Araştırma Makalesi
BibTex RIS Kaynak Göster

X3CrNiMo13-4 martenzitik paslanmaz çeliklerde fırında sert lehimleme prosesinde kullanılan koruyucu gaz karışımlarının yorulma performansına etkisi

Yıl 2025, Cilt: 5 Sayı: 1, 147 - 157

Öz

Fırında sert lehimleme, enerji teknolojisi, havacılık, uzay ve otomotiv endüstrisi alanlarında teknik gelişim için öncü rol oynayan, düşük maliyetli bir birleştirme teknolojisidir. Sert lehimleme işleminin fırın içerisinde vakumlu ortamda değil, koruyucu gaz ve karışımlarının kullanılması durumunda, gaz kompozisyonunun birleştirilmiş parçanın yorulma performansını etkilediği bilinmektedir. Bu çalışmada, X3CrNiMo13-4 martenzitik paslanmaz çelik malzemelerin Au18Ni alaşımı ara bağlayıcı tabaka kullanılarak iki farklı koruyucu gaz ortamında (%93 Ar - %7 H2 ve %100 H2) fırında sert lehimleme özellikleri araştırılmıştır. Çalışmada fırında sert lehimleme prosesi sırasında kullanılan farklı koruyucu gazların birleştirilmiş bölgenin yorulma dayanımı ile mikroyapı ve sertlik özelliklerine etkisi incelenmiştir. Ayrıca mikroyapı ve kırılma yüzeyleri üzerinden yapılan karakterizasyon çalışmaları, yorulma testi sonuçları ile karşılaştırılarak değerlendirilmiştir. Yorulma testleri sonucunda %93 Ar - %7 H2 koruyucu gaz altında 20.000 çevrimde σnom,max değeri 250 MPa iken, %100 H2 koruyucu gazı kullanıldığında bu değer 450 MPa’a yükseldiği belirlenmiştir.

Kaynakça

  • Başer T (2016) Microstructural and fractographic investigations of brazed martensitic stainless steel joints under cyclic loading. 18. Uluslararası Metalurji ve Malzeme Kongresi IMMC’2016, 261.
  • Uzun H (2002) Sert lehimleme prensipleri. Değişim Yayınları, İstanbul, 18-21:236- 237.
  • Messler RW (1995) The challenges for joining to keep pace with advancing materials and design. Materials and Design 16(5):261–269, https://doi.org/10.1016/0261-3069(96)00004-0
  • Boretius M (2006) The potential of vacuum brazing – state of the art and developments from the perspective of a service contractor. Adv Eng Mater 8(3):158–161. https://doi.org/10.1002/adem.200500247
  • Sanchez L, Sarrillo D, Rodriguez E, Aragon F, Sotelo J, Toral F (2011) Development of high precision joints in particle accelerator components performed by vacuum brazing. Journal of Materials Processing Technology 211(8):1379-1385. https://doi.org/10.1016/j.jmatprotec.2011.03.009
  • Zhang J, Wang T, Liu C, He Y, (2014) Effect of brazing temperature on microstructure and mechanical properties of graphite/copper joints. Materials Science And Engineering 594(31):26-31. https://doi.org/10.1016/j.msea.2013.11.059
  • Nowacki J, Swider P, (2003) Producibility of brazed high-dimension centrifugal compressor impellers. J Mater Process Technol 133(1-2):174–80. https://doi.org/10.1016/S0924-0136(02)00228-5
