Influence of Essential Oil on the Properties of UV-crosslinked Polyacrylamide/sodium caseinate (PAAM/SC) Hydrogels
Yıl 2025,
Cilt: 5 Sayı: 1, 262 - 272
Ahmetcan Gün
,
Azra Albayrak
,
Fatma Nur Parın
,
Recep İlhan
,
Uğur Parın
Öz
Presently, numerous studies have shown that hydrogels can help with wound healing in a variety of approaches. Oil-loaded protein-based hydrogels were fast produced via free radical photopolymerization (UV crosslinking). The water phase consisted of sodium caseinate polymer and acrylamide monomer, whereas the oil phase included orange blossom essential oil (OBEO). The bio-based surfactant β-cyclodextrin (β-CD) stabilized oil loaded-hydrogels. β-CD/OBEO complexes in specific proportions (1:1, 1:2, and 1:4) was added to water phase. ATR-FT-IR confirms the functional groups in hydrogels. The hydrogels have a swelling ratio above 280 % for 24 hours. The maximum compression strength for hydrogels with (β-CD/OBEO, 1:2) is almost 1 MPa. All oil-loaded hydrogels showed antibacterial efficiency against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), with inhibition zones of 6-10 mm. According to the findings, the synthesized hydrogels can be used as wound dressings in wound healing applications.
Teşekkür
Bu çalışma 14. ULPAS'ta en iyi 3. bildiri olarak ve aynı zamanda JIENS dergisinde özel sayıda basılmak üzere seçilmiştir.
Kaynakça
- Yu R, Zhang H, Guo B (2022) Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nanomicro Lett. 14:1-46. https://doi.org/10.1007/s40820-021-00751-y
- Qu J, Zhao, X, Liang Y, Zhang T, Ma PX, Guo B (2018) Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomater 183:185-199. https://doi.org/10.1016/j.biomaterials.2018.08.044
- Okay O (2020) Self-Healing and Shape-Memory Hydrogels. Hacettepe Journal of Biology and Chemistry, The 100 Year of Polymers 48:507-525. https://doi.org/10.15671/hjbc.797525
- Chirani N, Yahia LH, Gritsch L, Motta FL, Chirani S, Farè S (2015) History and applications of hydrogels. J Biomed Sci 4:1-23. https://hdl.handle.net/11311/1170426
- Parın FN (2023) Synthesis and Characterisation of PVP-AAm Hydrogels via Hybrid Process: Morphological, Physical, and Antibacterial Activity. J Adv Res Nat 9:697-709. https://doi.org/10.28979/jarnas.1255113
- Foudazi R, Zowada R, Manas-Zloczower I, Feke DL (2023) Porous hydrogels: Present challenges and future opportunities. Langmuir 39:2092-2111. https://doi.org/10.1021/acs.langmuir.2c02253
- Nascimento LGL, Casanova F, Silva NFN, de Carvalho Teixeira AVN, de Carvalho AF (2020) Casein-based hydrogels: A mini-review. Food Chem 314:126063. https://doi.org/10.1016/j.foodchem.2019.126063
- Casanova F, Silva NFN, Gaucheron F, Nogueira MH, Teixeira AV, Perrone IT,Alves MP, Fidelis PC, de Carvalho AF (2017) Stability of casein micelles cross-linked with genipin: A physicochemical study as a function of pH. Int Dairy J 68:70-74. https://doi.org/10.1016/j.idairyj.2016.12.006
- Semeniuc CA, Pop CR, Rotar AM (2017) Antibacterial activity and interactions of plant essential oil combinations against Gram-positive and Gram-negative bacteria. J Food Drug Anal 25:403-408. https://doi.org/10.1016/j.jfda.2016.06.002
- Pérez-Recalde M, Arias IER, Hermida ÉB (2018) Could essential oils enhance biopolymers performance for wound healing? A systematic review. Phytomedicine 38:57-65. https://doi.org/10.1016/j.phymed.2017.09.024
- Ma J, Lee J, Han SS, Oh KH, Nam KT, & Sun JY (2016) Highly stretchable and notch-insensitive hydrogel based on polyacrylamide and milk protein. ACS Appl Mater Interfaces 8:29220-29226. https://doi.org/10.1021/acsami.6b10912
- Ammar AH, Bouajila J, Lebrihi A, Mathieu F, Romdhane M, Zagrouba F (2012) Chemical composition and in vitro antimicrobial and antioxidant activities of Citrus aurantium L. flowers essential oil (Neroli oil). PJBS 15:1034-1040. https://doi.org/10.3923/pjbs.2012.1034.1040
