, Emad S.B, Khaled Z (2021) Coagulation/flocculation process for textile mill effluent treatment: experimental and numerical perspectives, International Journal of Sustainable Engineering. 14. 5, 983-995.
  • Sankalp R, Hemant S, Jayanta B (2023) Treatment of textile industry wastewater based on coagulation-flocculation aided sedimentation followed by adsorption: Process studies in an industrial ecology concept, Science of The Total Environment. 857. 2, 159464, ISSN 0048-9697.
  • Mert Y, Semir G, Bekir Y (2020) Atıksu Arıtma Tesislerinde Arıtma Çamurları ve Bertaraf Uygulamaları, European Journal of Science and Technology. 18. 895-904.
  • Ahmad K.B, Khalid Z (2021) Hybrid treatment system for real textile wastewater remediation based on coagulation/flocculation, adsorption and filtration processes: Performance and economic evaluation, Journal of Water Process Engineering. 40. 101963, ISSN 2214-7144.
  • Groves G.R, Buckely C.A, Turnbull R.H (1979) Closed Looped Recycle System for Textile Effluents. J. Water pollution Control Federation. 51, pp. 499-517.
  • Bonono L, Malpei F, Mezzanotte V, Rozzi A, Bianehi R (1995) Possibilities of Treatment and Reuse of wastewater in Textile Industrial Settlements of Northern Italy. Proc. WEFTEC, 68th Annual Conference and Exposition of the Water Environmental Federation, pp. 539-548.
  • Mehrotra R, Prasad S, Srivastav B.K (1995) Removal of Color from Dey-House Effluents by Physico-Chemical Processes. Proc. 3rd Int. Conference Appropriate Management Technologies for Developing Countries, Nagpur, India. pp. 617-629.
  • Holkar C.R, Jadhav A.J, Pinjari D.V, Mahamuni N.M, Pandit A.B (2016) A critical review on textile wastewater treatments: possible approaches, J. Environ. Manag., 182. 351-366.
  • Verma A.K, Dash R.R, Bhunia P (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters, J. Environ. Manag., 93. 1, 154-168.
  • Gürtekin E (2012) Koagülasyon / Flokülasyon Prosesiyle Peyniraltı Suyunun Fizikokimyasal Arıtılabilirliği, AKÜ FEBİD 11, 025402, 17-22.
  • Can Y (2014) Tekstil Sektöründe Su Kullanımı ve Atık Su Yönetimi, 2nd International Symposium on Environment and Morality, Adiyaman-Turkey. 820-826.
  • Rana S, Suresh S (2017) Comparison of Different Coagulants for Reduction of COD from Textile Industry Wastewater, Materials Today: Proceedings. 4. 2, 567–574.
  • Naghan D.J, Motevalli M.D, Mirzaei N, Javid A, Ghaffari H.R, Ahmadpour M, Moradi M, Sharafi K (2015) Efficiency comparison of alum and ferric chloride coagulants in removal of dye and organic material from industrial wastewater-a case study, Bulg. Chem. Commun. 47. 206-210.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Atıksu Arıtma Süreçleri
Bölüm Araştırma Makaleleri
Yazarlar

Halil İbrahim Turgut 0000-0002-9591-8775

Proje Numarası HRPT-PR-K26
Yayımlanma Tarihi 31 Temmuz 2024
Gönderilme Tarihi 27 Eylül 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 4 Sayı: 2

Kaynak Göster

APA Turgut, H. İ. (2024). Reusability of pre-treatment water obtained via textile wastewater by coagulation and filtration methods in reactive and disperse dyeing. Journal of Innovative Engineering and Natural Science, 4(2), 298-313. https://doi.org/10.61112/jiens.1367185


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0