  • Kassner ME, Kennedy TC, Schrems KK (1998) The mechanism of ductile fracture in constrained thin silver films. Acta Mater 46(18):6445-6457. https://doi.org/10.1016/S1359-6454(98)00299-7
  • Kah P, Martikainen J (2013) Influence of shielding gases in the welding of metals. Int J Adv Manuf Technol 64:1411–1421. https://doi.org/10.1007/s00170-012-4111-6
  • Chern TS, Tseng KH, Tsai HL (2011) Study of the character-istics of duplex stainless steel activated tungsten inert gas welds. Materials and Design 32(1):255–263. https://doi.org/10.1016/j.matdes.2010.05.056
  • Tolle MC, Kassner ME, Cerri E, Rosen RS (1995) Mechanical behaviour and microstructure of Au–Ni braze. Metallurgical and Materials Transactions 26A:941–948. https://doi.org/10.1007/BF02649090
  • Wilhelm BF, Kai M, Ulrich H, Jörg S, Andre L, Christian R (2011) Boron and phosphorous free nickel-based filler metals for brazing stainless steel in shielding gas furnaces. International Journal of Materials Research 102(8):964-971. https://doi.org/10.3139/146.110549
  • Bach FW, Möhwald K, Holländer U (2010) Physico-chemical aspects of surface activation during fluxless brazing in shielding-gas furnaces. Key Engineering Materials 438:73-80. https://doi.org/10.4028/www.scientific.net/KEM.438.73
  • Lugscheider E, Burger W, Broich U (1997) Development and characterization of joining techniques for dispersion-strengthened alümina. Welding Research Supplement 76(9):349-355.
  • Kahraman N (2003) Titanyum ve bakır çiftinin ara bağlayıcılı difüzyon sert lehimlemesi ile fırında birleştirilmesi ve mekanik özelliklerinin incelenmesi. Gazi Üniversitesi Fen Bilimleri Enstitüsü Dergisi 16(3):611-618.
  • Gülenç B (2003) Difüzyon sert lehimlemesi ile titanyum ve düşük karbonlu çelik malzemelerin birleştirilmesi ve mekanik özelliklerinin incelenmesi. Makina Tasarım ve İmalat Dergisi 5(1):22-28.
  • Leinenbach C, Schindler H., Başer TA, Rüttimann N (2010) Quasistatic fracture behaviour and defect assessment of brazed soft martensitic stainless steel joints. Engineering Failure Analysis 17:672–682. https://doi.org/10.1016/j.engfailanal.2009.05.002
  • Gündüz S (2019) Metalurjide Faz Diyagramları. 4. Güncellenmiş Baskı, Seçkin Akademik ve Mesleki Yayınları, Ankara, pp 177-179.
  • Donald RA (1996) The science and engineering of materials. Third S. I. Edition, Chapmam Hall, London, pp 115-117.
  • Aydın K, Kaya Y, Kahraman N, (2012) Experimental study of diffusion welding/bonding of titanium to copper. Materials and Design 37:356-368. https://doi.org/10.1016/j.matdes.2012.01.026
  • Doğan T Gündüz S (2019) Effect of different grain sizes on the static strain aging behavior of bake hardening steel. Materials Testing 61(7):674-680. https://doi.org/10.3139/120.111370