- Naik JB, Rajput RL, Narkhede JS, Mujumdar A, Patil PB (2021) Synthesis and evaluation of UV cross-linked Poly (acrylamide) loaded thymol nanogel for antifungal application in oral candidiasis. J Polym Res 28:1-13. https://doi.org/10.1007/s10965-020-02377-x
- Moradi M, Barati A, Moradi S, Zarinabadi E. (2024) Synthesis and characterization of starch-based hydrogels containing myrtus oil nanoemulsion for wound dressings. Polym Bull 81:3043-3062. https://doi.org/10.1007/s10965-020-02377-x
- Li W, Zhao Y, Sun W, Dong T, Saldaña MD, Sun W (2022) Multi-responsive poly N-isopropylacrylamide/poly N-tert-butylacrylamide nanocomposite hydrogel with the ability to be adsorbed on the chitosan film as an active antibacterial material. Int J Biol Macromol 208:1019-1028. https://doi.org/10.1016/j.ijbiomac.2022.03.198
- Zhang K, Feng W, Jin C (2020) Protocol efficiently measuring the swelling rate of hydrogels. MethodsX 7:100779. https://doi.org/10.1016/j.mex.2019.100779
- Kundu D, Banerjee T (2020) Development of microcrystalline cellulose based hydrogels for the in vitro delivery of Cephalexin. Heliyon, 6:1-10. https://doi.org/10.1016/j.heliyon.2019.e03027
- Popa EG, Rodrigues MT, Coutinho DF et al (2013) Cryopreservation of cell laden natural origin hydrogels for cartilage regeneration strategies. Soft Matter, 9:875-885. https://doi.org/10.1039/C2SM26846A
- Magalhães ASG, Almeida Neto MP et al (2012) Application of FTIR in the determination of acrylate content in poly (sodium acrylate-co-acrylamide) superabsorbent hydrogels. Quím Nova, 35:1464-1467. https://doi.org/10.1590/S0100-40422012000700030
- Pan K, Zhong Q, Baek SJ (2013) Enhanced dispersibility and bioactivity of curcumin by encapsulation in casein nanocapsules. J Agric Food Chem 61:6036-6043. https://doi.org/10.1021/jf400752a
- Abdel-Gaber AM, Hijazi KM, Younes GO, Nsouli B (2017) Comparative study of the inhibitive action between the bitter orange leaf extract and its chemical constituent linalool on the mild steel corrosion in HCl solution. Quím Nova 40:395-401. https://doi.org/10.21577/0100-4042.20170020
- Jeannot V, Chahboun J, Russell D, Baret P (2005) Quantification and determination of chemical composition of the essential oil extracted from natural orange blossom water (Citrus aurantium L. ssp. aurantium). Int J Aromather 15:94-97. https://doi.org/10.1016/j.ijat.2005.03.012
- Bhatia S, Al-Harrasi A, Al-Azri MS, Ullah S, Bekhit AEDA, Pratap-Singh A, Chatli MK, Anwer Md K, Aldawsari MF (2022) Preparation and physiochemical characterization of bitter orange oil loaded sodium alginate and casein based edible films. Polymers 14:1-15. https://doi.org/10.3390/polym14183855
- Zhang K, Feng W, Jin C (2020) Protocol efficiently measuring the swelling rate of hydrogels. MethodsX 7:100779. https://doi.org/10.1016/j.mex.2019.100779
- Kędzierska M, Kudłacik-Kramarczyk S, Jamroży M, Bańkosz M, Walter J, Potemski P, Drabczyk A (2023) Verification of the Influence of the 2-Hydroxy-2-methylpropiohenone (Photoinitiator) Contentin Hydrogel Materials on Their Physicochemical Properties ans Surface Morphology. Coatings 13:1-21 https://doi.org/10.3390/coatings13010040
- Wang X, Song R, Johnson M, He Z, Milne C, Wang X, et al (2021) An injectable chitosan-based self-healable hydrogel system as an antibacterial wound dressing. Mater 14:1-11. https://doi.org/10.3390/ma14205956
- Wang J, Li YaoZong L, YongFeng G, ZouFeng, X, MuHua Z, YinYan H et al (2018) Cinnamon oil-loaded composite emulsion hydrogels with antibacterial activity prepared using concentrated emulsion templates. Ind Crops Prod 112:281-289. https://doi.org/10.1016/j.indcrop.2017.12.022
