Araştırma Makalesi
BibTex RIS Kaynak Göster

CTAB-modifiye haloysit nanotüp stabilize Pickering emülsiyonlardan poliHIPE kompozitlerinin sentezi ve karakterizasyonu: CTAB immobilize edilmiş nanotüp’ün surfaktan kullanımını azaltmadaki etkisi

Yıl 2025, Cilt: 5 Sayı: 1, 99 - 116

Öz

Bu çalışmada, haloysit (HL) nanotüpleri, gözenekli kompozitlerin hazırlanmasında yüksek iç faz emülsiyonlarının (HIPE'ler) stabilizasyonuna katkıda bulunan katı partiküller olarak kullanılmıştır. Bu HIPE'lerin sürekli fazının polimerizasyonu ile poliHIPE'ler elde edilmiştir. HL yüzeyine setiltrimetilamonyum bromür (CTAB) immobilizasyonu, çözeltide adsorpsiyon (SOL) tekniği kullanılarak gerçekleştirilmiştir. Nanodolgu ihtiva etmeyen HIPE’nin kararlılığı hacimce %5 surfaktan kullanımı ile sağlanabilmiştir. Bununla birlikte, organofilik HL dolgulu (ağırlıkça %0,25-%1,00) HIPE malzemelerinin emülsiyon kararlılıkları için surfaktan gereksinimi %1’e düşmüştür. Sabit CTAB-SOL-HL kil miktarlarında, surfaktan konsantrasyonunun azaltılması farklı boyutlarda gözeneklerin oluşmasına neden olurken, surfaktan konsantrasyonu sabit tutulduğunda ise dolgu maddesi miktarının artırılması gözenek boyutunda bir azalmaya ve boyut dağılımının iyileşmesine neden olmuştur. En yüksek katyonik boya (Nile Blue) adsorpsiyon değerleri %0,50 ve %1,00 CTAB-SOL-HL içeren polyHIPE kompozitleri tarafından sergilenmiş ve %1 dolgu kullanımı ile saf poliHIPE'ye kıyasla yaklaşık %100 daha fazla adsorpsiyon elde edilmiştir. Ağırlıkça %0.50 ve üzerinde CTAB-SOL-HL kullanımı ile saf polyHIPE’ye nazaran, kompozitlerde daha yüksek ısıl bozunma sıcaklıklarına ulaşılmıştır. Gözenekli kompozitlerin hazırlanmasında HL nanotüplerin kullanımı, emülsiyon stabilitesinin sağlanmasına yardımcı olmasının yanı sıra hem malzemelerin termal performansının iyileştirilmesi hem de boyanın adsorpsiyonunda aktif rol alması açısından olası mühendislik ve çevresel faydalar açısından büyük önem taşımaktadır.