The effect of shielding gas mixtures in furnace brazing process on fatigue performance of X3CrNiMo13-4 martensitic stainless steels

Yıl 2025, Cilt: 5 Sayı: 1, 147 - 157

Öz

Furnace brazing is a low-cost joining technology that plays a leading role in technical development in the fields of energy technology, aerospace and automotive industries. It is known that the gas composition affects the fatigue performance of the joined part if the brazing process is not carried out in a vacuum in a furnace, but using shielding gases and mixtures. In this study, the furnace brazing properties of X3CrNiMo13-4 martensitic stainless-steel materials were investigated in two different shielding gas environments (93% Ar -7% H2 and100% H2) using the Au18Ni alloy interlayer. In the study, the effects of different shielding gases used during the furnace brazing process on the fatigue strength, microstructure and hardness properties of the joined zone were examined. In addition, characterization studies on microstructure and fracture surfaces were evaluated by comparing them with fatigue test results. As a result of fatigue tests, it was determined that while the σnom,max value was 250 MPa in 20.000 cycles under 93% Ar - 7% H2 protective gas, this value increased to 450 MPa when 100% H2 shielding gas was used.

Kaynakça

  • Başer T (2016) Microstructural and fractographic investigations of brazed martensitic stainless steel joints under cyclic loading. 18. Uluslararası Metalurji ve Malzeme Kongresi IMMC’2016, 261.
  • Uzun H (2002) Sert lehimleme prensipleri. Değişim Yayınları, İstanbul, 18-21:236- 237.
  • Messler RW (1995) The challenges for joining to keep pace with advancing materials and design. Materials and Design 16(5):261–269, https://doi.org/10.1016/0261-3069(96)00004-0
  • Boretius M (2006) The potential of vacuum brazing – state of the art and developments from the perspective of a service contractor. Adv Eng Mater 8(3):158–161. https://doi.org/10.1002/adem.200500247
  • Sanchez L, Sarrillo D, Rodriguez E, Aragon F, Sotelo J, Toral F (2011) Development of high precision joints in particle accelerator components performed by vacuum brazing. Journal of Materials Processing Technology 211(8):1379-1385. https://doi.org/10.1016/j.jmatprotec.2011.03.009
  • Zhang J, Wang T, Liu C, He Y, (2014) Effect of brazing temperature on microstructure and mechanical properties of graphite/copper joints. Materials Science And Engineering 594(31):26-31. https://doi.org/10.1016/j.msea.2013.11.059
  • Nowacki J, Swider P, (2003) Producibility of brazed high-dimension centrifugal compressor impellers. J Mater Process Technol 133(1-2):174–80. https://doi.org/10.1016/S0924-0136(02)00228-5
  • Kassner ME, Kennedy TC, Schrems KK (1998) The mechanism of ductile fracture in constrained thin silver films. Acta Mater 46(18):6445-6457. https://doi.org/10.1016/S1359-6454(98)00299-7
  • Kah P, Martikainen J (2013) Influence of shielding gases in the welding of metals. Int J Adv Manuf Technol 64:1411–1421. https://doi.org/10.1007/s00170-012-4111-6
  • Chern TS, Tseng KH, Tsai HL (2011) Study of the character-istics of duplex stainless steel activated tungsten inert gas welds. Materials and Design 32(1):255–263. https://doi.org/10.1016/j.matdes.2010.05.056
  • Tolle MC, Kassner ME, Cerri E, Rosen RS (1995) Mechanical behaviour and microstructure of Au–Ni braze. Metallurgical and Materials Transactions 26A:941–948. https://doi.org/10.1007/BF02649090
  • Wilhelm BF, Kai M, Ulrich H, Jörg S, Andre L, Christian R (2011) Boron and phosphorous free nickel-based filler metals for brazing stainless steel in shielding gas furnaces. International Journal of Materials Research 102(8):964-971. https://doi.org/10.3139/146.110549
  • Bach FW, Möhwald K, Holländer U (2010) Physico-chemical aspects of surface activation during fluxless brazing in shielding-gas furnaces. Key Engineering Materials 438:73-80. https://doi.org/10.4028/www.scientific.net/KEM.438.73
  • Lugscheider E, Burger W, Broich U (1997) Development and characterization of joining techniques for dispersion-strengthened alümina. Welding Research Supplement 76(9):349-355.
  • Kahraman N (2003) Titanyum ve bakır çiftinin ara bağlayıcılı difüzyon sert lehimlemesi ile fırında birleştirilmesi ve mekanik özelliklerinin incelenmesi. Gazi Üniversitesi Fen Bilimleri Enstitüsü Dergisi 16(3):611-618.
  • Gülenç B (2003) Difüzyon sert lehimlemesi ile titanyum ve düşük karbonlu çelik malzemelerin birleştirilmesi ve mekanik özelliklerinin incelenmesi. Makina Tasarım ve İmalat Dergisi 5(1):22-28.
  • Leinenbach C, Schindler H., Başer TA, Rüttimann N (2010) Quasistatic fracture behaviour and defect assessment of brazed soft martensitic stainless steel joints. Engineering Failure Analysis 17:672–682. https://doi.org/10.1016/j.engfailanal.2009.05.002
  • Gündüz S (2019) Metalurjide Faz Diyagramları. 4. Güncellenmiş Baskı, Seçkin Akademik ve Mesleki Yayınları, Ankara, pp 177-179.
  • Donald RA (1996) The science and engineering of materials. Third S. I. Edition, Chapmam Hall, London, pp 115-117.
  • Aydın K, Kaya Y, Kahraman N, (2012) Experimental study of diffusion welding/bonding of titanium to copper. Materials and Design 37:356-368. https://doi.org/10.1016/j.matdes.2012.01.026
  • Doğan T Gündüz S (2019) Effect of different grain sizes on the static strain aging behavior of bake hardening steel. Materials Testing 61(7):674-680. https://doi.org/10.3139/120.111370
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Bilimi ve Teknolojileri, Malzeme Karekterizasyonu
Bölüm Araştırma Makaleleri
Yazarlar

Tanya A. Başer 0000-0003-2303-4169

Yayımlanma Tarihi
Gönderilme Tarihi 13 Ağustos 2024
Kabul Tarihi 11 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 5 Sayı: 1

Kaynak Göster

APA Başer, T. A. (t.y.). X3CrNiMo13-4 martenzitik paslanmaz çeliklerde fırında sert lehimleme prosesinde kullanılan koruyucu gaz karışımlarının yorulma performansına etkisi. Journal of Innovative Engineering and Natural Science, 5(1), 147-157.


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0