Uçucu yağın UV Çapraz Bağlı Poliakrilamid/sodyum kazeinat (PAAM / SC) Hidrojellerinin Özellikleri Üzerindeki Etkisi
Yıl 2025,
Cilt: 5 Sayı: 1, 262 - 272
Ahmetcan Gün
,
Azra Albayrak
,
Fatma Nur Parın
,
Recep İlhan
,
Uğur Parın
Öz
Halihazırda çok sayıda çalışma, hidrojellerin çeşitli yaklaşımlarla yara iyileşmesine yardımcı olabileceğini göstermiştir. Yağ yüklü protein bazlı hidrojeller, serbest radikal fotopolimerizasyon (UV çapraz bağlama) yoluyla hızlı bir şekilde üretilmiştir. Su fazı sodyum kazeinat polimeri ve akrilamid monomerinden oluşurken, yağ fazı portakal çiçeği esansiyel yağı (OBEO) içeriyordu. Biyo-bazlı yüzey aktif madde β-siklodekstrin (β-CD) yağ yüklü hidrojelleri stabilize etmiştir. β-CD/OBEO kompleksleri belirli oranlarda (1:1, 1:2 ve 1:4) su fazına eklenmiştir. ATR-FT-IR hidrojellerdeki fonksiyonel grupları doğrulamıştır. Hidrojeller 24 saat boyunca %280'in üzerinde bir şişme oranına sahiptir. (β-CD/OBEO, 1:2) içeren hidrojeller için maksimum sıkıştırma mukavemeti neredeyse 1 MPa'dır. Tüm yağ yüklü hidrojeller, Escherichia coli (E. coli) ve Staphylococcus aureus'a (S. aureus) karşı 6-10 mm'lik inhibisyon zonları ile antibakteriyel etkinlik göstermiştir. Elde edilen bulgulara göre, sentezlenen hidrojeller yara iyileştirme uygulamalarında yara örtüsü olarak kullanılabilir.
Kaynakça
- Yu R, Zhang H, Guo B (2022) Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nanomicro Lett. 14:1-46. https://doi.org/10.1007/s40820-021-00751-y
- Qu J, Zhao, X, Liang Y, Zhang T, Ma PX, Guo B (2018) Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomater 183:185-199. https://doi.org/10.1016/j.biomaterials.2018.08.044
- Okay O (2020) Self-Healing and Shape-Memory Hydrogels. Hacettepe Journal of Biology and Chemistry, The 100 Year of Polymers 48:507-525. https://doi.org/10.15671/hjbc.797525
- Chirani N, Yahia LH, Gritsch L, Motta FL, Chirani S, Farè S (2015) History and applications of hydrogels. J Biomed Sci 4:1-23. https://hdl.handle.net/11311/1170426
- Parın FN (2023) Synthesis and Characterisation of PVP-AAm Hydrogels via Hybrid Process: Morphological, Physical, and Antibacterial Activity. J Adv Res Nat 9:697-709. https://doi.org/10.28979/jarnas.1255113
- Foudazi R, Zowada R, Manas-Zloczower I, Feke DL (2023) Porous hydrogels: Present challenges and future opportunities. Langmuir 39:2092-2111. https://doi.org/10.1021/acs.langmuir.2c02253
- Nascimento LGL, Casanova F, Silva NFN, de Carvalho Teixeira AVN, de Carvalho AF (2020) Casein-based hydrogels: A mini-review. Food Chem 314:126063. https://doi.org/10.1016/j.foodchem.2019.126063
- Casanova F, Silva NFN, Gaucheron F, Nogueira MH, Teixeira AV, Perrone IT,Alves MP, Fidelis PC, de Carvalho AF (2017) Stability of casein micelles cross-linked with genipin: A physicochemical study as a function of pH. Int Dairy J 68:70-74. https://doi.org/10.1016/j.idairyj.2016.12.006
- Semeniuc CA, Pop CR, Rotar AM (2017) Antibacterial activity and interactions of plant essential oil combinations against Gram-positive and Gram-negative bacteria. J Food Drug Anal 25:403-408. https://doi.org/10.1016/j.jfda.2016.06.002
- Pérez-Recalde M, Arias IER, Hermida ÉB (2018) Could essential oils enhance biopolymers performance for wound healing? A systematic review. Phytomedicine 38:57-65. https://doi.org/10.1016/j.phymed.2017.09.024
- Ma J, Lee J, Han SS, Oh KH, Nam KT, & Sun JY (2016) Highly stretchable and notch-insensitive hydrogel based on polyacrylamide and milk protein. ACS Appl Mater Interfaces 8:29220-29226. https://doi.org/10.1021/acsami.6b10912
- Ammar AH, Bouajila J, Lebrihi A, Mathieu F, Romdhane M, Zagrouba F (2012) Chemical composition and in vitro antimicrobial and antioxidant activities of Citrus aurantium L. flowers essential oil (Neroli oil). PJBS 15:1034-1040. https://doi.org/10.3923/pjbs.2012.1034.1040