Proje Numarası

2015/DR/061

Kaynakça

  • Lissant KJ, Peace BW, Wu SH, Mayhan KG (1974) Structure of high-internal-phase-ratio emulsions. J. Colloid Interface Sci. 47:416-423. https://doi.org/10.1016/0021-9797(74)90273-2
  • Menner A, Ikem V, Salgueiro M, Shaffer, MS, Bismarck A (2007) High internal phase emulsion templates solely stabilised by functionalised titania nanoparticles. Chemical Communications 41: 4274-4276. https://doi.org/10.1039/B708935J
  • Ikem VO, Menner A, Bismarck A (2008) High internal phase emulsions stabilized solely by functionalized silica particles. Angewandte Chemie International Edition 47(43):8277-8279. https://doi.org/10.1002/anie.200802244
  • Song X, Zhao Y, Wang H, Du Q (2009) Fabrication of polymer microspheres using titania as a photocatalyst and Pickering stabilizer. Langmuir 25(8): 4443-4449. https://doi.org/10.1021/la8039237
  • Silverstein MS (2014) PolyHIPEs: Recent advances in emulsion-templated porous polymers. Progress in Polymer Science 39(1):199-234. https://doi.org/10.1016/j.progpolymsci.2013.07.003
  • Cui, Threlfall M, van Duijneveldt JS (2011) Optimizing organoclay stabilized Pickering emulsions. Journal of Colloid and Interface Science 356(2):665-671. https://doi.org/10.1016/j.jcis.2011.01.046
  • Hermant MC, Klumperman B, Koning CE (2009) Conductive Pickering-poly (high internal phase emulsion) composite foams prepared with low loadings of single-walled carbon nanotubes. Chemical communications 19:2738-2740. https://doi.org/10.1039/B820638D
  • Ikem VO, Menner A, Horozov TS, Bismarck A (2010) Highly permeable macroporous polymers synthesized from pickering medium and high internal phase emulsion templates. Advanced Materials 22(32):3588-3592. https://doi.org/10.1002/adma.201000729
  • Abbasian Z, Moghbeli MR (2011) Preparation of highly open porous styrene/acrylonitrile and styrene/acrylonitrile/organoclay polymerized high internal phase emulsion (PolyHIPE) foams via emulsion templating. Journal of Applied Polymer Science 119(6):3728-3738. https://doi.org/10.1002/app.33086
  • Yang Y, Wei Z. Wang C. Tong Z (2013) Lignin-based Pickering HIPEs for macroporous foams and their enhanced adsorption of copper (II) ions. Chemical Communications 49(64): 7144-7146. https://doi.org/10.1039/C3CC42270D
  • Alikhani M, Moghbeli MR (2014) Ion-exchange polyHIPE type membrane for removing nitrate ions: preparation, characterization, kinetics and adsorption studies. Chemical Engineering Journal 239: 93-104. https://doi.org/10.1016/j.cej.2013.11.013
  • Rawtani D, Agrawal YK (2012) Multifarious applications of halloysite nanotubes: a review. Rev. Adv. Mater. Sci. 30(3): 282-295.
  • Kamble R, Ghag M, Gaikawad S, Panda B K (2012) Halloysite nanotubes and applications: a review. Journal of Advanced Scientific Research 3(02): 25-29.
  • Chen H, Zhao J, Wu J, Yan H (2014) Selective desorption characteristics of halloysite nanotubes for anionic azo dyes. RSC Advances 4(30):15389-15393. https://doi.org/10.1039/C3RA47561A
  • Tekay E, Nugay N, Nugay T, Şen S (2019) Revolution/rotation-type mixing-assisted masterbatch process for polypropylene-based high-impact ternary nanocomposites. Polymer Composites 40(1): 24-36. https://doi.org/10.1002/pc.24592
  • Mert HH, Şen S (2016) Synthesis and characterization of polyHIPE composites containing halloysite nanotubes. e-Polymers 16(6): 419-428. https://doi.org/10.1515/epoly-2016-0175
  • Menner A, Verdejo R, Shaffer M, Bismarck A (2007) Particle-stabilized surfactant-free medium internal phase emulsions as templates for porous nanocomposite materials: poly-pickering-foams. Langmuir 23(5): 2398-2403. https://doi.org/10.1021/la062712u
  • Palantöken S, Tekay E, Şen S, Nugay T, Nugay N (2016) A novel nonchemical approach to the expansion of halloysite nanotubes and their uses in chitosan composite hydrogels for broad-spectrum dye adsorption capacity. Polymer Composites 37(9): 2770-2781. https://doi.org/10.1002/pc.23473
  • Tekay E, Şen S (2022) High strength, tough/damping and creep resistant EVA/HNT nanocomposites via help of EVA-g-MA compatibilizer. Journal of Composite Materials 56(19): 2951-2962. https://doi.org/10.1177/00219983221107829

Synthesis and characterization of polyHIPE composites from CTAB-modified halloysite nanotube stabilized Pickering emulsions: Effect of CTAB immobilized nanotube on reducing surfactant usage

Yıl 2025, Cilt: 5 Sayı: 1, 99 - 116

Öz

In this study, halloysite (HL) nanotubes were used as solid particles contributing to the stabilization of high internal phase emulsions (HIPEs) in the preparation of porous composites. PolyHIPEs were obtained by polymerization of the continuous phase of these HIPEs. Immobilization of cetyltrimethylammonium bromide (CTAB) on the HL surface was carried out using the adsorption in solution (SOL) technique. The stability of HIPE without nanofiller was achieved with the use of 5% surfactant by volume. However, the surfactant requirement for the emulsion stability of HIPE materials with organophilic HL fillers (0.25-1.00 wt%) was reduced to 1%. At constant CTAB-SOL-HL clay amounts, decreasing the surfactant concentration resulted in the formation of pores of different sizes, while increasing the amount of filler while keeping the surfactant concentration constant resulted in a decrease in pore size and improved size distribution. The highest adsorption values of cationic dye (Nile Blue) were exhibited by polyHIPE composites containing 0.50 and 1.00 wt% CTAB-SOL-HL, and about 100% more adsorption was obtained with 1% filler compared to pure polyHIPE. The use of CTAB-SOL-HL at 0.50 wt% and above, higher thermal degradation temperatures were achieved in the composites compared to pure polyHIPE. The use of HL nanotubes in the preparation of porous composites is of great importance in terms of possible engineering and environmental benefits in terms of both improving the thermal performance of the materials and taking an active role in the adsorption of the dye, as well as helping to ensure emulsion stability.

Destekleyen Kurum

Yalova Üniversitesi BAPKO Birimi

Proje Numarası

2015/DR/061

Teşekkür

Bu çalışma 2015/DR/061 numaralı Yalova Üniversitesi BAPKO Lisansüstü Tez projesi kapsamında desteklenmiştir.