- Naik JB, Rajput RL, Narkhede JS, Mujumdar A, Patil PB (2021) Synthesis and evaluation of UV cross-linked Poly (acrylamide) loaded thymol nanogel for antifungal application in oral candidiasis. J Polym Res 28:1-13. https://doi.org/10.1007/s10965-020-02377-x
- Moradi M, Barati A, Moradi S, Zarinabadi E. (2024) Synthesis and characterization of starch-based hydrogels containing myrtus oil nanoemulsion for wound dressings. Polym Bull 81:3043-3062. https://doi.org/10.1007/s10965-020-02377-x
- Li W, Zhao Y, Sun W, Dong T, Saldaña MD, Sun W (2022) Multi-responsive poly N-isopropylacrylamide/poly N-tert-butylacrylamide nanocomposite hydrogel with the ability to be adsorbed on the chitosan film as an active antibacterial material. Int J Biol Macromol 208:1019-1028. https://doi.org/10.1016/j.ijbiomac.2022.03.198
- Zhang K, Feng W, Jin C (2020) Protocol efficiently measuring the swelling rate of hydrogels. MethodsX 7:100779. https://doi.org/10.1016/j.mex.2019.100779
- Kundu D, Banerjee T (2020) Development of microcrystalline cellulose based hydrogels for the in vitro delivery of Cephalexin. Heliyon, 6:1-10. https://doi.org/10.1016/j.heliyon.2019.e03027
- Popa EG, Rodrigues MT, Coutinho DF et al (2013) Cryopreservation of cell laden natural origin hydrogels for cartilage regeneration strategies. Soft Matter, 9:875-885. https://doi.org/10.1039/C2SM26846A
- Magalhães ASG, Almeida Neto MP et al (2012) Application of FTIR in the determination of acrylate content in poly (sodium acrylate-co-acrylamide) superabsorbent hydrogels. Quím Nova, 35:1464-1467. https://doi.org/10.1590/S0100-40422012000700030
- Pan K, Zhong Q, Baek SJ (2013) Enhanced dispersibility and bioactivity of curcumin by encapsulation in casein nanocapsules. J Agric Food Chem 61:6036-6043. https://doi.org/10.1021/jf400752a
- Abdel-Gaber AM, Hijazi KM, Younes GO, Nsouli B (2017) Comparative study of the inhibitive action between the bitter orange leaf extract and its chemical constituent linalool on the mild steel corrosion in HCl solution. Quím Nova 40:395-401. https://doi.org/10.21577/0100-4042.20170020
- Jeannot V, Chahboun J, Russell D, Baret P (2005) Quantification and determination of chemical composition of the essential oil extracted from natural orange blossom water (Citrus aurantium L. ssp. aurantium). Int J Aromather 15:94-97. https://doi.org/10.1016/j.ijat.2005.03.012
- Bhatia S, Al-Harrasi A, Al-Azri MS, Ullah S, Bekhit AEDA, Pratap-Singh A, Chatli MK, Anwer Md K, Aldawsari MF (2022) Preparation and physiochemical characterization of bitter orange oil loaded sodium alginate and casein based edible films. Polymers 14:1-15. https://doi.org/10.3390/polym14183855
- Zhang K, Feng W, Jin C (2020) Protocol efficiently measuring the swelling rate of hydrogels. MethodsX 7:100779. https://doi.org/10.1016/j.mex.2019.100779
- Kędzierska M, Kudłacik-Kramarczyk S, Jamroży M, Bańkosz M, Walter J, Potemski P, Drabczyk A (2023) Verification of the Influence of the 2-Hydroxy-2-methylpropiohenone (Photoinitiator) Contentin Hydrogel Materials on Their Physicochemical Properties ans Surface Morphology. Coatings 13:1-21 https://doi.org/10.3390/coatings13010040
- Wang X, Song R, Johnson M, He Z, Milne C, Wang X, et al (2021) An injectable chitosan-based self-healable hydrogel system as an antibacterial wound dressing. Mater 14:1-11. https://doi.org/10.3390/ma14205956
- Wang J, Li YaoZong L, YongFeng G, ZouFeng, X, MuHua Z, YinYan H et al (2018) Cinnamon oil-loaded composite emulsion hydrogels with antibacterial activity prepared using concentrated emulsion templates. Ind Crops Prod 112:281-289. https://doi.org/10.1016/j.indcrop.2017.12.022