Kaynakça

  • Lissant KJ, Peace BW, Wu SH, Mayhan KG (1974) Structure of high-internal-phase-ratio emulsions. J. Colloid Interface Sci. 47:416-423. https://doi.org/10.1016/0021-9797(74)90273-2
  • Menner A, Ikem V, Salgueiro M, Shaffer, MS, Bismarck A (2007) High internal phase emulsion templates solely stabilised by functionalised titania nanoparticles. Chemical Communications 41: 4274-4276. https://doi.org/10.1039/B708935J
  • Ikem VO, Menner A, Bismarck A (2008) High internal phase emulsions stabilized solely by functionalized silica particles. Angewandte Chemie International Edition 47(43):8277-8279. https://doi.org/10.1002/anie.200802244
  • Song X, Zhao Y, Wang H, Du Q (2009) Fabrication of polymer microspheres using titania as a photocatalyst and Pickering stabilizer. Langmuir 25(8): 4443-4449. https://doi.org/10.1021/la8039237
  • Silverstein MS (2014) PolyHIPEs: Recent advances in emulsion-templated porous polymers. Progress in Polymer Science 39(1):199-234. https://doi.org/10.1016/j.progpolymsci.2013.07.003
  • Cui, Threlfall M, van Duijneveldt JS (2011) Optimizing organoclay stabilized Pickering emulsions. Journal of Colloid and Interface Science 356(2):665-671. https://doi.org/10.1016/j.jcis.2011.01.046
  • Hermant MC, Klumperman B, Koning CE (2009) Conductive Pickering-poly (high internal phase emulsion) composite foams prepared with low loadings of single-walled carbon nanotubes. Chemical communications 19:2738-2740. https://doi.org/10.1039/B820638D
  • Ikem VO, Menner A, Horozov TS, Bismarck A (2010) Highly permeable macroporous polymers synthesized from pickering medium and high internal phase emulsion templates. Advanced Materials 22(32):3588-3592. https://doi.org/10.1002/adma.201000729
  • Abbasian Z, Moghbeli MR (2011) Preparation of highly open porous styrene/acrylonitrile and styrene/acrylonitrile/organoclay polymerized high internal phase emulsion (PolyHIPE) foams via emulsion templating. Journal of Applied Polymer Science 119(6):3728-3738. https://doi.org/10.1002/app.33086
  • Yang Y, Wei Z. Wang C. Tong Z (2013) Lignin-based Pickering HIPEs for macroporous foams and their enhanced adsorption of copper (II) ions. Chemical Communications 49(64): 7144-7146. https://doi.org/10.1039/C3CC42270D
  • Alikhani M, Moghbeli MR (2014) Ion-exchange polyHIPE type membrane for removing nitrate ions: preparation, characterization, kinetics and adsorption studies. Chemical Engineering Journal 239: 93-104. https://doi.org/10.1016/j.cej.2013.11.013
  • Rawtani D, Agrawal YK (2012) Multifarious applications of halloysite nanotubes: a review. Rev. Adv. Mater. Sci. 30(3): 282-295.
  • Kamble R, Ghag M, Gaikawad S, Panda B K (2012) Halloysite nanotubes and applications: a review. Journal of Advanced Scientific Research 3(02): 25-29.
  • Chen H, Zhao J, Wu J, Yan H (2014) Selective desorption characteristics of halloysite nanotubes for anionic azo dyes. RSC Advances 4(30):15389-15393. https://doi.org/10.1039/C3RA47561A
  • Tekay E, Nugay N, Nugay T, Şen S (2019) Revolution/rotation-type mixing-assisted masterbatch process for polypropylene-based high-impact ternary nanocomposites. Polymer Composites 40(1): 24-36. https://doi.org/10.1002/pc.24592
  • Mert HH, Şen S (2016) Synthesis and characterization of polyHIPE composites containing halloysite nanotubes. e-Polymers 16(6): 419-428. https://doi.org/10.1515/epoly-2016-0175
  • Menner A, Verdejo R, Shaffer M, Bismarck A (2007) Particle-stabilized surfactant-free medium internal phase emulsions as templates for porous nanocomposite materials: poly-pickering-foams. Langmuir 23(5): 2398-2403. https://doi.org/10.1021/la062712u
  • Palantöken S, Tekay E, Şen S, Nugay T, Nugay N (2016) A novel nonchemical approach to the expansion of halloysite nanotubes and their uses in chitosan composite hydrogels for broad-spectrum dye adsorption capacity. Polymer Composites 37(9): 2770-2781. https://doi.org/10.1002/pc.23473
  • Tekay E, Şen S (2022) High strength, tough/damping and creep resistant EVA/HNT nanocomposites via help of EVA-g-MA compatibilizer. Journal of Composite Materials 56(19): 2951-2962. https://doi.org/10.1177/00219983221107829
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Polimer Bilimi ve Teknolojileri, Polimer Teknolojisi
Bölüm Araştırma Makaleleri
Yazarlar

Sinan Şen 0000-0001-8062-8575

Hatice Hande Mert 0000-0003-0743-1981

Proje Numarası 2015/DR/061
Yayımlanma Tarihi
Gönderilme Tarihi 20 Ağustos 2024
Kabul Tarihi 10 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 5 Sayı: 1

Kaynak Göster

APA Şen, S., & Mert, H. H. (t.y.). CTAB-modifiye haloysit nanotüp stabilize Pickering emülsiyonlardan poliHIPE kompozitlerinin sentezi ve karakterizasyonu: CTAB immobilize edilmiş nanotüp’ün surfaktan kullanımını azaltmadaki etkisi. Journal of Innovative Engineering and Natural Science, 5(1), 99-116.


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0